Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,973)

Search Parameters:
Keywords = deep LSTM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5991 KB  
Article
Attention-Aware Graph Neural Network Modeling for AIS Reception Area Prediction
by Ambroise Renaud, Clément Iphar and Aldo Napoli
Sensors 2025, 25(19), 6259; https://doi.org/10.3390/s25196259 (registering DOI) - 9 Oct 2025
Abstract
Accurately predicting the reception area of the Automatic Identification System (AIS) is critical for ship tracking and anomaly detection, as errors in signal interpretation may lead to incorrect vessel localization and behavior analysis. However, traditional propagation models, whether they are deterministic, empirical, or [...] Read more.
Accurately predicting the reception area of the Automatic Identification System (AIS) is critical for ship tracking and anomaly detection, as errors in signal interpretation may lead to incorrect vessel localization and behavior analysis. However, traditional propagation models, whether they are deterministic, empirical, or semi-empirical, face limitations when applied to dynamic environments due to their reliance on detailed atmospheric and terrain inputs. Therefore, to address these challenges, we propose a data-driven approach based on graph neural networks (GNNs) to model AIS reception as a function of environmental and geographic variables. Specifically, inspired by attention mechanisms that power transformers in large language models, our framework employs the SAmple and aggreGatE (GraphSAGE) framework convolutions to aggregate neighborhood features, then combines layer outputs through Jumping Knowledge (JK) with Bidirectional Long Short-Term Memory (BiLSTM)-derived attention coefficients and integrates an attentional pooling module at the graph-level readout. Moreover, trained on real-world AIS data enriched with terrain and meteorological features, the model captures both local and long-range reception patterns. As a result, it outperforms classical baselines—including ITU-R P.2001 and XGBoost in F1-score and accuracy. Ultimately, this work illustrates the value of deep learning and AIS sensor networks for the detection of positioning anomalies in ship tracking and highlights the potential of data-driven approaches in modeling sensor reception. Full article
(This article belongs to the Special Issue Transformer Applications in Target Tracking)
36 pages, 1952 KB  
Article
VeMisNet: Enhanced Feature Engineering for Deep Learning-Based Misbehavior Detection in Vehicular Ad Hoc Networks
by Nayera Youness, Ahmad Mostafa, Mohamed A. Sobh, Ayman M. Bahaa and Khaled Nagaty
J. Sens. Actuator Netw. 2025, 14(5), 100; https://doi.org/10.3390/jsan14050100 - 9 Oct 2025
Abstract
Ensuring secure and reliable communication in Vehicular Ad hoc Networks (VANETs) is critical for safe transportation systems. This paper presents Vehicular Misbehavior Network (VeMisNet), a deep learning framework for detecting misbehaving vehicles, with primary contributions in systematic feature engineering and scalability analysis. VeMisNet [...] Read more.
Ensuring secure and reliable communication in Vehicular Ad hoc Networks (VANETs) is critical for safe transportation systems. This paper presents Vehicular Misbehavior Network (VeMisNet), a deep learning framework for detecting misbehaving vehicles, with primary contributions in systematic feature engineering and scalability analysis. VeMisNet introduces domain-informed spatiotemporal features—including DSRC neighborhood density, inter-message timing patterns, and communication frequency analysis—derived from the publicly available VeReMi Extension Dataset. The framework evaluates Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM architectures across dataset scales from 100 K to 2 M samples, encompassing all 20 attack categories. To address severe class imbalance (59.6% legitimate vehicles), VeMisNet applies SMOTE post train–test split, preventing data leakage while enabling balanced evaluation. Bidirectional LSTM with engineered features achieves 99.81% accuracy and F1-score on 500 K samples, with remarkable scalability maintaining >99.5% accuracy at 2 M samples. Critical metrics include 0.19% missed attack rates, under 0.05% false alarms, and 41.76 ms inference latency. The study acknowledges important limitations, including reliance on simulated data, single-split evaluation, and potential adversarial vulnerability. Domain-informed feature engineering provides 27.5% relative improvement over dimensionality reduction and 22-fold better scalability than basic features. These results establish new VANET misbehavior detection benchmarks while providing honest assessment of deployment readiness and research constraints. Full article
21 pages, 2203 KB  
Article
LSTM-PPO-Based Dynamic Scheduling Optimization for High-Speed Railways Under Blizzard Conditions
by Na Wang, Zhiyuan Cai and Yinzhen Li
Systems 2025, 13(10), 884; https://doi.org/10.3390/systems13100884 (registering DOI) - 9 Oct 2025
Abstract
Severe snowstorms pose multiple threats to high-speed rail systems, including sudden drops in track friction coefficients, icing of overhead contact lines, and reduced visibility. These conditions can trigger dynamic risks such as train speed restrictions, cascading delays, and operational disruptions. Addressing the limitations [...] Read more.
Severe snowstorms pose multiple threats to high-speed rail systems, including sudden drops in track friction coefficients, icing of overhead contact lines, and reduced visibility. These conditions can trigger dynamic risks such as train speed restrictions, cascading delays, and operational disruptions. Addressing the limitations of traditional scheduling methods in spatio-temporal modeling during blizzards, real-time multi-objective trade-offs, and high-dimensional constraint solving efficiency, this paper proposes a collaborative optimization approach integrating temporal forecasting with deep reinforcement learning. A dual-module LSTM-PPO model is constructed using LSTM (Long Short-Term Memory) and PPO (Proximal Policy Optimization) algorithms, coupled with a composite reward function. This design collaboratively optimizes punctuality and scheduling stability, enabling efficient schedule adjustments. To validate the proposed method’s effectiveness, a simulation environment based on the Lanzhou-Xinjiang High-Speed Railway line was constructed. Experiments employing a three-stage blizzard evolution mechanism demonstrated that this approach effectively achieves a dynamic equilibrium among safety, punctuality, and scheduling stability during severe snowstorms. This provides crucial decision support for intelligent scheduling of high-speed rail systems under extreme weather conditions. Full article
Show Figures

Figure 1

35 pages, 7130 KB  
Article
A Hybrid Framework Integrating End-to-End Deep Learning with Bayesian Inference for Maritime Navigation Risk Prediction
by Fanyu Zhou and Shengzheng Wang
J. Mar. Sci. Eng. 2025, 13(10), 1925; https://doi.org/10.3390/jmse13101925 - 9 Oct 2025
Abstract
Currently, maritime navigation safety risks—particularly those related to ship navigation—are primarily assessed through traditional rule-based methods and expert experience. However, such approaches often suffer from limited accuracy and lack real-time responsiveness. As maritime environments and operational conditions become increasingly complex, traditional techniques struggle [...] Read more.
Currently, maritime navigation safety risks—particularly those related to ship navigation—are primarily assessed through traditional rule-based methods and expert experience. However, such approaches often suffer from limited accuracy and lack real-time responsiveness. As maritime environments and operational conditions become increasingly complex, traditional techniques struggle to cope with the diversity and uncertainty of navigation scenarios. Therefore, there is an urgent need for a more intelligent and precise risk prediction method. This study proposes a ship risk prediction framework that integrates a deep learning model based on Long Short-Term Memory (LSTM) networks with Bayesian risk evaluation. The model first leverages deep neural networks to process time-series trajectory data, enabling accurate prediction of a vessel’s future positions and navigational status. Then, Bayesian inference is applied to quantitatively assess potential risks of collision and grounding by incorporating vessel motion data, environmental conditions, surrounding obstacles, and water depth information. The proposed framework combines the advantages of deep learning and Bayesian reasoning to improve the accuracy and timeliness of risk prediction. By providing real-time warnings and decision-making support, this model offers a novel solution for maritime safety management. Accurate risk forecasts enable ship crews to take precautionary measures in advance, effectively reducing the occurrence of maritime accidents. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 6989 KB  
Article
Images Versus Videos in Contrast-Enhanced Ultrasound for Computer-Aided Diagnosis
by Marina Adriana Mercioni, Cătălin Daniel Căleanu and Mihai-Eronim-Octavian Ursan
Sensors 2025, 25(19), 6247; https://doi.org/10.3390/s25196247 - 9 Oct 2025
Abstract
The background of the article refers to the diagnosis of focal liver lesions (FLLs) through contrast-enhanced ultrasound (CEUS) based on the integration of spatial and temporal information. Traditional computer-aided diagnosis (CAD) systems predominantly rely on static images, which limits the characterization of lesion [...] Read more.
The background of the article refers to the diagnosis of focal liver lesions (FLLs) through contrast-enhanced ultrasound (CEUS) based on the integration of spatial and temporal information. Traditional computer-aided diagnosis (CAD) systems predominantly rely on static images, which limits the characterization of lesion dynamics. This study aims to assess the effectiveness of Transformer-based architectures in enhancing CAD performance within the realm of liver pathology. The methodology involved a systematic comparison of deep learning models for the analysis of CEUS images and videos. For image-based classification, a Hybrid Transformer Neural Network (HTNN) was employed. It combines Vision Transformer (ViT) modules with lightweight convolutional features. For video-based tasks, we evaluated a custom spatio-temporal Convolutional Neural Network (CNN), a CNN with Long Short-Term Memory (LSTM), and a Video Vision Transformer (ViViT). The experimental results show that the HTNN achieved an outstanding accuracy of 97.77% in classifying various types of FLLs, although it required manual selection of the region of interest (ROI). The video-based models produced accuracies of 83%, 88%, and 88%, respectively, without the need for ROI selection. In conclusion, the findings indicate that Transformer-based models exhibit high accuracy in CEUS-based liver diagnosis. This study highlights the potential of attention mechanisms to identify subtle inter-class differences, thereby reducing the reliance on manual intervention. Full article
Show Figures

Figure 1

34 pages, 3834 KB  
Article
PINN-DT: Optimizing Energy Consumption in Smart Building Using Hybrid Physics-Informed Neural Networks and Digital Twin Framework with Blockchain Security
by Hajar Kazemi Naeini, Roya Shomali, Abolhassan Pishahang, Hamidreza Hasanzadeh, Saeed Asadi and Ahmad Gholizadeh Lonbar
Sensors 2025, 25(19), 6242; https://doi.org/10.3390/s25196242 - 9 Oct 2025
Abstract
The advancement of smart grid technologies necessitates the integration of cutting-edge computational methods to enhance predictive energy optimization. This study proposes a multi-faceted approach by incorporating (1) Deep Reinforcement Learning (DRL) agents trained using data from digital twins (DTs) to optimize energy consumption [...] Read more.
The advancement of smart grid technologies necessitates the integration of cutting-edge computational methods to enhance predictive energy optimization. This study proposes a multi-faceted approach by incorporating (1) Deep Reinforcement Learning (DRL) agents trained using data from digital twins (DTs) to optimize energy consumption in real time, (2) Physics-Informed Neural Networks (PINNs) to seamlessly embed physical laws within the optimization process, ensuring model accuracy and interpretability, and (3) blockchain (BC) technology to facilitate secure and transparent communication across the smart grid infrastructure. The model was trained and validated using comprehensive datasets, including smart meter energy consumption data, renewable energy outputs, dynamic pricing, and user preferences collected from IoT devices. The proposed framework achieved superior predictive performance with a Mean Absolute Error (MAE) of 0.237 kWh, Root Mean Square Error (RMSE) of 0.298 kWh, and an R-squared (R2) value of 0.978, indicating a 97.8% explanation of data variance. Classification metrics further demonstrated the model’s robustness, achieving 97.7% accuracy, 97.8% precision, 97.6% recall, and an F1 Score of 97.7%. Comparative analysis with traditional models like Linear Regression, Random Forest, SVM, LSTM, and XGBoost revealed the superior accuracy and real-time adaptability of the proposed method. In addition to enhancing energy efficiency, the model reduced energy costs by 35%, maintained a 96% user comfort index, and increased renewable energy utilization to 40%. This study demonstrates the transformative potential of integrating PINNs, DT, and blockchain technologies to optimize energy consumption in smart grids, paving the way for sustainable, secure, and efficient energy management systems. Full article
(This article belongs to the Special Issue IoT and Big Data Analytics for Smart Cities)
Show Figures

Figure 1

22 pages, 3920 KB  
Article
An Applied Study on Predicting Natural Gas Prices Using Mixed Models
by Shu Tang, Dongphil Chun and Xuhui Liu
Energies 2025, 18(19), 5303; https://doi.org/10.3390/en18195303 - 8 Oct 2025
Abstract
Accurate natural gas price forecasting is vital for risk management, trading strategies, and policy-making in energy markets. This study proposes and evaluates four hybrid deep learning architectures—CNN-LSTM-Attention, CNN-BiLSTM-Attention, TCN-LSTM-Attention, and TCN-BiLSTM-Attention—integrating convolutional feature extraction, sequential learning, and attention mechanisms. Using Henry Hub and [...] Read more.
Accurate natural gas price forecasting is vital for risk management, trading strategies, and policy-making in energy markets. This study proposes and evaluates four hybrid deep learning architectures—CNN-LSTM-Attention, CNN-BiLSTM-Attention, TCN-LSTM-Attention, and TCN-BiLSTM-Attention—integrating convolutional feature extraction, sequential learning, and attention mechanisms. Using Henry Hub and NYMEX datasets, the models are trained on long historical periods and tested under multi-step horizons. The results show that all hybrid models significantly outperform the traditional moving average benchmark, achieving R2 values above 95% for one-step-ahead forecasts and maintaining an accuracy of over 87% at longer horizons. CNN-BiLSTM-Attention performs best in short-term prediction due to its ability to capture bidirectional dependencies, while TCN-based models demonstrate greater robustness over extended horizons due to their effective modeling of long-range temporal structures. These findings confirm the advantages of deep learning hybrids in energy forecasting and emphasize the importance of horizon-sensitive evaluation. This study contributes methodological innovation and provides practical insights for market participants, with future directions including the integration of macroeconomic and climatic factors, exploration of advanced architectures such as Transformers, and probabilistic forecasting for uncertainty quantification. Full article
Show Figures

Figure 1

39 pages, 2436 KB  
Article
Dynamic Indoor Visible Light Positioning and Orientation Estimation Based on Spatiotemporal Feature Information Network
by Yijia Chen, Tailin Han, Jun Hu and Xuan Liu
Photonics 2025, 12(10), 990; https://doi.org/10.3390/photonics12100990 - 8 Oct 2025
Abstract
Visible Light Positioning (VLP) has emerged as a pivotal technology for industrial Internet of Things (IoT) and smart logistics, offering high accuracy, immunity to electromagnetic interference, and cost-effectiveness. However, fluctuations in signal gain caused by target motion significantly degrade the positioning accuracy of [...] Read more.
Visible Light Positioning (VLP) has emerged as a pivotal technology for industrial Internet of Things (IoT) and smart logistics, offering high accuracy, immunity to electromagnetic interference, and cost-effectiveness. However, fluctuations in signal gain caused by target motion significantly degrade the positioning accuracy of current VLP systems. Conventional approaches face intrinsic limitations: propagation-model-based techniques rely on static assumptions, fingerprint-based approaches are highly sensitive to dynamic parameter variations, and although CNN/LSTM-based models achieve high accuracy under static conditions, their inability to capture long-term temporal dependencies leads to unstable performance in dynamic scenarios. To overcome these challenges, we propose a novel dynamic VLP algorithm that incorporates a Spatio-Temporal Feature Information Network (STFI-Net) for joint localization and orientation estimation of moving targets. The proposed method integrates a two-layer convolutional block for spatial feature extraction and employs modern Temporal Convolutional Networks (TCNs) with dilated convolutions to capture multi-scale temporal dependencies in dynamic environments. Experimental results demonstrate that the STFI-Net-based system enhances positioning accuracy by over 26% compared to state-of-the-art methods while maintaining robustness in the face of complex motion patterns and environmental variations. This work introduces a novel framework for deep learning-enabled dynamic VLP systems, providing more efficient, accurate, and scalable solutions for indoor positioning. Full article
(This article belongs to the Special Issue Emerging Technologies in Visible Light Communication)
Show Figures

Figure 1

15 pages, 1516 KB  
Article
Bio-Inspired Multi-Granularity Model for Rice Pests and Diseases Named Entity Recognition in Chinese
by Zhan Tang, Xiaoyu Lu, Enli Liu, Yan Zhong and Xiaoli Peng
Biomimetics 2025, 10(10), 676; https://doi.org/10.3390/biomimetics10100676 - 8 Oct 2025
Abstract
Rice, as one of the world’s four major staple crops, is frequently threatened by pests and diseases during its growth. With the rapid expansion of agricultural information data, the effective management and utilization of such data have become crucial for the development of [...] Read more.
Rice, as one of the world’s four major staple crops, is frequently threatened by pests and diseases during its growth. With the rapid expansion of agricultural information data, the effective management and utilization of such data have become crucial for the development of agricultural informatization. Named entity recognition technology offers precise support for the early prevention and control of crop pests and diseases. However, entity recognition for rice pests and diseases faces challenges such as structural complexity and prevalent nesting issues. Inspired by biological visual mechanisms, we propose a deep learning model capable of extracting multi-granularity features. Text representations are encoded using BERT, and the model enhances its ability to capture nested boundary information through multi-granularity convolutional neural networks (CNNs). Finally, sequence modeling and labeling are performed using a bidirectional long short-term memory network (BiLSTM) combined with a conditional random field (CRF). Experimental results demonstrate that the proposed model effectively identifies entities related to rice diseases and pests, achieving an F1 score of 91.74% on a self-constructed dataset. Full article
Show Figures

Figure 1

27 pages, 1706 KB  
Article
An End-to-End Framework for Spatiotemporal Data Recovery and Unsupervised Cluster Partitioning in Distributed PV Systems
by Bingxu Zhai, Yuanzhuo Li, Wei Qiu, Rui Zhang, Zhilin Jiang, Yinuo Zeng, Tao Qian and Qinran Hu
Processes 2025, 13(10), 3186; https://doi.org/10.3390/pr13103186 - 7 Oct 2025
Abstract
The growing penetration of distributed photovoltaic (PV) systems presents significant operational challenges for power grids, driven by the scarcity of historical data and the high spatiotemporal variability of PV generation. To address these challenges, we propose Generative Reconstruction and Adaptive Identification via Latents [...] Read more.
The growing penetration of distributed photovoltaic (PV) systems presents significant operational challenges for power grids, driven by the scarcity of historical data and the high spatiotemporal variability of PV generation. To address these challenges, we propose Generative Reconstruction and Adaptive Identification via Latents (GRAIL), a unified, end-to-end framework that integrates generative modeling with adaptive clustering to discover latent structures and representative scenarios in PV datasets. GRAIL operates through a closed-loop mechanism where clustering feedback guides a cluster-aware data generation process, and the resulting generative augmentation strengthens partitioning in the latent space. Evaluated on a real-world, multi-site PV dataset with a high missing data rate of 45.4%, GRAIL consistently outperforms both classical clustering algorithms and deep embedding-based methods. Specifically, GRAIL achieves a Silhouette Score of 0.969, a Calinski–Harabasz index exceeding 4.132×106, and a Davies–Bouldin index of 0.042, demonstrating superior intra-cluster compactness and inter-cluster separation. The framework also yields a normalized entropy of 0.994, which indicates highly balanced partitioning. These results underscore that coupling data generation with clustering is a powerful strategy for expressive and robust structure learning in data-sparse environments. Notably, GRAIL achieves significant performance gains over the strongest deep learning baseline that lacks a generative component, securing the highest composite score among all evaluated methods. The framework is also computationally efficient. Its alternating optimization converges rapidly, and clustering and reconstruction metrics stabilize within approximately six iterations. Beyond quantitative performance, GRAIL produces physically interpretable clusters that correspond to distinct weather-driven regimes and capture cross-site dependencies. These clusters serve as compact and robust state descriptors, valuable for downstream applications such as PV forecasting, dispatch optimization, and intelligent energy management in modern power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 2429 KB  
Article
Hybrid Spatio-Temporal CNN–LSTM/BiLSTM Models for Blocking Prediction in Elastic Optical Networks
by Farzaneh Nourmohammadi, Jaume Comellas and Uzay Kaymak
Network 2025, 5(4), 44; https://doi.org/10.3390/network5040044 - 7 Oct 2025
Viewed by 33
Abstract
Elastic optical networks (EONs) must allocate resources dynamically to accommodate heterogeneous, high-bandwidth demands. However, the continuous setup and teardown of connections with different bit rates can fragment the spectrum and lead to blocking. The blocking predictors enable proactive defragmentation and resource reallocation within [...] Read more.
Elastic optical networks (EONs) must allocate resources dynamically to accommodate heterogeneous, high-bandwidth demands. However, the continuous setup and teardown of connections with different bit rates can fragment the spectrum and lead to blocking. The blocking predictors enable proactive defragmentation and resource reallocation within network controllers. In this paper, we propose two novel deep learning models (based on CNN–BiLSTM and CNN–LSTM) to predict blocking in EONs by combining spatial feature extraction from spectrum snapshots using 2D convolutional layers with temporal sequence modeling. This hybrid spatio-temporal design learns how local fragmentation patterns evolve over time, allowing it to detect impending blocking scenarios more accurately than conventional methods. We evaluate our model on the simulated NSFNET topology and compare it against multiple baselines, namely 1D CNN, 2D CNN, k-nearest neighbors (KNN), and support vector machines (SVMs). The results show that the proposed CNN–BiLSTM/LSTM models consistently achieve higher performance. The CNN–BiLSTM model achieved the highest accuracy in blocking prediction, while the CNN–LSTM model shows slightly lower accuracy; however, it has much lower complexity and a faster learning time. Full article
Show Figures

Figure 1

14 pages, 1660 KB  
Article
Innovative Anomaly Detection in PCB Hot-Air Ovens Using Adaptive Temporal Feature Mapping
by Chen-Yang Cheng, Chuan-Min Chien, Tzu-Li Chen, Chumpol Yuangyai and Pei-ling Kong
Appl. Sci. 2025, 15(19), 10771; https://doi.org/10.3390/app151910771 - 7 Oct 2025
Viewed by 47
Abstract
As automated equipment in PCB manufacturing becomes increasingly reliant on precision hot-air ovens, ensuring operational stability and reducing downtime have become critical challenges. Existing anomaly detection methods, such as Support Vector Machines (SVMs), Deep Neural Networks (DNNs), and Long Short-Term Memory (LSTM) Networks, [...] Read more.
As automated equipment in PCB manufacturing becomes increasingly reliant on precision hot-air ovens, ensuring operational stability and reducing downtime have become critical challenges. Existing anomaly detection methods, such as Support Vector Machines (SVMs), Deep Neural Networks (DNNs), and Long Short-Term Memory (LSTM) Networks, struggle with high-dimensional dynamic data, leading to inefficiencies and overfitting. To address these issues, this study proposes an innovative anomaly detection system specifically designed for fault diagnosis in PCB hot-air ovens. The motivation is to improve accuracy and efficiency while adapting to dynamic changes in the manufacturing environment. The core innovation lies in the introduction of the Adaptive Temporal Feature Map (ATFM), which dynamically extracts and adjusts key temporal features in real time. By combining ATFM with Bi-Directional Dimensionality Reduction (BDDR) and eXtreme Gradient Boosting (XGBoost), the system effectively handles high-dimensional data and adapts its parameters based on evolving data patterns, significantly enhancing fault detection accuracy and efficiency. The experimental results show a fault prediction accuracy of 99.33%, greatly reducing machine downtime and product defects compared to traditional methods. Full article
Show Figures

Figure 1

27 pages, 1513 KB  
Article
Accurate Fault Classification in Wind Turbines Based on Reduced Feature Learning and RVFLN
by Mehmet Yıldırım and Bilal Gümüş
Electronics 2025, 14(19), 3948; https://doi.org/10.3390/electronics14193948 - 7 Oct 2025
Viewed by 58
Abstract
This paper presents a robust and computationally efficient fault classification framework for wind energy conversion systems (WECS), built upon a Robust Random Vector Functional Link Network (Robust-RVFLN) and validated through real-time simulations on a Real-Time Digital Simulator (RTDS). Unlike existing studies that depend [...] Read more.
This paper presents a robust and computationally efficient fault classification framework for wind energy conversion systems (WECS), built upon a Robust Random Vector Functional Link Network (Robust-RVFLN) and validated through real-time simulations on a Real-Time Digital Simulator (RTDS). Unlike existing studies that depend on high-dimensional feature extraction or purely data-driven deep learning models, our approach leverages a compact set of five statistically significant and physically interpretable features derived from rotor torque, phase current, DC-link voltage, and dq-axis current components. This reduced feature set ensures both high discriminative power and low computational overhead, enabling effective deployment in resource-constrained edge devices and large-scale wind farms. A synthesized dataset representing seven representative fault scenarios—including converter, generator, gearbox, and grid faults—was employed to evaluate the model. Comparative analysis shows that the Robust-RVFLN consistently outperforms conventional classifiers (SVM, ELM) and deep models (CNN, LSTM), delivering accuracy rates of up to 99.85% for grid-side line-to-ground faults and 99.81% for generator faults. Beyond accuracy, evaluation metrics such as precision, recall, and F1-score further validate its robustness under transient operating conditions. By uniting interpretability, scalability, and real-time performance, the proposed framework addresses critical challenges in condition monitoring and predictive maintenance, offering a practical and transferable solution for next-generation renewable energy infrastructures. Full article
Show Figures

Figure 1

21 pages, 1094 KB  
Article
Dynamic Equivalence of Active Distribution Network: Multiscale and Multimodal Fusion Deep Learning Method with Automatic Parameter Tuning
by Wenhao Wang, Zhaoxi Liu, Fengzhe Dai and Huan Quan
Mathematics 2025, 13(19), 3213; https://doi.org/10.3390/math13193213 - 7 Oct 2025
Viewed by 71
Abstract
Dynamic equivalence of active distribution networks (ADNs) is emerging as one of the most important issues for the backbone network security analysis due to high penetration of distributed generations (DGs) and electricity vehicles (EVs). The multiscale and multimodal fusion deep learning (MMFDL) method [...] Read more.
Dynamic equivalence of active distribution networks (ADNs) is emerging as one of the most important issues for the backbone network security analysis due to high penetration of distributed generations (DGs) and electricity vehicles (EVs). The multiscale and multimodal fusion deep learning (MMFDL) method proposed in this paper contains two modalities, one of which is a CNN + attention module to simulate Newton Raphson power flow calculation (NRPFC) for the important feature extraction of a power system caused by disturbance, which is motivated by the similarities between NRPFC and convolution network computation. The other is a long short-term memory (LSTM) + fully connected (FC) module for load modeling based on the fact that LSTM + FC can represent a load′s differential algebraic equations (DAEs). Moreover, to better capture the relationship between voltage and power, the multiscale fusion method is used to aggregate load modeling models with different voltage input sizes and combined with CNN + attention, merging as MMFDL to represent the dynamic behaviors of ADNs. Then, the Kepler optimization algorithm (KOA) is applied to automatically tune the adjustable parameters of MMFLD (called KOA-MMFDL), especially the LSTM and FC hidden layer number, as they are important for load modeling and there is no human knowledge to set these parameters. The performance of the proposed method was evaluated by employing different electric power systems and various disturbance scenarios. The error analysis shows that the proposed method can accurately represent the dynamic response of ADNs. In addition, comparative experiments verified that the proposed method is more robust and generalizable than other advanced non-mechanism methods. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

0 pages, 7188 KB  
Article
Performance Study and Implementation of Accurate Solar PV Power Prediction Methods for the Nagréongo Power Plant in Burkina Faso
by Sami Florent Palm, Aboubakar Gomna, Sani Moussa Kadri, Dominique Bonkoungou, Adélaïde Lareba Ouedraogo, Yrébégnan Moussa Soro and Marie Sawadogo
Energies 2025, 18(19), 5285; https://doi.org/10.3390/en18195285 - 6 Oct 2025
Viewed by 178
Abstract
This study aimed to implement an effective power prediction method to support the optimal management of the 30 MW Nagréongo solar photovoltaic (PV) plant in Burkina Faso. Initially, the performance of the PV plant was assessed by an external consultant based on data [...] Read more.
This study aimed to implement an effective power prediction method to support the optimal management of the 30 MW Nagréongo solar photovoltaic (PV) plant in Burkina Faso. Initially, the performance of the PV plant was assessed by an external consultant based on data recorded in 2023 and 2024, revealing efficiency with a performance ratio (PR) of 73.73% in 2023, which improved to 77.43% in 2024. To forecast the plant’s power output, several deep learning models—namely LSTM, a GRU, LSTM-GRU, and an RNN—were applied using historical power data recorded at five-minute intervals during the 2024 periods of January–February; March–April; and July–August. All the deep learning models achieved accurate short-term forecasting for the 30 MW Nagréongo PV plant, with the seasonal performance shaped by the Sahelian weather regimes. The GRU performed best during the dry season (nRMSE ≈ 4%) and LSTM excelled in the hot months (nRMSE ≈ 2%), while the hybrid LSTM-GRU model proved most robust under rainy-season variability. Overall, the forecasting errors remained within 2–5% of plant capacity, demonstrating the suitability of these architectures for grid integration and operational planning in Sahel PV systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop