Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (189)

Search Parameters:
Keywords = cyanine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2130 KB  
Article
Controllable Structure and Fluorescence Enhancement of ACQ Dye Nanoparticles Based on the FNP Process
by Yue Wu, Yutao Zhang, Zhiqian Guo and Yisheng Xu
Polymers 2025, 17(15), 2152; https://doi.org/10.3390/polym17152152 - 6 Aug 2025
Viewed by 493
Abstract
Fluorescent dyes, such as cyanine dyes, are widely used in fluorescence-imaging-guided tumor therapy due to their high absorbance and fluorescence quantum yield. However, challenges persist in optimizing the performance of fluorescent nanoparticles, particularly due to the aggregation-caused quenching (ACQ) effect of cyanine dyes. [...] Read more.
Fluorescent dyes, such as cyanine dyes, are widely used in fluorescence-imaging-guided tumor therapy due to their high absorbance and fluorescence quantum yield. However, challenges persist in optimizing the performance of fluorescent nanoparticles, particularly due to the aggregation-caused quenching (ACQ) effect of cyanine dyes. Here, a novel counterion construction strategy is introduced using cyanine dye as a model ACQ dye. Through dynamic-controlled flash nanoprecipitation, fluorescent nanoparticles (CyINPs) with tunable structures are developed, investigating the effects of various factors, including counterions, block copolymers, and dye concentrations, on CyINPs’ stability and fluorescence enhancement. The optimized CyINPs with good water solubility show a 21-fold increase in fluorescence intensity and a 3.5-fold increase in encapsulation efficiency compared to CyINPs prepared by a thermodynamic-driven method. Under the efforts of polymers and counterions, dyes are separated, which reduces the impact of the ACQ effect and results in stronger fluorescence intensity, providing insights into improving nanoparticle biocompatibility and energy utilization efficiency. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 1937 KB  
Article
Mycorrhizal Fungi Modulate the Development and Composition of Purslane (Portulaca oleracea L.) Bioactive Compounds
by Marieta Hristozkova, Katrin Valkova and Maria Geneva
Agriculture 2025, 15(13), 1458; https://doi.org/10.3390/agriculture15131458 - 7 Jul 2025
Viewed by 461
Abstract
The present research focused on the physiological alterations and antioxidant potential of Portulaca oleracea L. due to mycorrhizal symbiosis with diverse strains. Purslane belongs to the plants that form a symbiosis with mycorrhizal fungi and show tolerance to various strains. Inoculation with Funneliformis [...] Read more.
The present research focused on the physiological alterations and antioxidant potential of Portulaca oleracea L. due to mycorrhizal symbiosis with diverse strains. Purslane belongs to the plants that form a symbiosis with mycorrhizal fungi and show tolerance to various strains. Inoculation with Funneliformis mosseae gave better mycorrhizal colonization results and positively affected biomass accumulation and the concentration of reducing sugars. The total accumulation of plastid pigments was higher in symbiotic plants, although this effect was not specific to any particular strain. Mycorrhizal fungi increased the levels of carotenes in the shoots, while xanthophylls decreased, with the highest values observed in non-inoculated plants. Both strains influenced the ratio of betalains: Funneliformis mosseae promoted the accumulation of β-cyanins, while Claroideoglomus claroideum increased β-xanthines. The association with Funneliformis mosseae also affected antioxidant capacity, as indicated by the FRAP test, by altering the concentrations of secondary metabolites, particularly phenols and flavonoids. Targeted inoculation with specific strains boosts both non-enzymatic (including water-soluble and lipid-soluble metabolites) and enzymatic antioxidant activity; however, it was not dependent on the strain. These findings underscore the benefits of mycorrhizal associations in purslane cultivation, promoting sustainable ecological practices and enhancing its quality as a food product. Full article
(This article belongs to the Special Issue Arbuscular Mycorrhiza in Cropping Systems)
Show Figures

Figure 1

15 pages, 3748 KB  
Article
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine–Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy
by Ziwei Wang, Weijin Wang, Qi Wu and Dongxia Zhu
Molecules 2025, 30(12), 2662; https://doi.org/10.3390/molecules30122662 - 19 Jun 2025
Viewed by 677
Abstract
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic [...] Read more.
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic effects by covalently integrating iridium complexes with cyanine via ether linkages, as well as introducing aldehyde groups to suppress non-radiative decay, named CHO−Ir−Cy. It is demonstrated that CHO−Ir−Cy successfully maintains the NIR absorption and emission originated from cyanine units and high 1O2 generation efficiency from the iridium complex part, which gives full play to their respective advantages while compensating for shortcomings. Density functional theory (DFT) calculations reveal that CHO−Ir−Cy exhibits a stronger spin–orbit coupling constant (ξ (S1, T1) = 9.176 cm−1) and a reduced energy gap (ΔE = −1.97 eV) between triplet excited states (T1) and first singlet excited states (S1) compared to parent Ir−Cy or Cy alone, directly correlating with its enhanced 1O2 production. Remarkably, CHO−Ir−Cy demonstrates superior cellular internalization in 4T1 murine breast cancer cells, generating substantially elevated 1O2 yields compared to individual Ir−Cy/Cy under 808 nm laser irradiation. Such enhanced reactive oxygen species production translates into effective cancer cell ablation while maintaining favorable biocompatibility, significant phototoxicity and negligible dark toxicity. This molecular engineering strategy overcomes the inherent NIR absorption limitation of traditional iridium complexes and ensures their own high 1O2 generation ability through dye–metal synergy, establishing a paradigm for designing metal–organic photosensitizers with tailored photophysical properties for precision oncology. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

19 pages, 7264 KB  
Article
Selective and Sensitive Dual Chromogenic Cyanide and Fluorescent Azide Probe
by Yousef M. Hijji, Rajeesha Rajan, Amjad M. Shraim, Bassam Attili, Sisay Uota and Fasil Abebe
Photochem 2025, 5(2), 12; https://doi.org/10.3390/photochem5020012 - 6 May 2025
Cited by 1 | Viewed by 854
Abstract
IR-780 is a heptamethine cyanine dye that exhibits strong absorbance in the near-infrared region. Herein, we report IR-780 dye as a dual sensor for chromogenic cyanide detection and azide’s fluorogenic sensing in acetonitrile. Cyanide and hydroxide cause instant, dramatic color changes in the [...] Read more.
IR-780 is a heptamethine cyanine dye that exhibits strong absorbance in the near-infrared region. Herein, we report IR-780 dye as a dual sensor for chromogenic cyanide detection and azide’s fluorogenic sensing in acetonitrile. Cyanide and hydroxide cause instant, dramatic color changes in the dye solution from green to yellow and dramatic spectral changes in the UV-Vis spectrum. The interaction of cyanide and hydroxide with the dye caused a dramatic decrease in the intensity of the strong absorption band at 780 nm and a concomitant band appearance at 435 nm. Other monovalent ions, including fluoride, chloride, bromide, iodide, dihydrogen phosphate, thiocyanate, acetate, and dihydrogen arsenate, caused no significant color or spectral changes. UV-Vis studies showed that the IR-780 dye is sensitive and selective to both ions. The detection limits for cyanide and azide are 0.39 µM and 0.50 µM, respectively. Interestingly, the IR-780 dye exhibited strong fluorescence at 535nm upon interaction with azide, while its initial emission at 809 nm was quenched. Both UV-Vis and fluorescence spectroscopy accomplished the detection of cyanide and azide using IR-780. Furthermore, the sensor’s effectiveness in fluorescence imaging of intracellular CN⁻ ions is demonstrated in live HeLa cells. Full article
Show Figures

Figure 1

17 pages, 2458 KB  
Article
NIR pH-Responsive PEGylated PLGA Nanoparticles as Effective Phototoxic Agents in Resistant PDAC Cells
by Degnet Melese Dereje, Francesca Bianco, Carlotta Pontremoli, Alessandra Fiorio Pla and Nadia Barbero
Polymers 2025, 17(8), 1101; https://doi.org/10.3390/polym17081101 - 18 Apr 2025
Viewed by 829
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its resistance to conventional therapies that is attributed to its dense and acidic tumor microenvironment. Chemotherapy based on gemcitabine usually lacks efficacy due to poor drug penetration and the metabolic [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its resistance to conventional therapies that is attributed to its dense and acidic tumor microenvironment. Chemotherapy based on gemcitabine usually lacks efficacy due to poor drug penetration and the metabolic characteristics of the cells adapted to grow at a more acidic pHe, thus presenting a more aggressive phenotype. In this context, photodynamic therapy (PDT) offers a promising alternative since it generally does not suffer from the same patterns of cross-resistance observed with chemotherapy drugs. In the present work, a novel bromine-substituted heptamethine-cyanine dye (BrCY7) was synthesized, loaded into PEG-PLGA NPs, and tested on the pancreatic ductal adenocarcinoma cell line cultured under physiological (PANC-1 CT) and acidic (PANC-1 pH selected) conditions, which promotes the selection of a more aggressive phenotype. The cytotoxicity of BrCY7-PEG-PLGA is dose-dependent, with an IC50 of 2.15 µM in PANC-1 CT and 2.87 µM in PANC-1 pH selected. Notably, BrCY7-PEG-PLGA demonstrated a phototoxic effect against PANC-1 pH selected cells but not on PANC-1 CT, which makes these findings particularly relevant since PANC-1 pH selected cells are more resistant to gemcitabine as compared with PANC-1 CT cells. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials, 3rd Edition)
Show Figures

Graphical abstract

9 pages, 1226 KB  
Communication
J-Aggregate-Enhanced Hybrid Nanoporous Alumina for Resonator-Free Amplified Emission
by Evgeniia O. Soloveva, Nikita Toropov and Anton A. Starovoytov
Photonics 2025, 12(4), 330; https://doi.org/10.3390/photonics12040330 - 1 Apr 2025
Viewed by 722
Abstract
This study explores the development and optical characterization of a hybrid material combining nanoporous anodic alumina with J-aggregates of pseudoisocyanine dyes, highlighting its potential for photonic applications in bright broadband sources. The hybrid material was synthesized by impregnating an alumina matrix with a [...] Read more.
This study explores the development and optical characterization of a hybrid material combining nanoporous anodic alumina with J-aggregates of pseudoisocyanine dyes, highlighting its potential for photonic applications in bright broadband sources. The hybrid material was synthesized by impregnating an alumina matrix with a dye solution, which facilitated a thermally stimulated self-assembly process for the formation of J-aggregates. The incorporation of J-aggregates within the matrix was confirmed through several independent optical measurement techniques. A distinct absorption peak and corresponding luminescence signal were attributed to J-aggregate formation, while energy transfer from the alumina’s intrinsic oxygen vacancy centers to the dye aggregates was observed under specific excitation conditions. Amplified spontaneous emission was achieved under pulsed laser excitation, characterized by spectral narrowing and a nonlinear increase in emission intensity beyond a critical pump threshold, indicative of a similarity with random lasing facilitated by scattering within the porous structure. Full article
Show Figures

Figure 1

17 pages, 2651 KB  
Article
Magnetically Localized Detection of Amplified DNA Using Biotinylated and Fluorescent Primers and Magnetic Nanoparticles
by Etienne Orsini, Franz Bruckert, Marianne Weidenhaupt, Orphée Cugat, Paul Kauffmann and Sarah Delshadi
Biosensors 2025, 15(3), 195; https://doi.org/10.3390/bios15030195 - 18 Mar 2025
Viewed by 914
Abstract
Quantitative nucleic acid detection is widely used in molecular diagnostics for infectious diseases. Here, we demonstrate that the previously developed MLFIA (magnetically localized fluorescent immunoassay) has the potential to detect Polymerase Chain Reaction (PCR) and loop-mediated isothermal amplification (LAMP) products using biotinylated and [...] Read more.
Quantitative nucleic acid detection is widely used in molecular diagnostics for infectious diseases. Here, we demonstrate that the previously developed MLFIA (magnetically localized fluorescent immunoassay) has the potential to detect Polymerase Chain Reaction (PCR) and loop-mediated isothermal amplification (LAMP) products using biotinylated and fluorescent primers and streptavidin-coated magnetic nanoparticles. The functionalized nanoparticles separate amplified DNA from non-incorporated primers in situ, allowing the quantification of DNA products. We compare magnetically localized fluorescence detection to commercial technologies based on the DNA intercalation of fluorescent dyes. Our system allows the detection of PCR and LAMP products but is approximately 10 times less sensitive than standard commercial assays. Future optimizations, such as enhancing the signal-to-noise ratio and improving nanoparticle functionalization, could significantly increase sensitivity and bring it closer to current diagnostic standards. This work highlights the potential of magnetically localized fluorescence detection to detect DNA. Full article
(This article belongs to the Special Issue Nanoparticle-Based Biosensors for Detection)
Show Figures

Graphical abstract

20 pages, 10507 KB  
Article
Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids
by Sonia Ilieva, Nikolay Petkov, Raimundo Gargallo, Christo Novakov, Miroslav Rangelov, Nadezhda Todorova, Aleksey Vasilev and Diana Cheshmedzhieva
Biosensors 2025, 15(3), 187; https://doi.org/10.3390/bios15030187 - 14 Mar 2025
Cited by 1 | Viewed by 825
Abstract
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b [...] Read more.
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b)—were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments. The newly synthesized dyes contain hydrophobic functional groups attached to the chromophore, enhancing their affinity for the hydrophobic regions of nucleic acids within the biological matrix. The dyes’ photophysical properties were investigated in aqueous solutions and DMSO, as well as in the presence of nucleic acids. The dyes exhibit notable aggregachromism in both pure aqueous and buffered solutions. The observed aggregation phenomena were further elucidated using computational methods. Fluorescence titration experiments revealed that upon contact with nucleic acids, the dyes exhibit bioaggregachromism–aggregachromism on the surfaces of the respective biomolecular matrix (RNA or DNA). This bioaggregachromism was further confirmed by CD spectroscopy. Given the pronounced aggregachromism detected, we conclude that the dyes investigated in this study are highly suitable for use as fluorogenic probes in biomolecular recognition techniques. The unique absorption and fluorescence spectra of these dyes make them promising fluorogenic markers for various bioanalytical methods related to biomolecular recognition. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

10 pages, 5208 KB  
Communication
A DNA-Based Plasmonic Nano-Ruler
by Aura Cencini, Mary Bortoluzzi, Graziano Rilievo, Federica Tonolo, Fabio Vianello, Massimiliano Magro and Alessandro Cecconello
Int. J. Mol. Sci. 2025, 26(6), 2557; https://doi.org/10.3390/ijms26062557 - 12 Mar 2025
Cited by 1 | Viewed by 1092
Abstract
DNA is an exceptional building block for the fabrication of dynamic supramolecular systems with switchable geometries. Here, a self-assembled, tunable plasmonic–fluorescent nanostructure was developed. A precise sliding motion mechanism was operated through the control of strand displacement reactions, shifting two single-strand DNA (ssDNA) [...] Read more.
DNA is an exceptional building block for the fabrication of dynamic supramolecular systems with switchable geometries. Here, a self-assembled, tunable plasmonic–fluorescent nanostructure was developed. A precise sliding motion mechanism was operated through the control of strand displacement reactions, shifting two single-strand DNA (ssDNA) rails connected by a ssDNA quasi-ring structure. The system was reconfigured as a nano-mechanical structure, generating six discrete configurations, and setting specific distances between a tethered gold nanoparticle (AuNP) and a fluorophore, Sulfo-Cyanine3 (Cy3). Each configuration produced a distinct fluorescence emission intensity via plasmonic quenching/enhancement effects, and therefore the structure behaved as a nano-ruler. To optimize the system, the reversible distance-dependent fluorescence quenching or enhancement phenomena were investigated by testing AuNPs with diameters of 5, 10, and 15 nm, yielding the best performances with 10 nm AuNPs. Furthermore, a geometric model of the system was produced, confirming the observed results. The fluorophore–plasmonic surface positioning, conferred by the DNA ruler, led to a finite state nano-machine with six alternative signal outputs. This mechanism, working as a fluorescent reporter, could find application in a multiple-responsive detection system of single-strand nucleic acids, such as viruses or microRNAs. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

55 pages, 4519 KB  
Review
IR780-Based Nanotheranostics and In Vivo Effects: A Review
by Márcia Célia Pacheco Fialho, Maria Alice de Oliveira, Marina Guimarães Carvalho Machado, Carlos Marchiorio Lacerda and Vanessa Carla Furtado Mosqueira
J. Nanotheranostics 2025, 6(1), 8; https://doi.org/10.3390/jnt6010008 - 7 Mar 2025
Cited by 5 | Viewed by 4550
Abstract
Photodynamic and photothermal therapies with IR780 have gained exponential interest, and their photophysical properties have demonstrated promise for use in antitumor and antimicrobial chemotherapy. IR780 and its derivatives are valuable in labeling nanostructures with different chemical compositions for in vitro and in vivo [...] Read more.
Photodynamic and photothermal therapies with IR780 have gained exponential interest, and their photophysical properties have demonstrated promise for use in antitumor and antimicrobial chemotherapy. IR780 and its derivatives are valuable in labeling nanostructures with different chemical compositions for in vitro and in vivo fluorescence monitoring studies in the near-infrared (NIR) spectrum. The current literature is abundant on this topic, particularly with applications in the treatment of different types of cancer using laser illumination to produce photodynamic (PDT), photothermal (PTT), and, more recently, sonodynamic therapy (SDT) approaches for cell death. This review aims to update the state of the art concerning IR780 photosensitizer as a theranostic agent for PDT, PTT, SDT, and photoacoustic (PA) effects, and fluorescence imaging monitoring associated with different types of nanocarriers. The literature update concerns a period from 2017 to 2024, considering, more specifically, the in vivo effects found in preclinical experiments. Some aspects of the labeling stability of nanostructured systems will be discussed based on the evidence of IR780 leakage from the nanocarrier and its consequences for the reliable analysis of biological data. Full article
Show Figures

Graphical abstract

10 pages, 3938 KB  
Article
Aggregachromic Fluorogenic Asymmetric Cyanine Probes for Sensitive Detection of Heparin and Protamine
by Anton Kostadinov, Aleksey Vasilev, Stanislav Baluschev and Katharina Landfester
Molecules 2025, 30(3), 570; https://doi.org/10.3390/molecules30030570 - 27 Jan 2025
Cited by 1 | Viewed by 961
Abstract
The precise and fast detection of heparin, the most widely used anticoagulant, remains a significant challenge for assessing its use in a clinical setting. In this work, we adapt a well-established asymmetric cyanine fluorogenic platform for the purpose of ultrasensitive heparin detection in [...] Read more.
The precise and fast detection of heparin, the most widely used anticoagulant, remains a significant challenge for assessing its use in a clinical setting. In this work, we adapt a well-established asymmetric cyanine fluorogenic platform for the purpose of ultrasensitive heparin detection in the presence of common interferant chemical species. Three analogous fluorescence probes are synthesized in order to optimize for the number of binding moieties. Their interaction with heparin is studied using steady-state absorption, fluorescence, and circular dichroism spectroscopy. The obtained probes exhibit a highly sensitive “turn-on” fluorescence response to heparin, with a LOD in the 10–25 nM range, well within practical requirement, as well as a visible colorimetric change. The heparin–probe complex is also employed as a sensitive detection platform for protamine, both in the “turn-off” fluorescence and ratiometric detection schemes. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

15 pages, 6467 KB  
Article
A Long-Term Stability Study of Co-Pc-Modified Nanosilver for Anion Exchange Membrane Fuel Cells
by Fa-Cheng Su, Yu-Hsiu Lu, Paweena Prapainainar and Hsiharng Yang
Catalysts 2025, 15(1), 25; https://doi.org/10.3390/catal15010025 - 30 Dec 2024
Cited by 2 | Viewed by 1042
Abstract
This study investigated the modification of nanosilver (Ag) by Co-Pc (phthal–cyanine) and the synergistic effect of Ag-Co/CNT (carbon nanotube) for the long-term stability of AEMFCs (anion exchange membrane fuel cells). This study also aimed to use non-precious metal catalysts on both the cathode [...] Read more.
This study investigated the modification of nanosilver (Ag) by Co-Pc (phthal–cyanine) and the synergistic effect of Ag-Co/CNT (carbon nanotube) for the long-term stability of AEMFCs (anion exchange membrane fuel cells). This study also aimed to use non-precious metal catalysts on both the cathode and anode to reduce the catalyst costs. Through a simple and efficient chemical synthesis method, a composite catalyst consisting of Co-Pc-modified Ag/CNT was successfully prepared and characterized for its structure and composition. Co-Pc and Ag were chosen for their high durability and catalytic activity in fuel cells, combined with a multi-wall carbon nanotube (MWCNT) as a carrier for the cathode catalyst, and the anode catalyst used Pd-CeO2/C. The performance of the cell module was tested based on a commercial anion exchange membrane (X37-50RT). The experiment focused on different synthesis times and ratios of catalyst and ionomer, observing the enhancement in Co on the active sites of Ag/CNT. Finally, the cell performance was tested for the optimal loading amount. It was observed that when the loading of the nanosilver–cobalt/carbon nanotube (Ag-Co/CNT) is 1 mg/cm2, the highest power density is 434.1 mW/cm2. Through 100 cycles of testing, only an 18% decrease was observed, while the decrease in open circuit voltage was approximately 4.6%. Compared to nanosilver (Ag/CNT), the Co-Pc-modified nano-Ag with the degradation rate has significantly slowed down, and its catalytic activity has also improved significantly. The enhanced stability of this synergistic effect is mainly attributed to the introduction of cobalt metal, which prevents excessive fusion of nano-Ag particles and surface oxidation, effectively maintaining durability in catalytic activity. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

9 pages, 1734 KB  
Article
Heptamethine Cyanine Dye-Doped Single-Walled Carbon Nanotube Electrodes for Improving Performance of HTL-Free Perovskite Solar Cells
by Man-Ge Cai, Arina Watanabe, Zhenyu Xu, Yong-Chang Zhai, Achmad Syarif Hidayat, Naoki Ueoka, Miftakhul Huda, Kimitaka Higuchi, Esko I. Kauppinen, Kazumasa Funabiki and Yutaka Matsuo
Molecules 2025, 30(1), 60; https://doi.org/10.3390/molecules30010060 - 27 Dec 2024
Cited by 3 | Viewed by 1194
Abstract
Perovskite solar cell (PSC) technology holds great promise with continuously improving power conversion efficiency; however, the use of metal electrodes hinders its commercialization and the development of tandem designs. Although single-walled carbon nanotubes (SWCNTs), as one-dimensional materials, have the potential to replace metal [...] Read more.
Perovskite solar cell (PSC) technology holds great promise with continuously improving power conversion efficiency; however, the use of metal electrodes hinders its commercialization and the development of tandem designs. Although single-walled carbon nanotubes (SWCNTs), as one-dimensional materials, have the potential to replace metal electrodes in PSCs, their poor conductivity still limits their application. In this study, the near-infrared (NIR)-absorbing anionic heptamethine cyanine dye-doped SWCNTs functioned in a dual role as an efficient charge-selective layer and electrode in PSCs. Benefiting from the improvement in conductivities and matched energy level of doped-SWCNT, the dual-role SWCNT electrodes applied to PSCs achieved a better performance than the undoped PSCs with a higher short circuit current (JSC) and fill factor (FF). Full article
(This article belongs to the Special Issue Study on Synthesis and Photochemistry of Dyes)
Show Figures

Graphical abstract

18 pages, 6186 KB  
Article
Nanoconfined Chlorine-Substituted Monomethine Cyanine Dye with a Propionamide Function Based on the Thiazole Orange Scaffold—Use of a Fluorogenic Probe for Cell Staining and Nucleic Acid Visualization
by Nikolay Ishkitiev, Maria Micheva, Marina Miteva, Stefaniya Gaydarova, Christo Tzachev, Vesela Lozanova, Valentin Lozanov, Diana Cheshmedzhieva, Meglena Kandinska, Sonia Ilieva, Raimundo Gargallo, Stanislav Baluschev, Stoyno Stoynov, Teodora Dyankova-Danovska, Marina Nedelcheva-Veleva, Katharina Landfester, Zornitsa Mihaylova and Aleksey Vasilev
Molecules 2024, 29(24), 6038; https://doi.org/10.3390/molecules29246038 - 21 Dec 2024
Cited by 2 | Viewed by 1646
Abstract
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular [...] Read more.
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated. The synthesis of a new dicationic asymmetric monomethine cyanine dye with benzo[d]thiazolium-N-propionamide and chloroquinoline end groups is presented. The photophysical properties of the newly synthesized dye were examined through the combined application of spectroscopic and theoretical methods. The applicability of the dye as a fluorogenic nucleic acid probe was proven by UV-VIS spectroscopy and fluorescence titration. The dye–nucleic acid interaction mode was investigated by UV-Vis and CD spectroscopy. The newly synthesized dicationic dye, like other similar fluorogenic structures, limited permeability, which restricts its use as a probe for RNA and DNA. To enhance cellular delivery, we utilized a patented technology that employs solid, insoluble lipid nanoparticles. This method ensures the complete introduction of the dye into cells while minimizing activity outside the cells. In our study involving two human cell lines, we observed improved penetration through the cell membrane and distinctive selectivity in visualizing nucleic acids within the cytoplasm and nucleus. Full article
Show Figures

Graphical abstract

29 pages, 6702 KB  
Article
Core–Shell PLGA Nanoparticles: In Vitro Evaluation of System Integrity
by Tatyana Kovshova, Julia Malinovskaya, Julia Kotova, Marina Gorshkova, Lyudmila Vanchugova, Nadezhda Osipova, Pavel Melnikov, Veronika Vadekhina, Alexey Nikitin, Yulia Ermolenko and Svetlana Gelperina
Biomolecules 2024, 14(12), 1601; https://doi.org/10.3390/biom14121601 - 14 Dec 2024
Viewed by 2159
Abstract
The objective of this study was to compare the properties of core–shell nanoparticles with a PLGA core and shells composed of different types of polymers, focusing on their structural integrity. The core PLGA nanoparticles were prepared either through a high-pressure homogenization–solvent evaporation technique [...] Read more.
The objective of this study was to compare the properties of core–shell nanoparticles with a PLGA core and shells composed of different types of polymers, focusing on their structural integrity. The core PLGA nanoparticles were prepared either through a high-pressure homogenization–solvent evaporation technique or nanoprecipitation, using poloxamer 188 (P188), a copolymer of divinyl ether with maleic anhydride (DIVEMA), and human serum albumin (HSA) as the shell-forming polymers. The shells were formed through adsorption, interfacial embedding, or conjugation. For dual fluorescent labeling, the core- and shell-forming polymers were conjugated with Cyanine5, Cyanine3, and rhodamine B. The nanoparticles had negative zeta potentials and sizes ranging from 100 to 250 nm (measured using DLS) depending on the shell structure and preparation technique. The core–shell structure was confirmed using TEM and fluorescence spectroscopy, with the appearance of FRET phenomena due to the donor–acceptor properties of the labels. All of the shells enhanced the cellular uptake of the nanoparticles in Gl261 murine glioma cells. The integrity of the core–shell structures upon their incubation with the cells was evidenced by intracellular colocalization of the fluorescent labels according to the Manders’ colocalization coefficients. This comprehensive approach may be useful for the selection of the optimal preparation method even at the early stages of the core–shell nanoparticle development. Full article
(This article belongs to the Special Issue Nanoparticles for Cancer Therapy: Challenges and Opportunities)
Show Figures

Figure 1

Back to TopTop