Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,420)

Search Parameters:
Keywords = crop growth model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4631 KB  
Article
Crop Disease Spore Detection Method Based on Au@Ag NRS
by Yixue Zhang, Jili Guo, Fei Bian, Zhaowei Li, Chuandong Guo, Jialiang Zheng and Xiaodong Zhang
Agriculture 2025, 15(19), 2076; https://doi.org/10.3390/agriculture15192076 - 3 Oct 2025
Abstract
Crop diseases cause significant losses in agricultural production; early capture and identification of disease spores enable disease monitoring and prevention. This study experimentally optimized the preparation of Au@Ag NRS (Gold core@Silver shell Nanorods) sol as a Surface-Enhanced Raman Scattering (SERS) enhancement reagent via [...] Read more.
Crop diseases cause significant losses in agricultural production; early capture and identification of disease spores enable disease monitoring and prevention. This study experimentally optimized the preparation of Au@Ag NRS (Gold core@Silver shell Nanorods) sol as a Surface-Enhanced Raman Scattering (SERS) enhancement reagent via a modified seed-mediated growth method. Using an existing microfluidic chip developed by the research group, disease spores were separated and enriched, followed by combining Au@Ag NRS with Crop Disease Spores through electrostatic adsorption. Raman spectroscopy was employed to collect SERS fingerprint spectra of Crop Disease Spores. The spectra underwent baseline correction using Adaptive Least Squares (ALS) and standardization via Standard Normal Variate (SNV). Dimensionality reduction preprocessing was performed using Principal Component Analysis (PCA) and Successive Projections Algorithm combined with Competitive Adaptive Reweighted Sampling (SCARS). Classification was then executed using Support Vector Machine (SVM) and Multilayer Perceptron (MLP). The SCARS-MLP model achieved the highest accuracy at 97.92% on the test set, while SCARS-SVM, PCA-SVM, and SCARS-MLP models attained test set accuracy of 95.83%, 95.24%, and 96.55%, respectively. Thus, the proposed Au@Ag NRS-based SERS technology can be applied to detect airborne disease spores, establishing an early and precise method for Crop Disease detection. Full article
(This article belongs to the Special Issue Spectral Data Analytics for Crop Growth Information)
Show Figures

Figure 1

14 pages, 2752 KB  
Article
TinyML Classification for Agriculture Objects with ESP32
by Danila Donskoy, Valeria Gvindjiliya and Evgeniy Ivliev
Digital 2025, 5(4), 48; https://doi.org/10.3390/digital5040048 - 2 Oct 2025
Abstract
Using systems with machine learning technologies for process automation is a global trend in agriculture. However, implementing this technology comes with challenges, such as the need for a large amount of computing resources under conditions of limited energy consumption and the high cost [...] Read more.
Using systems with machine learning technologies for process automation is a global trend in agriculture. However, implementing this technology comes with challenges, such as the need for a large amount of computing resources under conditions of limited energy consumption and the high cost of hardware for intelligent systems. This article presents the possibility of applying a modern ESP32 microcontroller platform in the agro-industrial sector to create intelligent devices based on the Internet of Things. CNN models are implemented based on the TensorFlow architecture in hardware and software solutions based on the ESP32 microcontroller from Espressif company to classify objects in crop fields. The purpose of this work is to create a hardware–software complex for local energy-efficient classification of images with support for IoT protocols. The results of this research allow for the automatic classification of field surfaces with the presence of “high attention” and optimal growth zones. This article shows that classification accuracy exceeding 87% can be achieved in small, energy-efficient systems, even for low-resolution images, depending on the CNN architecture and its quantization algorithm. The application of such technologies and methods of their optimization for energy-efficient devices, such as ESP32, will allow us to create an Intelligent Internet of Things network. Full article
Show Figures

Figure 1

27 pages, 8112 KB  
Article
Detection of Abiotic Stress in Potato and Sweet Potato Plants Using Hyperspectral Imaging and Machine Learning
by Min-Seok Park, Mohammad Akbar Faqeerzada, Sung Hyuk Jang, Hangi Kim, Hoonsoo Lee, Geonwoo Kim, Young-Son Cho, Woon-Ha Hwang, Moon S. Kim, Insuck Baek and Byoung-Kwan Cho
Plants 2025, 14(19), 3049; https://doi.org/10.3390/plants14193049 - 2 Oct 2025
Abstract
As climate extremes increasingly threaten global food security, precision tools for early detection of crop stress have become vital, particularly for root crops such as potato (Solanum tuberosum L.) and sweet potato (Ipomoea batatas L. Lam.), which are especially susceptible to [...] Read more.
As climate extremes increasingly threaten global food security, precision tools for early detection of crop stress have become vital, particularly for root crops such as potato (Solanum tuberosum L.) and sweet potato (Ipomoea batatas L. Lam.), which are especially susceptible to environmental stressors throughout their life cycles. In this study, plants were monitored from the initial onset of seasonal stressors, including spring drought, heat, and episodes of excessive rainfall, through to harvest, capturing the full range of physiological and biochemical responses under seasonal, simulated conditions in greenhouses. The spectral data were obtained from regions of interest (ROIs) of each cultivar’s leaves, with over 3000 data points extracted per cultivar; these data were subsequently used for model development. A comprehensive classification framework was established by employing machine learning models, Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Partial Least Squares-Discriminant Analysis (PLS-DA), to detect stress across various growth stages. Furthermore, severity levels were objectively defined using photoreflectance indices and principal component analysis (PCA) data visualizations, which enabled consistent and reliable classification of stress responses in both individual cultivars and combined datasets. All models achieved high classification accuracy (90–98%) on independent test sets. The application of the Successive Projections Algorithm (SPA) for variable selection significantly reduced the number of wavelengths required for robust stress classification, with SPA-PLS-DA models maintaining high accuracy (90–96%) using only a subset of informative bands. Furthermore, SPA-PLS-DA-based chemical imaging enabled spatial mapping of stress severity within plant tissues, providing early, non-invasive insights into physiological and biochemical status. These findings highlight the potential of integrating hyperspectral imaging and machine learning for precise, real-time crop monitoring, thereby contributing to sustainable agricultural management and reduced yield losses. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

34 pages, 6850 KB  
Article
Assisted Lettuce Tipburn Monitoring in Greenhouses Using RGB and Multispectral Imaging
by Jonathan Cardenas-Gallegos, Paul M. Severns, Alexander Kutschera and Rhuanito Soranz Ferrarezi
AgriEngineering 2025, 7(10), 328; https://doi.org/10.3390/agriengineering7100328 - 1 Oct 2025
Abstract
Imaging in controlled agriculture helps maximize plant growth by saving labor and optimizing resources. By monitoring specific plant traits, growers can prevent crop losses by correcting environmental conditions that lead to physiological disorders like leaf tipburn. This study aimed to identify morphometric and [...] Read more.
Imaging in controlled agriculture helps maximize plant growth by saving labor and optimizing resources. By monitoring specific plant traits, growers can prevent crop losses by correcting environmental conditions that lead to physiological disorders like leaf tipburn. This study aimed to identify morphometric and spectral markers for the early detection of tipburn in two Romaine lettuce (Lactuca sativa) cultivars (‘Chicarita’ and ‘Dragoon’) using an image-based system with color and multispectral cameras. By monitoring tipburn in treatments using melatonin, lettuce cultivars, and with and without supplemental lighting, we enhanced our system’s accuracy for high-resolution tipburn symptom identification. Canopy geometrical features varied between cultivars, with the more susceptible cultivar exhibiting higher compactness and extent values across time, regardless of lighting conditions. These traits were further used to compare simple linear, logistic, least absolute shrinkage and selection operator (LASSO) regression, and random forest models for predicting leaf fresh and dry weight. Random forest regression outperformed simpler models, reducing the percentage error for leaf fresh weight from ~34% (LASSO) to ~13% (RMSE: 34.14 g to 17.32 g). For leaf dry weight, the percentage error decreased from ~20% to ~12%, with an explained variance increase to 94%. Vegetation indices exhibited cultivar-specific responses to supplemental lighting. ‘Dragoon’ consistently had higher red-edge chlorophyll index (CIrededge), enhanced vegetation index, and normalized difference vegetation index values than ‘Chicarita’. Additionally, ‘Dragoon’ showed a distinct temporal trend in the photochemical reflectance index, which increased under supplemental lighting. This study highlights the potential of morphometric and spectral traits for early detection of tipburn susceptibility, optimizing cultivar-specific environmental management, and improving the accuracy of predictive modeling strategies. Full article
27 pages, 3776 KB  
Article
An Efficient Method for Retrieving Citrus Orchard Evapotranspiration Based on Multi-Source Remote Sensing Data Fusion from Unmanned Aerial Vehicles
by Zhiwei Zhang, Weiqi Zhang, Chenfei Duan, Shijiang Zhu and Hu Li
Agriculture 2025, 15(19), 2058; https://doi.org/10.3390/agriculture15192058 - 30 Sep 2025
Abstract
Severe water scarcity has become a critical constraint to global agricultural development. Enhancing both the timeliness and accuracy of crop evapotranspiration (ETc) retrieval is essential for optimizing irrigation scheduling. Addressing the limitations of conventional ground-based point-source measurements in rapidly acquiring [...] Read more.
Severe water scarcity has become a critical constraint to global agricultural development. Enhancing both the timeliness and accuracy of crop evapotranspiration (ETc) retrieval is essential for optimizing irrigation scheduling. Addressing the limitations of conventional ground-based point-source measurements in rapidly acquiring two-dimensional ETc information at the field scale, this study employed unmanned aerial vehicle (UAV) remote sensing equipped with multispectral and thermal infrared sensors to obtain high spatiotemporal resolution imagery of a representative citrus orchard (Citrus reticulata Blanco cv. ‘Yichangmiju’) in western Hubei at different phenological stages. In conjunction with meteorological data (air temperature, daily net radiation, etc.), ETc was retrieved using two established approaches: the Seguin-Itier (S-I) model, which relates canopy–air temperature differences to ETc, and the multispectral-driven single crop coefficient method, which estimates ETc by combining vegetation indices with reference evapotranspiration. The thermal-infrared-driven S-I model, which relates canopy–air temperature differences to ETc, and the multispectral-driven single crop coefficient method, which estimates ETc by combining vegetation indices with reference evapotranspiration. The findings indicate that: (1) both the S-I model and the single crop coefficient method achieved satisfactory ETc estimation accuracy, with the latter performing slightly better (accuracy of 80% and 85%, respectively); (2) the proposed multi-source fusion model consistently demonstrated high accuracy and stability across all phenological stages (R2 = 0.9104, 0.9851, and 0.9313 for the fruit-setting, fruit-enlargement, and coloration–sugar-accumulation stages, respectively; all significant at p < 0.01), significantly enhancing the precision and timeliness of ETc retrieval; and (3) the model was successfully applied to ETc retrieval during the main growth stages in the Cangwubang citrus-producing area of Yichang, providing practical support for irrigation scheduling and water resource management at the regional scale. This multi-source fusion approach offers effective technical support for precision irrigation control in agriculture and holds broad application prospects. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Graphical abstract

22 pages, 4958 KB  
Article
Closing the Loop in Opuntia Cultivation: Opportunities and Challenges in Residue Valorization
by Alan Jesús Torres-Sandoval, Yolanda Donají Ortiz-Hernández, María Elena Tavera-Cortés, Marco Aurelio Acevedo-Ortiz and Gema Lugo-Espinosa
Agronomy 2025, 15(10), 2311; https://doi.org/10.3390/agronomy15102311 - 30 Sep 2025
Abstract
Global food systems face growing pressure from population expansion and climate change, making the identification of resilient crops a priority. The nopal cactus (Opuntia spp.) stands out for its capacity to thrive in arid environments and for its cultural and economic importance [...] Read more.
Global food systems face growing pressure from population expansion and climate change, making the identification of resilient crops a priority. The nopal cactus (Opuntia spp.) stands out for its capacity to thrive in arid environments and for its cultural and economic importance in Mexico. This study analyzes worldwide research trends and evaluates evidence from Mexico to identify opportunities and strategies for closing production cycles through residue valorization. Scientific output over the past decade shows steady growth and a thematic transition from basic agronomic and compositional studies toward sustainability, bioactive compounds, and circular economy approaches. In the Mexican context, applied studies demonstrate that Opuntia spp. cladodes residues can be transformed into composts with C/N ratios between 12 and 26, improving soil organic matter and nutrient availability. Biofertilizers produced through anaerobic fermentation enhanced phosphorus solubility in alkaline soils, while direct residue incorporation increased carrot and tomato yields up to threefold. Farmers recognize these practices as low-cost and compatible with local systems. Nevertheless, the lack of standardized protocols and scalable models limits widespread adoption. Strengthening research collaboration, policy incentives, and technology transfer could position Mexico as a leader in sustainable Opuntia value chains and advance circular economy practices in smallholder farming systems. Full article
Show Figures

Figure 1

14 pages, 2003 KB  
Article
Changes in Camelina sativa Yield Based on Temperature and Precipitation Using FDA
by Małgorzata Graczyk, Danuta Kurasiak-Popowska and Grażyna Niedziela
Agriculture 2025, 15(19), 2051; https://doi.org/10.3390/agriculture15192051 - 30 Sep 2025
Abstract
Camelina (Camelina sativa) is an oilseed crop of increasing importance, valued not only for its adaptability to diverse environmental conditions and potential for sustainable agriculture but also for its economic advantages, including low input requirements and suitability for biofuel production and [...] Read more.
Camelina (Camelina sativa) is an oilseed crop of increasing importance, valued not only for its adaptability to diverse environmental conditions and potential for sustainable agriculture but also for its economic advantages, including low input requirements and suitability for biofuel production and niche markets. This study examines the relationship between camelina yield and climatic variables—specifically temperature and precipitation—based on a ten-year field experiment conducted in Poland. To capture the temporal dynamics of weather conditions, Functional Data Analysis (FDA) was applied to daily temperature and precipitation data. The analysis revealed that yield variability was strongly influenced by the length of the vegetative period and specific weather patterns in April and July. Higher yields were recorded in years characterized by moderate spring temperatures, elevated temperatures in July, and evenly distributed rainfall during the early generative growth stages. The Maximal Information Coefficient (MIC) confirmed the relevance of these variables, with the duration of the vegetative phase showing the strongest correlation with yield. Cluster analysis further distinguished high- and low-yield years based on functional weather profiles. The FDA-based approach provided clear, interpretable insights into climate–yield interactions and demonstrated greater effectiveness than traditional regression models in capturing complex, time-dependent relationships. These findings enhance our understanding of camelina’s response to climatic variability and support the development of predictive tools for resilient, climate-smart crop management. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

20 pages, 3320 KB  
Article
Towards Sustainable Greenhouse Design: A Numerical Study on Temperature Control in Multi-Span Hoop Structures
by Ramadas Narayanan, Sai Ruthwick Madas and Rohit Singh
Sustainability 2025, 17(19), 8712; https://doi.org/10.3390/su17198712 - 28 Sep 2025
Abstract
A greenhouse with properly managed temperature can provide 5 to 10 times greater yield than conventional methods for crops such as blueberries, cucumbers, and tomatoes; the yield is also of higher quality. However, existing designs in Australia often follow practices developed for cooler [...] Read more.
A greenhouse with properly managed temperature can provide 5 to 10 times greater yield than conventional methods for crops such as blueberries, cucumbers, and tomatoes; the yield is also of higher quality. However, existing designs in Australia often follow practices developed for cooler regions, making them less effective under local high-radiation conditions. To determine the design parameters for the local condition, this study develops and validates a numerical model of a commercial blueberry greenhouse, applying it to examine how structural parameters, including overall height, arch height, and number of spans, influence indoor temperature distribution in multi-span hoop structures. Results show that increasing greenhouse height by 0.40 m reduced average temperature by up to 0.62%, whereas raising arch height by the same increment led to a marginal increase of 0.15%. In contrast, expanding span numbers from 2 to 12 resulted in a maximum temperature difference of 6 °C (approximately 20% above ambient temperature) across the structure, posing significant risks to plant growth. These findings provide a theoretical basis for optimising design parameters that minimise heat stress while reducing reliance on fossil-fuel-based cooling. The study highlights how tailoring greenhouse design to local conditions can improve productivity and support both environmental and economic sustainability. Full article
Show Figures

Figure 1

23 pages, 17838 KB  
Article
Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta
by Junyong Zhang, Tao Liu, Wenjie Feng, Lijing Han, Rui Gao, Fei Wang, Shuang Ma, Dongrui Han, Zhuoran Zhang, Shuai Yan, Jie Yang, Jianfei Wang and Meng Wang
Agronomy 2025, 15(10), 2292; https://doi.org/10.3390/agronomy15102292 - 27 Sep 2025
Abstract
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation [...] Read more.
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation temporal features, combining multi-temporal Sentinel-2 optical data (January 2024–March 2025), Sentinel-1 SAR data, and terrain covariates. The framework employs Savitzky–Golay (SG) filtering to extract vegetation temporal indices—including NDVI temporal extremum and principal component features, capturing salt stress response mechanisms beyond single-temporal spectral indices. Based on 119 field samples and Variable Importance in Projection (VIP) feature selection, three ensemble models (XGBoost, CatBoost, LightGBM) were constructed under two strategies: single spectral features versus fused spectral and vegetation temporal features. The key results demonstrate the following: (1) The LightGBM model with fused features achieved optimal validation accuracy (R2 = 0.77, RMSE = 0.26 g/kg), outperforming single-feature models by 13% in R2. (2) SHAP analysis identified vegetation-related factors as key predictors, revealing a negative correlation between peak biomass and salinity accumulation, and the summer crop growth process affects soil salinization in the following spring. (3) The fused strategy reduced overestimation in low-salinity zones, enhanced model robustness, and significantly improved spatial gradient continuity. This study confirms that vegetation phenological features effectively mitigate agricultural interference (e.g., tillage-induced signal noise) and achieve high-resolution salinity mapping in areas where traditional spectral indices fail. The multi-temporal integration framework provides a replicable methodology for monitoring coastal salinization under complex land cover conditions. Full article
Show Figures

Figure 1

14 pages, 1754 KB  
Article
Insights into the Fate and Risk Identification of Cyantraniliprole and Lufenuron Based on Pak Choi (Brassica rapa L. subsp. chinensis)
by Yuxiao Zhu, Rumei Li, Tongjin Liu, Ruijuan Li, Feng Fang and Hui Liang
Agronomy 2025, 15(10), 2289; https://doi.org/10.3390/agronomy15102289 - 27 Sep 2025
Abstract
The fate and risk identification of cyantraniliprole (CYA) and lufenuron (LUF) in pak choi were systematically analyzed through an investigation comprising field trials, dissipation kinetics, and dietary risk assessment. Initially, field experiments across ten Chinese provinces revealed half-lives of 3.04–5.41 d for CYA [...] Read more.
The fate and risk identification of cyantraniliprole (CYA) and lufenuron (LUF) in pak choi were systematically analyzed through an investigation comprising field trials, dissipation kinetics, and dietary risk assessment. Initially, field experiments across ten Chinese provinces revealed half-lives of 3.04–5.41 d for CYA and 2.02–5.13 d for LUF, with dissipation following single first-order (SFO) kinetics or double first-order in parallel (DFOP) kinetics. Terminal residues (<limit of quantification (LOQ) to 0.29 mg/kg) were below maximum residue limits. Dissipation rates were significantly influenced by temperature, climate, and crop growth stage. Additionally, the multidimensional dietary assessment using deterministic and probabilistic models revealed acceptable long-term risk levels for CYA and LUF among consumer groups (risk quotients < 28.4%). Overall, this first comprehensive study from cultivation to consumption provides crucial insights for rational pesticide use in pak choi. Full article
Show Figures

Figure 1

22 pages, 8501 KB  
Article
Estimation of Chlorophyll and Water Content in Maize Leaves Under Drought Stress Based on VIS/NIR Spectroscopy
by Qi Su, Jingyong Wang, Huarong Ling, Ziting Wang and Jingyao Gai
Processes 2025, 13(10), 3087; https://doi.org/10.3390/pr13103087 - 26 Sep 2025
Abstract
Maize (Zea mays) is a key crop, with its growth impacted by drought stress. Accurate, non-destructive assessment of drought severity is crucial for precision agriculture. VIS/NIR reflectance spectroscopy is widely used for estimating plant parameters and detecting stress. However, the relationship [...] Read more.
Maize (Zea mays) is a key crop, with its growth impacted by drought stress. Accurate, non-destructive assessment of drought severity is crucial for precision agriculture. VIS/NIR reflectance spectroscopy is widely used for estimating plant parameters and detecting stress. However, the relationship between key parameters—such as chlorophyll and water content—and VIS/NIR spectra under drought conditions in maize remains unclear, lacking comprehensive models and validation. This study aims to develop a non-destructive and accurate method for predicting chlorophyll and water content in maize leaves under drought stress using VIS/NIR spectroscopy. Specifically, maize leaf reflectance spectra were collected under varying drought stress conditions, and the effects of different spectral preprocessing methods, dimensionality reduction techniques, and machine learning algorithms were evaluated. An optimal data processing pipeline was systematically established and deployed on an edge computing unit to enable rapid, non-destructive prediction of chlorophyll and water content in maize leaves. The experimental results demonstrated that the combination of stepwise regression (SR) for feature selection and a stacking regression model achieved the best performance for chlorophyll content prediction (Rp2 = 0.8740, RMSEp = 0.2768). For leaf water content prediction, random forest (RF) feature selection combined with a stacking model yielded the highest accuracy (Rp2  = 0.7626, RMSEp = 4.12%). This study confirms the effectiveness and potential of integrating VIS/NIR spectroscopy with machine learning algorithms for monitoring drought stress in maize, offering a valuable theoretical foundation and practical reference for non-destructive crop physiological monitoring in precision agriculture. Full article
Show Figures

Figure 1

18 pages, 11608 KB  
Article
YOLO-MSPM: A Precise and Lightweight Cotton Verticillium Wilt Detection Network
by Xinbo Zhao, Jianan Chi, Fei Wang, Xuan Li, Xingcan Yuwen, Tong Li, Yi Shi and Liujun Xiao
Agriculture 2025, 15(19), 2013; https://doi.org/10.3390/agriculture15192013 - 26 Sep 2025
Abstract
Cotton is one of the world’s most important economic crops, and its yield and quality have a significant impact on the agricultural economy. However, Verticillium wilt of cotton, as a widely spread disease, severely affects the growth and yield of cotton. Due to [...] Read more.
Cotton is one of the world’s most important economic crops, and its yield and quality have a significant impact on the agricultural economy. However, Verticillium wilt of cotton, as a widely spread disease, severely affects the growth and yield of cotton. Due to the typically small and densely distributed characteristics of this disease, its identification poses considerable challenges. In this study, we introduce YOLO-MSPM, a lightweight and accurate detection framework, designed on the YOLOv11 architecture to efficiently identify cotton Verticillium wilt. In order to achieve a lightweight model, MobileNetV4 is introduced into the backbone network. Moreover, a single-head self-attention (SHSA) mechanism is integrated into the C2PSA block, allowing the network to emphasize critical areas of the feature maps and thus enhance its ability to represent features effectively. Furthermore, the PC3k2 module combines pinwheel-shaped convolution (PConv) with C3k2, and the mobile inverted bottleneck convolution (MBConv) module is incorporated into the detection head of YOLOv11. Such adjustments improve multi-scale information integration, enhance small-target recognition, and effectively reduce computation costs. According to the evaluation, YOLO-MSPM achieves precision (0.933), recall (0.920), mAP50 (0.970), and mAP50-95 (0.797), each exceeding the corresponding performance of YOLOv11n. In terms of model lightweighting, the YOLO-MSPM model has 1.773 M parameters, which is a 31.332% reduction compared to YOLOv11n. Its GFLOPs and model size are 5.4 and 4.0 MB, respectively, representing reductions of 14.286% and 27.273%. The study delivers a lightweight yet accurate solution to support the identification and monitoring of cotton Verticillium wilt in environments with limited resources. Full article
Show Figures

Figure 1

25 pages, 1657 KB  
Review
Control Algorithms for Intelligent Agriculture: Applications, Challenges, and Future Directions
by Shiyu Qin, Shengnan Zhang, Wenjun Zhong and Zhixia He
Processes 2025, 13(10), 3061; https://doi.org/10.3390/pr13103061 - 25 Sep 2025
Abstract
Facing global pressures such as population growth, shrinking arable land, and climate change, intelligent agriculture has emerged as a critical pathway toward sustainable and efficient agricultural production. Control algorithms serve as the core enabler of this transition, finding applications in crop production, pest [...] Read more.
Facing global pressures such as population growth, shrinking arable land, and climate change, intelligent agriculture has emerged as a critical pathway toward sustainable and efficient agricultural production. Control algorithms serve as the core enabler of this transition, finding applications in crop production, pest management, agricultural machinery, and resource optimization. This review systematically examines the performance and applications of both traditional (e.g., PID, fuzzy logic) and advanced control algorithms (e.g., neural networks, model predictive control, adaptive control, active disturbance rejection control, and sliding mode control) in agriculture. While traditional methods are valued for simplicity and robustness, advanced algorithms better handle nonlinearity, uncertainty, and multi-objective optimization, enhancing both precision and resource efficiency. However, challenges such as environmental heterogeneity, hardware limitations, data scarcity, real-time requirements, and multi-objective conflicts hinder widespread adoption. This review contributes a structured, critical synthesis of these algorithms, highlighting their comparative strengths and limitations, and identifies key research gaps that distinguish it from prior reviews. Future directions include lightweight algorithms, digital twins, multi-sensor integration, and edge computing, which together promise to enhance the scalability and sustainability of intelligent agricultural systems. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

19 pages, 1657 KB  
Article
Drivers of Global Wheat and Corn Price Dynamics: Implications for Sustainable Food Systems
by Yuliia Zolotnytska, Stanisław Kowalczyk, Roman Sobiecki, Vitaliy Krupin, Julian Krzyżanowski, Aleksandra Perkowska and Joanna Żurakowska-Sawa
Sustainability 2025, 17(19), 8581; https://doi.org/10.3390/su17198581 - 24 Sep 2025
Viewed by 40
Abstract
Globalisation, population growth, climate change, and energy-policy shifts have deepened interdependence between agri-food and energy systems, amplifying price volatility. This study examines the determinants of global wheat and corn price dynamics over 2000–2023, emphasising energy markets (oil and biofuels), agronomic and climatic factors, [...] Read more.
Globalisation, population growth, climate change, and energy-policy shifts have deepened interdependence between agri-food and energy systems, amplifying price volatility. This study examines the determinants of global wheat and corn price dynamics over 2000–2023, emphasising energy markets (oil and biofuels), agronomic and climatic factors, population pressure, and cross-market interdependencies. Using multiple linear regression with backward selection on annual global data from official sources (FAO, USDA, EIA and market series), we quantify the relative contributions of these drivers. The models explain most of the variation in world prices (R2 = 0.89 for wheat; 0.92 for corn). Oil prices are a dominant covariate: a 1 USD/barrel increase in Brent is associated with a 1.33 USD/t rise in the wheat price, while a 1 USD/t increase in the corn price raises the wheat price by 0.54 USD/t. Lower biodiesel output per million people is linked to higher wheat prices (+0.67 USD/t), underscoring the role of biofuel supply conditions. We also document an asymmetric yield effect—higher yields correlate positively with wheat prices but negatively with corn—consistent with crop-specific market mechanisms. Although temperature and precipitation were excluded from the regressions due to collinearity, their strong correlations with yields and biofuel activity signal continuing climate risk. The contribution of this study lies in integrating energy, climate, and agricultural market factors within a single empirical framework, offering evidence of their joint role in shaping staple grain prices. These findings add to the literature on food–energy linkages and provide insights for sustainability policies, particularly the design of integrated energy–agriculture strategies and risk-management instruments to enhance resilience in global food systems. Full article
(This article belongs to the Special Issue Advanced Agricultural Economy: Challenges and Opportunities)
Show Figures

Figure 1

25 pages, 6670 KB  
Article
WT-CNN-BiLSTM: A Precise Rice Yield Prediction Method for Small-Scale Greenhouse Planting on the Yunnan Plateau
by Jihong Sun, Peng Tian, Xinrui Wang, Jiawei Zhao, Xianwei Niu, Haokai Zhang and Ye Qian
Agronomy 2025, 15(10), 2256; https://doi.org/10.3390/agronomy15102256 - 23 Sep 2025
Viewed by 115
Abstract
Multispectral technology and deep learning are widely used in field crop yield prediction. Existing studies mainly focus on large-scale estimation in plain regions, while integrated applications for small-scale plateau plots are rarely reported. To solve this problem, this study proposes a WT-CNN-BiLSTM hybrid [...] Read more.
Multispectral technology and deep learning are widely used in field crop yield prediction. Existing studies mainly focus on large-scale estimation in plain regions, while integrated applications for small-scale plateau plots are rarely reported. To solve this problem, this study proposes a WT-CNN-BiLSTM hybrid model that integrates UAV-borne multispectral imagery and deep learning for rice yield prediction in small-scale greenhouses on the Yunnan Plateau. Initially, a rice dataset covering five drip irrigation levels was constructed, including vegetation index images of rice throughout its entire growth cycle and yield data from 500 sub-plots. After data augmentation (image rotation, flipping, and yield augmentation with Gaussian noise), the dataset was expanded to 2000 sub-plots. Then, with CNN-LSTM as the baseline, four vegetation indices (NDVI, NDRE, OSAVI, and RECI) were compared, and RECI-Yield was determined as the optimal input dataset. Finally, the convolutional layers in the first residual block of ResNet50 were replaced with WTConv to enhance multi-frequency feature extraction; the extracted features were then input into BiLSTM to capture the long-term growth trends of rice, resulting in the development of the WT-CNN-BiLSTM model. Experimental results showed that in small-scale greenhouses on the Yunnan Plateau, the model achieved the best prediction performance under the 50% drip irrigation level (R2 = 0.91). Moreover, the prediction performance based on the merged dataset of all irrigation levels was even better (RMSE = 9.68 g, MAPE = 11.41%, R2 = 0.92), which was significantly superior to comparative models such as CNN-LSTM, CNN-BiLSTM, and CNN-GRU, as well as the prediction results under single irrigation levels. Cross-validation based on the RECI-Yield-VT dataset (RMSE = 8.07 g, MAPE = 9.22%, R2 = 0.94) further confirmed its generalization ability, enabling its effective application to rice yield prediction in small-scale greenhouse scenarios on the Yunnan Plateau. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop