Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = daytime-restricted feeding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1782 KB  
Article
Time-Restricted Feeding Affects Energy Metabolism in Lactating Striped Hamsters (Cricetulus barabensis, Cricetidae, Rodentia)
by Wenting Li, Xinyuan Dong, Jiachen He, Xiaojie Jin, Binxin Yin, Tingbei Bo and Jing Wen
Biology 2025, 14(9), 1261; https://doi.org/10.3390/biology14091261 - 12 Sep 2025
Viewed by 676
Abstract
Lactation is a critical period in which mothers generally increase food intake and metabolism to meet high energy demands. In the present study, we examined the effect of time-restricted feeding (TRF) on lactating striped hamsters. On the day of litter birth, lactating females [...] Read more.
Lactation is a critical period in which mothers generally increase food intake and metabolism to meet high energy demands. In the present study, we examined the effect of time-restricted feeding (TRF) on lactating striped hamsters. On the day of litter birth, lactating females were assigned into 3 experimental groups that experienced 24-h ad lib feeding (Con), 12-h daytime feeding (DF), or 12-h nighttime feeding (NF). A group of non-lactating females with 24-h feeding (NL) served as an additional control. Our data show that lactating females had increased food intake, oxygen consumption, and small intestine mass but a decreased level of circulating melatonin, compared to the NL females. However, TRF manipulation significantly reduced the mother’s food intake, the pup’s body mass, and survival rate. In addition, TRF had some phase-specific (i.e., DF vs. NF) effects on facilitating body mass loss, decreasing CART, AgRP, and POMC gene expression in the hypothalamus, and increasing abundance in Desulfobacterota and Actinobacteriota in the gut microbiota of lactating females. Together, our data illustrate adaptive changes of lactating hamsters under TRF conditions, and highlight the importance of food access and dietary rhythm regulation in maternal and offspring health, development, and reproductive success. These findings not only expand our understanding of lactation biology and ecological feeding strategies but also highlight the significance of regular dietary patterns for lactating individuals, with particular emphasis on shift workers and other populations with irregular daily schedules. Full article
Show Figures

Graphical abstract

23 pages, 2082 KB  
Article
Transcriptomic Analysis of the Liver Redox Response During Food-Anticipatory Activity Under a Time-Restricted Feeding Protocol in Rats
by Adrián Báez-Ruiz, Andy Hernández-Abrego, Mauricio Díaz-Muñoz and Isabel Méndez
Antioxidants 2025, 14(6), 649; https://doi.org/10.3390/antiox14060649 - 28 May 2025
Viewed by 1229
Abstract
Daytime-restricted feeding (TRF) exerts outstanding effects on circadian physiology, nutrient utilization, and energy metabolism. Limiting feeding access to two hours during the daytime (12:00–14:00 h) for three weeks promotes food-anticipatory activity (FAA). FAA encompasses not only behaviors related to meal expectations but also [...] Read more.
Daytime-restricted feeding (TRF) exerts outstanding effects on circadian physiology, nutrient utilization, and energy metabolism. Limiting feeding access to two hours during the daytime (12:00–14:00 h) for three weeks promotes food-anticipatory activity (FAA). FAA encompasses not only behaviors related to meal expectations but also includes diurnal fluctuations in liver metabolic responses, including distinct redox handling. Hepatic microarray profiles of genes associated with redox response processes were analyzed at three crucial time points: at the beginning of the light period or before FAA (08:00 h), during the expression of FAA (11:00 h), and after feeding (14:00 h). Data on fasting and nutrient processing were integrated, whereas circadian implications were extrapolated by comparing the TRF transcriptional output with a one-day fasting group. Transcripts of redox reactions, such as reactive oxygen species (ROS) generation, antioxidant defenses, NAD+/NADH equilibrium, and glutathione, hydrogen peroxide (H2O2), arginine, nitric oxide (NO), and hydrogen sulfide (H2S) metabolism, were analyzed. Results showed a decline in antioxidant defenses at 08:00 h, followed by a burst of pro-oxidant reactions, preparation of glutathione metabolism factors, and a tendency to decrease H2O2 and increase NO and H2S during the FAA. Most of the findings observed during the FAA were absent in response to one-day fasting. Hence, TRF involves concerted and sequential responses in liver pro-oxidant and antioxidant reactions, facilitating a redox-related circadian control that optimizes the metabolic utilization of nutrients, which differs from a response to a simple fast-feed cycle. Full article
Show Figures

Graphical abstract

17 pages, 13720 KB  
Article
Mistimed Feeding Disrupts Metabolic Rhythm and Increases Lipid Accumulation of Growing Rabbits in Winter
by Ke-Hao Zhang, Shuai He, Quan-Gang Wang, Jun-Jiao Li, Chun-Yan Yao, Chun-Hua Shan, Lei Zhang, Zhong-Ying Liu, Peng Liu, Ming-Yong Li, Yao Guo and Zhong-Hong Wu
Animals 2025, 15(5), 692; https://doi.org/10.3390/ani15050692 - 27 Feb 2025
Viewed by 2101
Abstract
Maintaining the normal biological rhythms of livestock is of great significance for reflecting the environmental suitability and welfare level of animals. Mistimed feeding can interfere with the circadian rhythms of both humans and animals, resulting in disorders of lipid metabolism, obesity, and metabolic [...] Read more.
Maintaining the normal biological rhythms of livestock is of great significance for reflecting the environmental suitability and welfare level of animals. Mistimed feeding can interfere with the circadian rhythms of both humans and animals, resulting in disorders of lipid metabolism, obesity, and metabolic syndrome. Low-temperature environment stimulates increased appetite and decreased physical activity, resulting in higher energy intake than consumption and thus facilitating fat deposition and even obesity. In this study, growing rabbits were randomly allocated to the daytime feeding (DF) group and nighttime restricted feeding (NRF) group. Our research demonstrated that, during winter, the DF regimen disrupted the behavioral rhythms of rabbits and accelerated weight gain without changing overall feed intake. The underlying reason was that DF disturbed the lipid metabolism rhythms, promoted hepatic lipid synthesis regulated by DGAT1 and lipid synthesis of adipose tissues regulated by GPAM, thus triggering fat deposition. In contrast, the NRF regimen enhanced thermogenesis regulated by T3 and elevated body temperature and facilitated ketogenesis mediated by HMGCS2, increasing energy consumption. However, it had no significant impact on the fat content within muscle. This study offers a theoretical foundation for the refinement of feeding management and healthy raising of rabbits. Full article
Show Figures

Figure 1

13 pages, 4327 KB  
Article
Daytime-Restricted Feeding Ameliorates Oxidative Stress by Increasing NRF2 Transcriptional Factor in the Rat Hippocampus in the Pilocarpine-Induced Acute Seizure Model
by Octavio Fabián Mercado-Gómez, Virginia Selene Arriaga-Ávila, Angélica Vega-García, Sandra Orozco-Suarez, Vadim Pérez-Koldenkova, Juan José Camarillo-Sánchez, Marcelino Álvarez-Herrera and Rosalinda Guevara-Guzmán
Brain Sci. 2023, 13(10), 1442; https://doi.org/10.3390/brainsci13101442 - 10 Oct 2023
Cited by 6 | Viewed by 1841
Abstract
Seizure-mediated oxidative stress is a crucial mechanism in the pathophysiology of epilepsy. This study evaluated the antioxidant effects of daytime-restricted feeding (DRF) and the role of the Nrf2 signaling pathway in a lithium-pilocarpine model seizure model that induces status epilepticus (SE). We performed [...] Read more.
Seizure-mediated oxidative stress is a crucial mechanism in the pathophysiology of epilepsy. This study evaluated the antioxidant effects of daytime-restricted feeding (DRF) and the role of the Nrf2 signaling pathway in a lithium-pilocarpine model seizure model that induces status epilepticus (SE). We performed a lipoperoxidation assay and dihydroethidium fluorescence to measure oxidative stress markers in the hippocampus (malondialdehyde and reactive oxygen species). The protein content of Nrf2 and its downstream protein SOD2 was evaluated using Western blotting. The cellular distribution of the Nrf2 and SOD2 proteins in the pyramidal cell layer of both the CA1 and CA3 hippocampal subfields and astrocytes (GFAP marker) were quantified using immunofluorescence and immunohistochemistry, respectively. Our results indicate that DRF reduced the malondialdehyde levels and the production of reactive oxygen species. Furthermore, a significant increase in Nrf2 and SOD2 protein content was observed in animals subjected to restrictive diet. In addition, DRF increased the relative intensity of the Nrf2 fluorescence in the perinuclear and nuclear compartments of pyramidal neurons in the CA1 subfield. Nrf2 immunoreactivity and the astrocyte marker GFAP also increased their colocalization under DRF conditions. Additionally, SOD2 immunoreactivity was increased in CA1 pyramidal neurons but not in the CA3 region. Our findings suggest that DRF partially prevents oxidative stress by increasing the Nrf2 transcriptional factor and the SOD2 enzyme during the development of SE. Full article
Show Figures

Figure 1

12 pages, 2076 KB  
Article
Optimizing Feeding Strategies for Growing Rabbits: Impact of Timing and Amount on Health and Circadian Rhythms
by Jie Huang, Qiangjun Wang, Kehao Zhang, Shuai He, Zhongying Liu, Mingyong Li, Man Liu, Yao Guo and Zhonghong Wu
Animals 2023, 13(17), 2742; https://doi.org/10.3390/ani13172742 - 28 Aug 2023
Cited by 4 | Viewed by 2604
Abstract
Mammals exhibit circadian rhythms in their behavior and physiological activities to adapt to the diurnal changes of the environment. Improper feeding methods can disrupt the natural habits of animals and harm animal health. This study investigated the effects of feeding amount and feeding [...] Read more.
Mammals exhibit circadian rhythms in their behavior and physiological activities to adapt to the diurnal changes of the environment. Improper feeding methods can disrupt the natural habits of animals and harm animal health. This study investigated the effects of feeding amount and feeding time on growing rabbits in northern China during spring. A total of 432 healthy 35-day-old weaned rabbits with similar body weight were randomly assigned to four groups: whole day diet-unrestricted feeding (WUF), whole day diet-restricted feeding (WRF), nighttime diet-unrestricted feeding (NUF), and nighttime diet-restricted feeding (NRF). The results showed that nighttime diet-unrestricted feeding improved performance, circadian rhythm of behavior, and body temperature, while reducing the risk of diarrhea and death. WRF group increased daytime body temperature but had no significant difference in feed conversion rate. The study suggests that nighttime diet-unrestricted feeding in spring can improve the growth and welfare of rabbits in northern China. Our study underscores the pivotal role of feeding timing in enhancing animal health. Future investigations should delve into the underlying mechanisms and expand the application of this strategy across seasons and regions to improve rabbit husbandry practices. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

18 pages, 2865 KB  
Article
High-Fat-Diet-Evoked Disruption of the Rat Dorsomedial Hypothalamic Clock Can Be Prevented by Restricted Nighttime Feeding
by Anna Magdalena Sanetra, Katarzyna Palus-Chramiec, Lukasz Chrobok, Jagoda Stanislawa Jeczmien-Lazur, Emilia Gawron, Jasmin Daniela Klich, Kamil Pradel and Marian Henryk Lewandowski
Nutrients 2022, 14(23), 5034; https://doi.org/10.3390/nu14235034 - 26 Nov 2022
Cited by 6 | Viewed by 3113
Abstract
Obesity is a growing health problem for modern society; therefore, it has become extremely important to study not only its negative implications but also its developmental mechanism. Its links to disrupted circadian rhythmicity are indisputable but are still not well studied on the [...] Read more.
Obesity is a growing health problem for modern society; therefore, it has become extremely important to study not only its negative implications but also its developmental mechanism. Its links to disrupted circadian rhythmicity are indisputable but are still not well studied on the cellular level. Circadian food intake and metabolism are controlled by a set of brain structures referred to as the food-entrainable oscillator, among which the dorsomedial hypothalamus (DMH) seems to be especially heavily affected by diet-induced obesity. In this study, we evaluated the effects of a short-term high-fat diet (HFD) on the physiology of the male rat DMH, with special attention to its day/night changes. Using immunofluorescence and electrophysiology we found that both cFos immunoreactivity and electrical activity rhythms become disrupted after as few as 4 weeks of HFD consumption, so before the onset of excessive weight gain. This indicates that the DMH impairment is a possible factor in obesity development. The DMH cellular activity under an HFD became increased during the non-active daytime, which coincides with a disrupted rhythm in food intake. In order to explore the relationship between them, a separate group of rats underwent time-restricted feeding with access to food only during the nighttime. Such an approach completely abolished the disruptive effects of the HFD on the DMH clock, confirming its dependence on the feeding schedule of the animal. The presented data highlight the importance of a temporally regulated feeding pattern on the physiology of the hypothalamic center for food intake and metabolism regulation, and propose time-restricted feeding as a possible prevention of the circadian dysregulation observed under an HFD. Full article
(This article belongs to the Special Issue Circadian Clock and Nutrition)
Show Figures

Figure 1

14 pages, 2322 KB  
Article
Daytime Restricted Feeding Modifies the Temporal Expression of CYP1A1 and Attenuated Damage Induced by Benzo[a]pyrene in Rat Liver When Administered before CYP1A1 Acrophase
by Oscar Samuel Ávila-Rosales, Mauricio Díaz-Muñoz, Rafael Camacho-Carranza, Elvia Coballase-Urrutia, José Pedraza-Chaverri, Jorge Omar García-Rebollar and Jesús Javier Espinosa-Aguirre
Toxics 2021, 9(6), 130; https://doi.org/10.3390/toxics9060130 - 4 Jun 2021
Cited by 6 | Viewed by 3113
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that heterodimerizes with the AhR nuclear translocator (ARNT) to modulate CYP1A1 expression, a gene involved in the biotransformation of benzo[a]pyrene (BaP). The AhR pathway shows daily variations under the control of the circadian [...] Read more.
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that heterodimerizes with the AhR nuclear translocator (ARNT) to modulate CYP1A1 expression, a gene involved in the biotransformation of benzo[a]pyrene (BaP). The AhR pathway shows daily variations under the control of the circadian timing system. Daytime restricted feeding (DRF) entrains the expression of genes involved in the processing of nutrients and xenobiotics to food availability. Therefore, we evaluate if temporal AhR, ARNT, and CYP1A1 hepatic expression in rats are due to light/dark cycles or fasting/feeding cycles promoted by DRF. Our results show that AhR oscillates throughout the 24 h period in DRF and ad libitum feeding rats (ALF), showing maximum expression at the same time points. DRF modified the peak of ARNT expression at ZT5; meanwhile, ALF animals showed a peak of maximum expression at ZT17. An increased expression of CYP1A1 was linked to the meal time in both groups of animals. Although a high CYP1A1 expression has been previously associated with BaP genotoxicity, our results show that, compared with the ALF group, DRF attenuated the BaP-CYP1A1 induction potency, the liver DNA-BaP adducts, the liver concentration of unmetabolized BaP, and the blood aspartate aminotransferase and alanine aminotransferase activities when BaP is administered prior to the acrophase of CYP1A1 expression. These results demonstrate that DRF modifies the ARNT and CYP1A1 expression and protects from BaP toxicity. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

Back to TopTop