Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,248)

Search Parameters:
Keywords = crystal characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2156 KB  
Article
Synthesis of Imidazolium Salts Linked to a t-Butylcalix[4]arene Framework and the Isolation of Interesting By-Products
by Michael J. Chetcuti, Rahma Aroua and Abdelwaheb Hamdi
Molecules 2025, 30(19), 3954; https://doi.org/10.3390/molecules30193954 - 1 Oct 2025
Abstract
A series of functionalized calix[4]arenes were prepared that contain mono- and bis-(alkoxy)imidazolium groups that are linked to the lower rim of a t-butylcalix[4]arene framework. These molecules have potential as anion-complexation reagents and as precursors to N-heterocyclic carbene complexes that are attached to [...] Read more.
A series of functionalized calix[4]arenes were prepared that contain mono- and bis-(alkoxy)imidazolium groups that are linked to the lower rim of a t-butylcalix[4]arene framework. These molecules have potential as anion-complexation reagents and as precursors to N-heterocyclic carbene complexes that are attached to a calixarene framework. They were prepared by the preliminary reaction α,ω-dibromoalkanes with the parent t-butylcalix[4]arene to give bis-ω-bromoalkoxy groups that are connected to the calix[4]arene framework in the 25- and 27-positions. The reaction of the bis-substituted calixarenes with TiCl4 led to the removal of one bromoalkoxy group to give mono-substituted derivatives. Both the mono- and bis-functionalized calixarenes were reacted with N-substituted imidazoles to give a series of mono- or bis-imidazolium salts with the imidazolium group tethered to the calix[4]arene via O–(CH2)n linkages (n = 2, 4, or 6). Unexpected bis-calix[4]arene products, in which the calixarenes are linked together via bridging organic groups, were obtained in some of these reactions. One bridge consists of two calixarenes linked together via two –C2H4– groups while the other had a –O–C4H8–imidazolium-C4H8–O– linker tethering the two calix[4]arenes together. Both these species were characterized by single crystal X-ray diffraction studies. The structures both had significant disorder but, nevertheless, the data do establish their structures. That the imidazolium-substituted calix[4]arene cations are precursors to N-heterocyclic carbene complexes of nickel was demonstrated by the reaction of a mono-imidazolium-substituted calix[4]arene with nickelocene to give the fully characterized N-heterocyclic carbene nickel complex linked to the calix[4]arene group. Full article
Show Figures

Figure 1

15 pages, 943 KB  
Article
Crystallization of Four Troglitazone Isomers: Selectivity and Structural Considerations
by Shinji Matsuura, Koichi Igarashi, Masayuki Azuma and Hiroshi Ooshima
Crystals 2025, 15(10), 866; https://doi.org/10.3390/cryst15100866 - 30 Sep 2025
Abstract
The control of crystal form in chiral active pharmaceutical ingredients (APIs) is a critical challenge in pharmaceutical development, as differences in solid-state structure can significantly influence physical properties and manufacturing performance. Troglitazone, a molecule with two chiral centers, exists as four stereoisomers (RR, [...] Read more.
The control of crystal form in chiral active pharmaceutical ingredients (APIs) is a critical challenge in pharmaceutical development, as differences in solid-state structure can significantly influence physical properties and manufacturing performance. Troglitazone, a molecule with two chiral centers, exists as four stereoisomers (RR, SS, RS, SR) that crystallize as two enantiomeric pairs: RR/SS and RS/SR. This study aims to elucidate the relationship between solution-state molecular interactions and crystallization behavior of these diastereomeric pairs. Antisolvent crystallization experiments were conducted for both mixed solutions containing all four isomers and solutions of individual pairs. Crystallization kinetics were monitored by HPLC, and the resulting solids were characterized by PXRD, DSC, TG, and microscopic observation. Nucleation induction times were determined over a range of supersaturation levels. To probe intermolecular interactions in solution, NOESY and targeted NOE NMR experiments were performed, and the results were compared with crystallographic data. The RS/SR crystals(H-form) consistently exhibited shorter induction times and faster crystallization rates than the RR/SS crystals (L-form), even under conditions where RR/SS solutions were more supersaturated. In mixed solutions, H-form crystallized preferentially, with L-form either remaining in solution or being incorporated into H-form crystals as a solid solution. NOESY and NOE analyses revealed intermolecular proximities between protons that are distant in the molecular structure, indicating the presence of ordered aggregates in solution. These aggregates were more structurally compatible with the H-form than with the L-form crystal lattice, as supported by crystallographic distance analysis. The results demonstrate that differences in nucleation kinetics between troglitazone diastereomers are closely linked to solution-state molecular arrangements. Understanding these relationships provides a molecular-level basis for the rational design of selective crystallization processes for chiral APIs. Full article
(This article belongs to the Section Crystal Engineering)
28 pages, 7158 KB  
Article
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol: A Versatile Heteroscorpionate Ligand for Transition and Main Group Metal Complexes
by Uwe Böhme, Betty Günther and Anke Schwarzer
Crystals 2025, 15(10), 865; https://doi.org/10.3390/cryst15100865 - 30 Sep 2025
Abstract
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol (HL) is a heteroscorpionate ligand capable of coordinating metal ions through two nitrogen atoms and one oxygen atom. We report a base free synthetic route to metal complexes of L and explore the resulting structural diversity. Notably, complex composition varies substantially depending [...] Read more.
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol (HL) is a heteroscorpionate ligand capable of coordinating metal ions through two nitrogen atoms and one oxygen atom. We report a base free synthetic route to metal complexes of L and explore the resulting structural diversity. Notably, complex composition varies substantially depending on the metal ion, including dinuclear molybdenum species and distinct coordination behavior with silicon and copper. The isolated compounds include the dinuclear, oxygen-bridged complexes (LMoO2)2O and (LMoO)(μ-O)2, as well as the mononuclear complexes LTi(NMe2)3, LZrCl3, LGeCl3, LWO2Cl, LCu(acetate)2H, and LSiMe2Cl. Single crystal X-ray diffraction reveals that the bulky complex structures generate cavities in the crystal lattice, frequently occupied by solvent molecules. The titanium, zirconium, molybdenum, tungsten, and germanium complexes exhibit octahedral coordination, while structural peculiarities are observed for copper and silicon. The copper(II) complex shows a distorted octahedral geometry with one elongated ligand bond; the silicon complex is pentacoordinated in the solid state. Additional characterization includes melting points, NMR, and IR spectroscopy. The developed synthetic strategy provides a straightforward and versatile route to heteroscorpionate metal complexes. Full article
(This article belongs to the Section Organic Crystalline Materials)
7 pages, 862 KB  
Short Note
Dichloro[2,5-bis(diisopropylphosphorimidoyl-κN-(4,6-dimethylpyrimidine-κN))pyrrole-κN]yttrium(III)·toluene
by Emily L. Trew, David Szucs and Paul G. Hayes
Molbank 2025, 2025(4), M2066; https://doi.org/10.3390/M2066 - 30 Sep 2025
Abstract
The compound dichloro[bis(diisopropylphosphorimidoyl-κN-(4,6-dimethylpyrimidine-κN))pyrrole-κN]yttrium(III) was synthesized from one equivalent of NaL [L = 2,5-[iPr2P=N(PymMe)]2NH(C4H2); PymMe = 4,6-dimethylpyrimidine] and YCl3(THF)3.5 and crystallized from [...] Read more.
The compound dichloro[bis(diisopropylphosphorimidoyl-κN-(4,6-dimethylpyrimidine-κN))pyrrole-κN]yttrium(III) was synthesized from one equivalent of NaL [L = 2,5-[iPr2P=N(PymMe)]2NH(C4H2); PymMe = 4,6-dimethylpyrimidine] and YCl3(THF)3.5 and crystallized from toluene. X-ray quality crystals of LYCl2 were obtained with one toluene solvent molecule in the asymmetric unit. The geometry, bond lengths and angles were analyzed and found to contain similar parameters to comparable structures in the literature, and the product was further characterized by NMR spectroscopy. To the best of our knowledge, this is the first reported seven-coordinate Y(III) complex supported by a pentadentate ligand wherein all five donor atoms are nitrogen. Full article
Show Figures

Figure 1

15 pages, 1039 KB  
Article
Synthesis and Ionic Conductivity of NASICON-Type Li1+XFeXTi2-X(PO4)3(x = 0.1, 0.3, 0.4) Solid Electrolytes Using the Sol–Gel Method
by Seong-Jin Cho and Jeong-Hwan Song
Crystals 2025, 15(10), 856; https://doi.org/10.3390/cryst15100856 - 30 Sep 2025
Abstract
NASICON-type Li1+XFeXTi2-X(PO4)3 (x = 0.1, 0.3, 0.4) solid electrolytes for all-solid-state Li-ion batteries were synthesized using a sol–gel method. This study investigated the impact of substituting Fe3+ (0.645 Å), a trivalent cation, for [...] Read more.
NASICON-type Li1+XFeXTi2-X(PO4)3 (x = 0.1, 0.3, 0.4) solid electrolytes for all-solid-state Li-ion batteries were synthesized using a sol–gel method. This study investigated the impact of substituting Fe3+ (0.645 Å), a trivalent cation, for Ti4+ (0.605 Å) on ionic conductivity. Li1+XFeXTi2-X(PO4)3 samples, subjected to various sintering temperatures, were characterized using TG-DTA, XRD with Rietveld refinement, XPS, FE-SEM, and AC impedance to evaluate composition, crystal structure, fracture surface morphology, densification, and ionic conductivity. XRD analysis confirmed the formation of single-crystalline NASICON-type Li1+XFeXTi2-X(PO4)3 at all sintering temperatures. However, impurities in the secondary phase emerged owing to the high sintering temperature, above 1000 °C, and increased Fe content. Sintered density increased with the densification of Li1+XFeXTi2-X(PO4)3, as evidenced by FE-SEM observations of sharper edges of larger quasi-cubic grains at elevated sintering temperatures. At 1000 °C, with Fe content exceeding 0.4, grain coarsening resulted in additional grain boundaries and internal cracks, thereby reducing the sintered density. Li1.3Fe0.3Ti1.7(PO4)3 sintered at 900 °C exhibited the highest density among the other conditions and achieved the maximum total ionic conductivity of 1.51 × 10−4 S/cm at room temperature, with the lowest activation energy for Li ion transport at 0.37 eV. In contrast, Li1.4Fe0.4Ti1.6(PO4)3 sintered at 1000 °C demonstrated reduced ionic conductivity owing to increased complex impedance associated with secondary phases and grain crack formation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
13 pages, 1477 KB  
Article
Complexation-Induced Reduction of CuII to CuI Promoted by a Distorted Tetrahedral N4-Type Schiff-Base Ligand
by Tomoyuki Takeyama, Daisuke Shirabe, Nobutsugu Hamamoto and Takehiro Ohta
Inorganics 2025, 13(10), 327; https://doi.org/10.3390/inorganics13100327 - 30 Sep 2025
Abstract
Although spontaneous or complexation-induced reductions of CuII to CuI have occasionally been observed, controlling these processes remains a challenge. Herein, we report the synthesis of CuI complexes via the complexation-induced reduction of CuII complexes with pyridine-containing N4 Schiff-base [...] Read more.
Although spontaneous or complexation-induced reductions of CuII to CuI have occasionally been observed, controlling these processes remains a challenge. Herein, we report the synthesis of CuI complexes via the complexation-induced reduction of CuII complexes with pyridine-containing N4 Schiff-base ligand L incorporating a biphenyl unit (L = N,N’-([1,1′-biphenyl]-2,2′-diyl)bis(1-(6-methylpyridin-2-yl)methanimine)). Such a reduction has not yet been observed in previously reported CuII complexes with pyridine-containing N4 Schiff-base ligands, strongly suggesting that the torsional distortion of the ligand framework induced by the biphenyl moiety effectively promotes the complexation-induced reduction of CuII to CuI. The CuI complexes were thoroughly characterized by 1H NMR spectroscopy, UV–vis–NIR spectroscopy, and single-crystal X-ray diffraction analyses. The [CuI(L)]+ complex undergoes a reversible redox process with its oxidized species, which was identified as a CuII complex based on spectroelectrochemical measurements and theoretical calculations. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Japan)
Show Figures

Figure 1

9 pages, 4977 KB  
Article
A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators
by Francesco Dimiccoli, Francesco Maria Follega, Luigi Ernesto Ghezzer, Roberto Iuppa, Alessandro Lega, Riccardo Nicolaidis, Francesco Nozzoli, Ester Ricci, Enrico Verroi and Paolo Zuccon
Particles 2025, 8(4), 82; https://doi.org/10.3390/particles8040082 - 30 Sep 2025
Abstract
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with [...] Read more.
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with their non-linear behavior at low-energy X-rays, has been extensively investigated in previous studies, revealing potential systematic effects in existing measurements. In this work, light quenching in both scintillators is measured under charged-particle excitation. The results are interpreted using the modified Birks–Onsager model, which provides a theoretical framework for understanding the underlying quenching mechanisms, as well as a generalized logistic parametrization, offering experimentalists a useful tool to characterize the detector’s light yield and associated uncertainties. Full article
Show Figures

Figure 1

13 pages, 2047 KB  
Article
Study of the Relationship Between Microstructure, Phase Composition and Strength Characteristics in Composite Ceramics Based on ZrO2-Al2O3 System
by Rafael I. Shakirzyanov, Yuriy A. Garanin, Malik E. Kaliyekperov, Sofiya A. Maznykh and Dilnaz K. Zhamikhanova
J. Compos. Sci. 2025, 9(10), 519; https://doi.org/10.3390/jcs9100519 - 29 Sep 2025
Abstract
ZrO2-MgO-Al2O3 ceramics, despite a long history of research, still attract the attention of researchers due to the high potential of their applications as refractories and matrices for metal ceramics. A unique composition combining high strength and temperature stability [...] Read more.
ZrO2-MgO-Al2O3 ceramics, despite a long history of research, still attract the attention of researchers due to the high potential of their applications as refractories and matrices for metal ceramics. A unique composition combining high strength and temperature stability is particularly in demand. In this paper, a comprehensive study of ceramics of the composition (90−x)·ZrO2-10·MgO-x·Al2O3 (x = 10–80 wt.%) obtained by solid-phase sintering with preliminary annealing is carried out. Preliminary annealing was used for the possible formation of metastable phases with outstanding mechanical properties. Using the X-ray diffraction method, it was found that most of the samples consist of monoclinic zirconium oxide, magnesium–aluminum spinel, and corundum phases. The exception is the sample with x = 10 wt.%, in which the main phase was a cubic modification of zirconium oxide. By formation this type of ZrO2 polymorph in the composition hardness and flexural strength significantly increased from 400 to 1380 and 50 to 210 MPa, respectively. The total porosity of ceramics under study lies in the range 6–28%. Using the scanning electron microscopy method, it was found that the phase composition significantly affects the morphology of the microstructure of the sintered bodies. Thus, for sintered ceramics with a high corundum content, the microstructure is characterized by high porosity and a large grain size. For the first time, by applying preliminary annealing, a new type of ternary ceramic ZrO2-MgO-Al2O3 was sintered with potentially outstanding mechanical properties. The presence of a stabilized zirconium oxide phase, stresses in the crystal lattice of the matrix phase, and the formation of cracks in the microstructure are the main factors influencing shrinkage, porosity, microhardness, and biaxial flexural strength. Full article
Show Figures

Graphical abstract

36 pages, 20275 KB  
Article
Development and Physico-Chemical and Antibacterial Characterization of Chromium-Doped Hydroxyapatite in a Chitosan Matrix Coating
by Daniela Predoi, Carmen Steluta Ciobanu, Simona Liliana Iconaru, Roxana Alexandra Petre, Krzysztof Rokosz, Steinar Raaen and Mihai Valentin Predoi
Polymers 2025, 17(19), 2633; https://doi.org/10.3390/polym17192633 - 29 Sep 2025
Abstract
Chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings were synthesized in order to address the need for biomaterials with improved physico-chemical and biological properties for biomedical applications. Both chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings could [...] Read more.
Chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings were synthesized in order to address the need for biomaterials with improved physico-chemical and biological properties for biomedical applications. Both chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings could represent promising materials for biomedical applications due to their superior properties. This study aims to evaluate the physico-chemical and in vitro biological properties of 7CrHAp and 7CrHAp-CH coatings to determine the impact of chitosan incorporation on the physico-chemical and biological features. The results reported in this study indicate that addition of chitosan improves surface uniformity and biological properties, highlighting their potential for uses in biomedical applications. In this study, coatings of chromium-doped hydroxyapatite (7CrHAp, with xCr = 0.07) and its composite variant embedded in a chitosan matrix (7CrHAp-CH) were systematically analyzed using a suite of characterization techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and metallographic microscopy (MM). The results of the XRD analysis revealed that the average crystal size was 19.63 nm for 7CrHAp and 16.29 nm for 7CrHAp-CH, indicating a decrease in crystallite size upon CH incorporation. The films were synthesized via the dip coating method using stable suspensions, whose stability was assessed through ultrasonic measurements (double-distilled water serving as the reference medium). The values obtained for the stability parameter were 2.59·10−6 s−1 for 7CrHAp, 8.64·10−7 s−1 for 7CrHAp-CH, and 3.14·10−7 s−1 for chitosan (CH). These data underline that all samples are stable: CH is extremely stable, followed by 7CrHAp-CH (very stable) and 7CrHAp (stable). The in vitro biocompatibility of the 7CrHAp and 7CrHAp-CH coatings was evaluated with the aid of the MG63 cell line. The cytotoxic potential of these coatings towards MG63 cells was quantified using the MTT assay after 24 and 48 h of incubation. Our results highlight that both 7CrHAp and 7CrHAp-CH coatings exhibit high biocompatibility with MG63 cells, maintaining cell viability above 90% at both incubation times, thus supporting osteoblast-like cell proliferation. Furthermore, the antimicrobial efficacy of both 7CrHAp and 7CrHAp-CH samples was evaluated in vitro against the Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa) reference strain. The in vitro antibacterial activity of the 7CrHAp and 7CrHAp-CH coatings was further evaluated against Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa), Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 25923 (S. aureus) reference strains. In addition, atomic force microscopy (AFM) analysis was also used to investigate the ability of P. aeruginosa, E. coli and S. aureus cells to adhere and to develop colonies on the surfaces of the 7CrHAp and 7CrHAp-CH coatings. The results from the biological assays indicate that both coatings exhibit promising antibacterial properties, highlighting their potential for being used in biomedical applications, particularly in the development of novel antimicrobial devices. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

23 pages, 4574 KB  
Article
A Heterobimetallic Au(I)–Ru(II) Complex Bridged by dppb: Synthesis, Structural and Solution Characterization, BSA Interaction and In Vivo Toxicity Evaluation in Wistar Rats
by Adnan Zahirović, Sunčica Roca, Muhamed Fočak, Selma Fetahović, Višnja Muzika, Damir Suljević, Anela Topčagić, Maja Mitrašinović-Brulić, Irnesa Osmanković, Debbie C. Crans and Aleksandar Višnjevac
Inorganics 2025, 13(10), 323; https://doi.org/10.3390/inorganics13100323 - 29 Sep 2025
Abstract
A novel heterobimetallic ruthenium(II)–gold(I) complex featuring a bridging bis(diphenylphosphino)butane (dppb) ligand was prepared and fully characterized. Single-crystal X-ray diffraction revealed a piano-stool geometry around Ru(II) with η6-cymene, two chlorido ligands, and one phosphorus atom from dppb, while the Au(I) center adopts [...] Read more.
A novel heterobimetallic ruthenium(II)–gold(I) complex featuring a bridging bis(diphenylphosphino)butane (dppb) ligand was prepared and fully characterized. Single-crystal X-ray diffraction revealed a piano-stool geometry around Ru(II) with η6-cymene, two chlorido ligands, and one phosphorus atom from dppb, while the Au(I) center adopts a linear P–Au–Cl coordination. Structural integrity in the solution was confirmed by 1D and 2D NMR spectroscopy, while solution behavior was further monitored by variable solvent 31P NMR and UV/Vis spectroscopy, indicating that the organometallic Ru–arene core remains intact, whereas the chlorido ligands coordinated to Ru exhibit partial lability. Complementary characterization included elemental analysis, FTIR, and UV/Vis spectroscopy. Spectrofluorimetric and FRET analyses showed that Au(dppb), Ru(dppb), and the heterobimetallic AuRu complex bind to BSA with apparent constants of 1.41 × 105, 5.12 × 102, and 2.66 × 104 M−1, respectively, following a static quenching mechanism. In vivo biological evaluation in Wistar rats revealed no significant hepatotoxicity or nephrotoxicity, with only mild and reversible histological alterations and preserved hepatocyte nuclear morphology. Hematological analysis indicated a statistically significant reduction in leukocyte populations, suggesting immunomodulatory potential, while elevated serum glucose levels point to possible endocrine or metabolic activity. These findings highlight compound structural stability and intriguing bioactivity profile, making it a promising platform for further organometallic drug development and testing. Full article
Show Figures

Figure 1

16 pages, 2288 KB  
Article
Controlled Crystallization Enables Facile Fine-Tuning of Physical–Chemical Properties of Nicergoline Toward Easier Processability
by Barbora Blahová Prudilová, Roman Gabriel, Michal Otyepka and Eva Otyepková
Pharmaceuticals 2025, 18(10), 1465; https://doi.org/10.3390/ph18101465 - 29 Sep 2025
Abstract
Background/Objectives: Crystallization is a key process in the manufacturing of active pharmaceutical ingredients (APIs), as it significantly affects the physical and chemical properties of the final product. Nicergoline, a clinically relevant ergot derivative, was chosen as a model compound to investigate how [...] Read more.
Background/Objectives: Crystallization is a key process in the manufacturing of active pharmaceutical ingredients (APIs), as it significantly affects the physical and chemical properties of the final product. Nicergoline, a clinically relevant ergot derivative, was chosen as a model compound to investigate how different crystallization strategies affect particle attributes. The objective of this study was to compare controlled and uncontrolled crystallization techniques and evaluate their impact on the physicochemical properties of nicergoline. Methods: Nicergoline was crystallized using controlled methods, including sonication-induced and seeding-induced crystallization, and uncontrolled methods, namely cubic and linear cooling, as well as acetone evaporation. The resulting powders were characterized by using a range of physicochemical techniques to assess particle morphology, size distribution, agglomeration behavior, and surface properties. Results: Uncontrolled crystallization methods produced particles prone to agglomeration, resulting in a broader particle size distribution ranging from 8 to 720 µm and heterogeneous surface characteristics. In contrast, controlled crystallization generated more uniform particles with reduced agglomeration and narrower particle size distributions. Among the evaluated methods, sonocrystallization provided the most effective control over particle size and morphology, demonstrated by a narrow size distribution ranging from 16 to 39 µm which correlated with improved flowability and surface energy. Conclusions: The study demonstrates that the choice of crystallization method significantly influences the structural and physicochemical properties of nicergoline. These findings highlight the importance of method selection for tailoring API properties to enhance downstream processing and product quality. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

21 pages, 7338 KB  
Article
The Role of TEMPO/NaBr/NaClO in Hemp Fiber Oxidation: Deciphering the Mechanism and Reaction Kinetics
by Lingping Kong, Peiyu Du, Dan Sun and Lizhou Pei
Polymers 2025, 17(19), 2629; https://doi.org/10.3390/polym17192629 - 28 Sep 2025
Abstract
In this study, the oxidation of industrial hemp staple fibers by the TEMPO/NaBr/NaClO system was explored by the real-time monitoring of the changes in reaction rate, selective oxidative conversion, and reaction time under different operating conditions such as TEMPO usage, NaBr usage, NaClO [...] Read more.
In this study, the oxidation of industrial hemp staple fibers by the TEMPO/NaBr/NaClO system was explored by the real-time monitoring of the changes in reaction rate, selective oxidative conversion, and reaction time under different operating conditions such as TEMPO usage, NaBr usage, NaClO usage, reaction time, and reaction temperature. We propose a variable-speed competition mechanism between NaClO and TEMPO, which provides experimental support for the long-standing hypothesis that hypochlorite delays acid formation through modulation of the HOCl/OCl and HOBr/OBr equilibrium dynamics. The innovative use of combined analysis for several consecutive first-order reactions to investigate the rate-limiting reactions of TEMPO, TEMPO+, and TEMPOH over a range of concentrations revealed that the reaction that generates TEMPOH is the key rate-limiting reaction. We characterize the apparent oxidation kinetics of industrial hemp staple fiber in the TEMPO/NaBr/NaClO system using a pseudo-first-order kinetic model, revealing distinct apparent reaction rates across both primary and secondary bast fiber regions. This paper explained the difference in reaction rate between the two aspects of microfibril spatial structure and cellulose crystal structure. The single-factor analysis indicates that reaction time and temperature exert the most significant influence on the conversion rate of selective oxidation within this system. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

20 pages, 4017 KB  
Article
Design, Synthesis, In Vitro and In Silico Biological Evaluation of New Pyridine-2,5-Dicarboxylates Esters Bearing Natural Source Fragments as Anti-Trypanosomatid Agents
by Luis M. Sánchez-Palestino, Adriana Moreno-Rodríguez, Diana V. Navarrete-Carriola, Marlet Martínez-Archundia, Marhian López-Vargas, Liliana Argueta-Figueroa, Lenci K. Vázquez-Jiménez, Alma D. Paz-González, Eyra Ortiz-Pérez, Michael P. Doyle and Gildardo Rivera
Pharmaceutics 2025, 17(10), 1271; https://doi.org/10.3390/pharmaceutics17101271 - 28 Sep 2025
Abstract
Background: Chagas disease and leishmaniasis remain public health concerns. Despite the existence of approved medications for the treatment of these diseases, most patients discontinue treatment due to long drug regimens and/or the severe side effects of these drugs. This leads to treatment [...] Read more.
Background: Chagas disease and leishmaniasis remain public health concerns. Despite the existence of approved medications for the treatment of these diseases, most patients discontinue treatment due to long drug regimens and/or the severe side effects of these drugs. This leads to treatment failure and potential future drug resistance. Therefore, the search for new molecules with trypanocidal activity, low cytotoxicity, and high selectivity is essential to address this challenge. Methods: In this work, three series (a, b, and c) of pyridine-2,5-dicarboxylate esters were synthesized using different β-keto-esters bearing naturally occurring fragments and 1,2,3-triazine-1-oxides via the inverse electron demand Diels–Alder (IEDDA) reaction. The structural elucidation of the compounds was performed using NMR (1H and 13C) and HRMS, and the crystal structure of compound 6a was also obtained. Furthermore, a biological assay was performed for all synthesized and characterized compounds to determine their cytotoxicity against Trypanosoma cruzi, Leishmania mexicana, and the J774.2 macrophage cell line. Finally, the in silico determination of their pharmacokinetic and toxicological properties was performed using the SwissADME and ProTox 3.0 platforms. Results: Compounds 3a, 4a, 5a, 4b, and 8c had the highest anti-Trypanosoma cruzi activity against both strains (IC50 ≤ 56.68 µM). Compounds 8b, 10a, 9b, and 12b had considerable leishmanicidal activity against Leishmania mexicana against both strains (IC50 ≤ 161.53 µM). Furthermore, in silico prediction of ADMET properties suggest that these pyridine compounds possess good pharmacokinetic profile. The results are also consistent with low in vitro cytotoxicity and high selectivity. Conclusions: The synthesized pyridine-2,5-dicarboxylate esters have promising activity against Trypanosoma cruzi and Leishmania mexicana, with low cytotoxicity and good drug-like properties, suggesting that these compounds are potential candidates for further evaluation as new treatments for Chagas disease and leishmaniasis. Full article
(This article belongs to the Special Issue Advances in Antiparasitic Agents)
Show Figures

Graphical abstract

17 pages, 5203 KB  
Article
Influence of Selected Transition Metals on Hard Magnetic Properties of Dy-Fe-Nb-B Vacuum Suction Rods
by Grzegorz Ziółkowski, Artur Chrobak, Ondrej Zivotsky and Joanna Klimontko
Materials 2025, 18(19), 4508; https://doi.org/10.3390/ma18194508 - 28 Sep 2025
Abstract
This study investigates the structural and magnetic properties of ultra-high coercivity (Fe80B14Nb6)0.88Dy0.12 alloys, doped with 0.5–5 at.% of selected metallic additions: magnetic (Ni, Co) and non-magnetic (Pt, Cu) elements. Material characterization involved both structural [...] Read more.
This study investigates the structural and magnetic properties of ultra-high coercivity (Fe80B14Nb6)0.88Dy0.12 alloys, doped with 0.5–5 at.% of selected metallic additions: magnetic (Ni, Co) and non-magnetic (Pt, Cu) elements. Material characterization involved both structural and magnetic measurements. Alloys containing dopant concentrations up to 2 at.% exhibited similar phase compositions, with the Dy2Fe14B compound being dominant. Magnetic hysteresis loops revealed a superposition of two components: magnetically soft and hard phases. A significant change in magnetic properties was observed within the 0.5 to 1 at.% dopant concentration range. Notably, the addition of 0.5 at.% Ni increased the apparent anisotropy field from 5.2 T to 7.5 T. Furthermore, 0.5 at.% Pt led to an increase in the coercive field from 4.6 T to 5.5 T. These additions influenced crystallization, resulting in the formation of a more regular microstructure without submicrometric dendrite branches, when compared to the base alloy. Full article
Show Figures

Figure 1

14 pages, 11487 KB  
Article
The Role of Voids in the Cracking of Single-Crystalline Composites with Quasicrystal Phase Fraction
by Jacek Krawczyk
Materials 2025, 18(19), 4506; https://doi.org/10.3390/ma18194506 - 28 Sep 2025
Abstract
The novel fibrous composites of Al61Cu27Fe12 alloy with a single-crystalline matrix and quasi-crystal phase fraction obtained in situ by directional solidification by the Bridgman method were studied to characterize the voids and their role in composites cracking. The [...] Read more.
The novel fibrous composites of Al61Cu27Fe12 alloy with a single-crystalline matrix and quasi-crystal phase fraction obtained in situ by directional solidification by the Bridgman method were studied to characterize the voids and their role in composites cracking. The voids were analyzed using light-optical and scanning electron microscopy to study their nature before and after uniaxial tensile tests. Tension tests were performed on plate-like samples up to rupture. The tensile fracture surfaces were also observed and analyzed. The single-crystallinity and crystalographic parameters of composites were studied using the X-ray Laue diffraction method. It was stated that such new type of composite is characterized by a relatively high void content with a ratio of approximately 2.6%. The composite’s cracking is initiated at voids and progress through the voids and stair steps in the matrix and the reinforcing fibers. Full article
Show Figures

Figure 1

Back to TopTop