Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,338)

Search Parameters:
Keywords = deformable body

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1528 KB  
Article
Fractional Modeling of Deep Coal Rock Creep Considering Strong Time-Dependent Behavior
by Shuai Yang, Wenhao Jia, Senlin Xie, Haochen Wang and Lu An
Mathematics 2025, 13(20), 3247; https://doi.org/10.3390/math13203247 - 10 Oct 2025
Abstract
Deep coal rocks exhibit strong time-dependent behavior, including significant plastic deformation and large tunnel displacements, which complicate tunnel support in deep underground engineering. A fractional creep model considering strong time-dependence was developed based on the classical Nishihara framework to capture this behavior. Additional [...] Read more.
Deep coal rocks exhibit strong time-dependent behavior, including significant plastic deformation and large tunnel displacements, which complicate tunnel support in deep underground engineering. A fractional creep model considering strong time-dependence was developed based on the classical Nishihara framework to capture this behavior. Additional time-dependent strains induced by stress-state variations were considered, with long-term rock strength adopted as the damage stress threshold. The stress difference between nominal and post-damage stress, σD(t), defined as the stress gradient, was applied to a viscoelastic–plastic body containing a fractional Abel dashpot, producing conventional creep strain and strong time-dependent strain. The model was extended from one-dimensional to three-dimensional under triaxial stress conditions. The validity of the model was verified using triaxial creep test data for argillaceous sandstone and coal in deep roadways, and the model parameters were determined. The results demonstrate that the model accurately reproduces the full creep process, particularly the nonlinear accelerated stage influenced by strong time-dependence. Through stress-gradient-induced variations in strong time-dependent strain, the proposed creep model elucidates the progression of deformation in the strong time-dependent stage, offering a theoretical framework for the quantitative assessment of deep rock’s strong time-dependence. Sensitivity analysis identified the stress level, fractional order, and strong time-dependence coefficient α as key factors affecting strong time-dependent creep behavior. These findings indicate that tunnel support structures in deep environments are prone to instability, underscoring the necessity of accounting for strong time-dependence to ensure long-term stability. Full article
18 pages, 4555 KB  
Article
Compressive Behavior of 316L Stainless Steel Lattice Structures for Additive Manufacturing: Experimental Characterization and Numerical Modeling
by Ignacio Ríos, Laurent Duchêne, Anne Marie Habraken, Angelo Oñate, Rodrigo Valle, Anne Mertens, César Garrido, Gonzalo Pincheira and Víctor Tuninetti
Biomimetics 2025, 10(10), 680; https://doi.org/10.3390/biomimetics10100680 - 10 Oct 2025
Abstract
Lattice structures produced by additive manufacturing are increasingly used in lightweight, load-bearing applications, yet their mechanical performance is strongly influenced by geometry, process parameters, and boundary conditions. This study investigates the compressive behavior of body-centered cubic (BCC) 316L stainless steel lattices fabricated by [...] Read more.
Lattice structures produced by additive manufacturing are increasingly used in lightweight, load-bearing applications, yet their mechanical performance is strongly influenced by geometry, process parameters, and boundary conditions. This study investigates the compressive behavior of body-centered cubic (BCC) 316L stainless steel lattices fabricated by laser powder bed fusion (LPBF). Four relative densities (20%, 40%, 60%, and 80%) were achieved by varying the strut diameter, and specimens were built in both vertical and horizontal orientations. Quasi-static compression tests characterized the elastic modulus, yield strength, energy absorption, and mean force, while finite element simulations reproduced the deformation and hardening behavior. The experimental results showed a direct correlation between density and mechanical properties, with vertically built specimens performing slightly better due to reduced processing defects. Simulations quantified the effect of strut–joint rounding and the need for multi-cell configurations to closely match the experimental curves. Regardless of the boundary conditions, for a density of 20%, simulating a single cell underestimated stiffness because of unconstrained strut buckling. For higher densities and thicker struts, this sensitivity to boundary conditions strongly decreased, indicating the possibility of using a single cell for shorter simulations—a point rarely discussed in the literature. Both experiments and simulations confirmed Gibson–Ashby scaling for elastic modulus and yield strength, while the tangent modulus was highly sensitive to boundary conditions. The combined experimental and numerical results provide a framework for the reliable modeling and design of metallic lattices for energy absorption, biomedical, and lightweight structural applications. Full article
Show Figures

Figure 1

26 pages, 1947 KB  
Article
Active Suspension Control for Improved Ride Comfort and Vehicle Performance Using HHO-Based Type-I and Type-II Fuzzy Logic
by Tayfun Abut, Enver Salkim and Harun Tugal
Biomimetics 2025, 10(10), 673; https://doi.org/10.3390/biomimetics10100673 - 7 Oct 2025
Viewed by 83
Abstract
This study focuses on improving the control system of vehicle suspension, which is critical for optimizing driving dynamics and enhancing passenger comfort. Traditional passive suspension systems are limited in their ability to effectively mitigate road-induced vibrations, often resulting in compromised ride quality and [...] Read more.
This study focuses on improving the control system of vehicle suspension, which is critical for optimizing driving dynamics and enhancing passenger comfort. Traditional passive suspension systems are limited in their ability to effectively mitigate road-induced vibrations, often resulting in compromised ride quality and vehicle handling. To overcome these limitations, this work explores the application of active suspension control strategies aimed at improving both comfort and performance. Type-I and Type-II Fuzzy Logic Control (FLC) methods were designed and implemented to enhance vehicle stability and ride quality. The Harris Hawks Optimization (HHO) algorithm was employed to optimize the membership function parameters of both fuzzy control types. The system was tested under two distinct road disturbance inputs to evaluate performance. The designed control methods were evaluated in simulations where results demonstrated that the proposed active control approaches significantly outperformed the passive suspension system in terms of vibration reduction. Specifically, the Type-II FLC achieved a 54.7% reduction in vehicle body displacement and a 76.8% reduction in acceleration for the first road input, while improvements of 75.2% and 72.8% were recorded, respectively, for the second input. Performance was assessed using percentage-based metrics and Root Mean Square Error (RMSE) criteria. Numerical and graphical analyses of suspension deflection and tire deformation further confirm that the proposed control strategies substantially enhance both ride comfort and vehicle handling. Full article
Show Figures

Figure 1

18 pages, 4365 KB  
Article
Thermo-Mechanical Coupled Characteristics for the Non-Axisymmetric Outer Ring of the High-Speed Rail Axle Box Bearing with Embedded Intelligent Sensor Slots
by Longkai Wang, Can Hu, Fengyuan Liu and Hongbin Tang
Symmetry 2025, 17(10), 1667; https://doi.org/10.3390/sym17101667 - 6 Oct 2025
Viewed by 192
Abstract
As high-speed railway systems continue to develop toward intelligent operation, axle box bearings integrated with sensors have become key components for real-time condition monitoring. However, introducing sensor-embedded slots disrupts the structural continuity and thermal conduction paths of traditional bearing rings. This results in [...] Read more.
As high-speed railway systems continue to develop toward intelligent operation, axle box bearings integrated with sensors have become key components for real-time condition monitoring. However, introducing sensor-embedded slots disrupts the structural continuity and thermal conduction paths of traditional bearing rings. This results in localized stress concentrations and thermal distortion, which compromise the bearing’s overall performance and service life. This study focuses on a double-row tapered roller bearing used in axle boxes and develops a multi-physics finite element model incorporating the effects of sensor-embedded grooves, based on Hertzian contact theory and the Palmgren frictional heat model. Both contact load verification and thermo-mechanical coupling analysis were performed to evaluate the influence of two key design parameters—groove depth and arc length—on equivalent stress, temperature distribution, and thermo-mechanical coupling deformation. The results show that the embedded slot structure significantly alters the local thermodynamic response. Especially when the slot depth reaches a certain value, both stress and deformation due to thermo-mechanical effects exhibit obvious nonlinear escalation. During the design process, the length and depth of the arc-shaped embedded slot, among other parameters, should be strictly controlled. The study of the stress and temperature characteristics under the thermos-mechanical coupling effect of the axle box bearing is of crucial importance for the design of the intelligent bearing body structure and safety assessment. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 7945 KB  
Article
Asphalt Binder Rheological Performance Properties Using Recycled Plastic Wastes and Commercial Polymers
by Hamad I. Al Abdul Wahhab, Waqas Rafiq, Mohammad Ahsan Habib, Ali Mohammed Babalghaith, Suleiman Abdulrahman and Shaban Shahzad
Constr. Mater. 2025, 5(4), 75; https://doi.org/10.3390/constrmater5040075 - 4 Oct 2025
Viewed by 214
Abstract
Polymer-based product usage in modern society is increasing day by day. Following usage, these inert products and hydrophobic materials contribute to environmental pollution, often accumulating as litter in ecosystems and contaminating water bodies. The rapid socio-economic development in the Kingdom of Saudi Arabia [...] Read more.
Polymer-based product usage in modern society is increasing day by day. Following usage, these inert products and hydrophobic materials contribute to environmental pollution, often accumulating as litter in ecosystems and contaminating water bodies. The rapid socio-economic development in the Kingdom of Saudi Arabia (KSA) has resulted in a significant increase in waste generation. This study was conducted on the utilization of recycled plastic waste (RPW) polymer along with commercial polymer (CP) for the modification of the local binder. The hot environmental conditions and increased traffic loading are the major reasons for the permanent deformation and thermal cracks on the pavements, which require improved and modified road performance materials. The Ministry of Transport and Logistical Support (MOTLS) in Saudi Arabia, along with other related agencies, spends a substantial amount of money each year on importing modifiers, including chemicals, hydrocarbons, and polymers, for modification purposes. This research was conducted to investigate and utilize available local recycled plastic materials. Comprehensive laboratory experiments were designed and carried out to enhance recycled plastic waste, including low-density polyethylene (rLDPE), high-density polyethylene (rHDPE), and polypropylene (rPP), combined with varying percentages of commercially available polymers such as Styrene-Butadiene-Styrene (SBS) and Polybilt (PB). The results indicated that incorporating recycled plastic waste expanded the binder’s susceptible temperature range from 64 °C to 70 °C, 76 °C, and 82 °C. The resistance to rutting was shown to have significantly improved by the dynamic shear rheometer (DSR) examination. Achieving the objectives of this research, combined with the intangible environmental benefits of utilizing plastic waste, provides a sustainable pavement development option that is also environmentally beneficial. Full article
Show Figures

Figure 1

17 pages, 5087 KB  
Article
Study on the Strength Characteristics of Ion-Adsorbed Rare Earth Ore Under Chemical Leaching and the Duncan–Chang Model Parameters
by Zhongqun Guo, Xiaoming Lin, Haoxuan Wang, Qiqi Liu and Jianqi Wu
Metals 2025, 15(10), 1104; https://doi.org/10.3390/met15101104 - 3 Oct 2025
Viewed by 207
Abstract
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO [...] Read more.
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO4)3 solutions of varying concentrations were used as leaching agents to investigate the evolution of shear strength, the characteristics of Duncan–Chang hyperbolic model parameters, and the changes in microstructural pore characteristics of rare earth samples under different leaching conditions. The results show that the stress–strain curves of all samples consistently exhibit strain-hardening behavior under all leaching conditions, and shear strength is jointly influenced by confining pressure and the chemical interaction between the leaching solution and the soil. The samples leached with MgSO4 exhibited higher shear strength than those treated with water. The samples leached with 3% and 6% Al2(SO4)3 showed increased strength, while 9% Al2(SO4)3 caused a slight decrease. With increasing leaching agent concentration, the cohesion of the samples significantly declined, whereas the internal friction angle remained relatively stable. The Duncan–Chang model accurately described the nonlinear deformation behavior of the rare earth samples, with the model parameter b markedly decreasing as confining pressure increased, indicating that confining stress plays a dominant role in governing the nonlinear response. Under the coupled effects of chemical leaching and mechanical stress, the number and size distribution of pores of the rare earth samples underwent a complex multiscale co-evolution. These results provide theoretical support for the green, efficient, and safe exploitation of ionic rare earth ores. Full article
(This article belongs to the Special Issue Metal Leaching and Recovery)
Show Figures

Figure 1

25 pages, 4111 KB  
Article
Influence of the Pattern of Coupling of Elements and Antifriction Interlayer Thickness of a Spherical Bearing on Structural Behavior
by Anna A. Kamenskikh, Anastasia P. Bogdanova, Yuriy O. Nosov and Yulia S. Kuznetsova
Designs 2025, 9(5), 117; https://doi.org/10.3390/designs9050117 - 2 Oct 2025
Viewed by 213
Abstract
In this study, the behavior of the spherical bearing component of the L-100 bridge part (AlfaTech LLC, Perm, Russia) is considered within the framework of a finite element model. The influence of the pattern of the coupling of the antifriction interlayer with the [...] Read more.
In this study, the behavior of the spherical bearing component of the L-100 bridge part (AlfaTech LLC, Perm, Russia) is considered within the framework of a finite element model. The influence of the pattern of the coupling of the antifriction interlayer with the lower steel plate on the operation of the part is examined in terms of ideal contact, full adhesion, and frictional contact. The thickness of the antifriction interlayer varied from 4 to 12 mm. The dependencies of the contact parameters and the stress–strain state on the thickness were determined. Structurally modified polytetrafluoroethylene (PTFE) without AR-200 fillers was considered the material of the antifriction interlayer. The gradual refinement of the behavioral model of the antifriction material to account for structural and relaxation transitions was carried based on a wide range of experimental studies. The elastic–plastic and primary viscoelastic models of material behavior were constructed based on a series of homogeneous deformed-state experiments. The viscoelastic model of material behavior was refined using data from dynamic mechanical analysis over a wide temperature range [−40; +80] °C. In the first approximation, a model of the deformation theory of plasticity with linear elastic volumetric compressibility was identified. As a second approximation, a viscoelasticity model for the Maxwell body was constructed using Prony series. It was established that the viscoelastic model of the material allows for obtaining data on the behavior of the part with an error of no more than 15%. The numerical analog of the construction in an axisymmetric formulation can be used for the predictive analysis of the behavior of the bearing, including when changing the geometric configuration. Recommendations for the numerical modeling of the behavior of antifriction layer materials and the coupling pattern of the bearing elements are given in this work. A spherical bearing with an antifriction interlayer made of Arflon series material is considered for the first time. Full article
Show Figures

Figure 1

18 pages, 2019 KB  
Article
Low-Velocity Impact Behavior of PLA BCC Lattice Structures: Experimental and Numerical Investigation with a Novel Dimensionless Index
by Giuseppe Iacolino, Giuseppe Mantegna, Emilio V. González, Giuseppe Catalanotti, Calogero Orlando, Davide Tumino and Andrea Alaimo
Materials 2025, 18(19), 4574; https://doi.org/10.3390/ma18194574 - 1 Oct 2025
Viewed by 318
Abstract
Lattice structures are lightweight architected materials particularly suitable for aerospace and automotive applications due to their ability to combine mechanical strength with reduced mass. Among various topologies, Body-Centered Cubic (BCC) lattices are widely employed for their geometric regularity and favorable strength-to-weight ratio. Advances [...] Read more.
Lattice structures are lightweight architected materials particularly suitable for aerospace and automotive applications due to their ability to combine mechanical strength with reduced mass. Among various topologies, Body-Centered Cubic (BCC) lattices are widely employed for their geometric regularity and favorable strength-to-weight ratio. Advances in Additive Manufacturing (AM) have enabled the precise and customizable fabrication of such complex architectures, reducing material waste and increasing design flexibility. This study investigates the low-velocity impact behavior of two polylactic acid (PLA)-based BCC lattice panels differing in strut diameter: BCC1.5 (1.5 mm) and BCC2 (2 mm). Experimental impact tests and finite element simulations were performed to evaluate their energy absorption (EA) capabilities. In addition to conventional global performance indices, a dimensionless parameter, D, is introduced to quantify the ratio between local plastic indentation and global displacement, allowing for a refined characterization of deformation modes and structural efficiency. Results show that BCC1.5 absorbs more energy than BCC2, despite the latter’s higher stiffness. This suggests that thinner struts enhance energy dissipation under dynamic loading. Despite minor discrepancies, numerical simulations provide accurate estimations of EA and support the robustness of the D index within the examined configuration, highlighting its potential to deformation heterogeneity. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 1766 KB  
Article
Aerodynamic Lift Modeling and Analysis of a Bat-like Flexible Flapping-Wing Robot
by Bosong Duan, Zhaoyang Chen, Shuai Wang, Junlei Liu, Bingfeng Ju and Anyu Sun
Modelling 2025, 6(4), 117; https://doi.org/10.3390/modelling6040117 - 1 Oct 2025
Viewed by 167
Abstract
In the research and development system of bat-like flapping-wing flying robots, lift modeling and numerical analysis are the key theoretical basis, which will directly affect the construction of the body structure and flight control system. However, due to the complex three-dimensional flapping motion [...] Read more.
In the research and development system of bat-like flapping-wing flying robots, lift modeling and numerical analysis are the key theoretical basis, which will directly affect the construction of the body structure and flight control system. However, due to the complex three-dimensional flapping motion mechanism of bats and the flexible deformation characteristics of their wing membranes, the existing lift theory lacks a mature calculation method suitable for bionic flapping-wing flying robots. In this paper, the wing membrane deformation mechanism of a bat-like flapping-wing flying robot is studied, and the coupling effect of wing membrane motion and deformation on flight parameters is analyzed. A set of calculation methods for flexible morphing wing membrane lift is improved by using a quasi-steady model and the blade element method. By comparing and analyzing the theoretical calculation and experimental results under various working conditions, the error is less than 4%, which proves the effectiveness of this method. Full article
Show Figures

Figure 1

30 pages, 8211 KB  
Article
Adverse Effect of Sugarcane Extract Powder (SEP) in Hyper-Lipidemic Zebrafish During a 14-Week Diet: A Comparative Analysis of Biochemical and Toxicological Efficacy Between Four SEPs and Genuine Policosanol (Raydel®)
by Kyung-Hyun Cho, Ashutosh Bahuguna, Sang Hyuk Lee, Ji-Eun Kim, Yunki Lee, Cheolmin Jeon, Seung Hee Baek and Krismala Djayanti
Int. J. Mol. Sci. 2025, 26(19), 9524; https://doi.org/10.3390/ijms26199524 - 29 Sep 2025
Viewed by 387
Abstract
Sugarcane wax-derived policosanol (POL) is well recognized for its multifaceted biological activities, particularly in dyslipidemia management, whereas sugar cane extract powder (SEP), prepared from whole sugar juice blended with supplementary components, has not been thoroughly investigated for its biological activities and potential toxicities. [...] Read more.
Sugarcane wax-derived policosanol (POL) is well recognized for its multifaceted biological activities, particularly in dyslipidemia management, whereas sugar cane extract powder (SEP), prepared from whole sugar juice blended with supplementary components, has not been thoroughly investigated for its biological activities and potential toxicities. Herein, the comparative dietary effect of four distinct SEPs (SEP-1 to SEP-4) and Cuban sugarcane wax extracted POL were examined to prevent the pathological events in high-cholesterol diet (HCD)-induced hyperlipidemic zebrafish. Among the SEPs, a 14-week intake of SEP-2 emerged with the least zebrafish survival probability (0.75, log-rank: χ2 = 14.1, p = 0.015), while the POL supplemented group showed the utmost survival probability. A significant change in body weight and morphometric parameters was observed in the SEP-2 supplemented group compared to the HCD group, while non-significant changes had appeared in POL, SEP-1, SEP-3, and SEP-4 supplemented groups. The HCD elevated total cholesterol (TC) and triglyceride (TG) levels were significantly minimized by the supplementation of POL, SEP-1, and SEP-2. However, an augmented HDL-C level was only noticed in POL-supplemented zebrafish. Likewise, only the POL-supplemented group showed a reduction in blood glucose, malondialdehyde (MDA), AST, and ALT levels, and an elevation in sulfhydryl content, paraoxonase (PON), and ferric ion reduction (FRA) activity. Also, plasma from the POL-supplemented group showed the highest antioxidant activity and protected zebrafish embryos from carboxymethyllysine (CML)-induced toxicity and developmental deformities. POL effectively mitigated HCD-triggered hepatic neutrophil infiltration, steatosis, and the production of interleukin (IL)-6 and inhibited cellular senescence in the kidney and minimized the ROS generation and apoptosis in the brain. Additionally, POL substantially elevated spermatozoa count in the testis and safeguarded ovaries from HCD-generated ROS and senescence. The SEP products (SEP-1, SEP-3, and SEP-4) showed almost non-significant protective effect; however, SEP-2 exhibited an additive effect on the adversity posed by HCD in various organs and biochemical parameters. The multivariate examination, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), demonstrates the positive impact of POL on the HCD-induced pathological events in zebrafish, which are notably diverse, with the effect mediated by SEPs. The comparative study concludes that POL has a functional superiority over SEPs in mitigating adverse events in hyperlipidemic zebrafish. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

24 pages, 52572 KB  
Article
Investigation of Bored Piles Under Deep and Extensive Plinth Foundations: Method of Prospecting and Mapping with Pulse Georadar
by Donato D’Antonio
Remote Sens. 2025, 17(18), 3228; https://doi.org/10.3390/rs17183228 - 18 Sep 2025
Viewed by 357
Abstract
Ground-penetrating radar surveys on structures have a wide range of applications, and they are very useful in solving engineering problems: from detecting reinforcement, studying concrete characteristics, unfilled joints, analyzing brick elements, detecting water content in building bodies, and evaluating structural deformation. They generally [...] Read more.
Ground-penetrating radar surveys on structures have a wide range of applications, and they are very useful in solving engineering problems: from detecting reinforcement, studying concrete characteristics, unfilled joints, analyzing brick elements, detecting water content in building bodies, and evaluating structural deformation. They generally pursued small investigation areas with measurements made in direct contact with target structures and for small depths. Detecting deep piles presents specific challenges, and surveys conducted from the ground level may be unsuccessful. To reach great depths, medium-low frequencies must be used, but this choice results in lower resolution. Furthermore, the pile signals may be masked when they are located beneath massive reinforced foundations, which act as an electromagnetic shield. Finally, GPR equipment looks for differences in the dielectric of the material, and the signals recorded by the GPR will be very weak when the differences in the physical properties of the investigated media are modest. From these weak signals, it is difficult to identify information on the differences in the subsurface media. In this paper, we are illustrating an exploration on plinth foundations, supported by drilled piles, submerged in soil, extensive, deep and uninformed. Pulse GPR prospecting was performed in common-offset and single-fold, bistatic configuration, exploiting the exposed faces of an excavation around the foundation. In addition, three velocity tests were conducted, including two in common mid-point and one in zero-offset transillumination, in order to explore the range of variation in relative dielectric permittivity in the investigated media. Thanks to the innovative survey on the excavation faces, it is possible to perform profiles perpendicular to the strike direction of the interface. The electromagnetic backscattering analysis approach allowed us to extract the weighted average frequency attribute section. In it, anomalies emerge in the presence of drilled piles with four piles with an estimated diameter of 80 cm. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Graphical abstract

21 pages, 5918 KB  
Review
Innovations in Orthotic Devices: Additive Manufacturing, Auxetic Materials and Smart Sensors for Enhanced Rehabilitation
by Riccardo Carlo Moroni and Katarzyna Majewska
Appl. Sci. 2025, 15(18), 10167; https://doi.org/10.3390/app151810167 - 18 Sep 2025
Viewed by 760
Abstract
Orthoses are external devices designed to provide structural and functional support for disorders affecting the musculoskeletal or nervous systems. While these devices have a long history, recent technological advancements offer significant opportunities to enhance their therapeutic performance. This review examines three key innovations [...] Read more.
Orthoses are external devices designed to provide structural and functional support for disorders affecting the musculoskeletal or nervous systems. While these devices have a long history, recent technological advancements offer significant opportunities to enhance their therapeutic performance. This review examines three key innovations shaping the future of orthotic devices: additive manufacturing, auxetic metamaterials, and smart sensors. Additive manufacturing (AM), commonly known as 3D printing, is gaining prominence for its ability to create patient-specific solutions, improve design flexibility, and reduce production time. Despite these advantages, traditional fabrication methods remain dominant due to cost and regulatory challenges. Auxetic metamaterials, characterized by a negative Poisson’s ratio, allow an orthosis to dynamically conform to the patient’s anatomy and movements while maintaining stability and comfort. Thanks to synclastic deformation, auxetic structures reduce the formation of wrinkles during motion, improving body fit, and potentially enhancing comfort as well as adherence to orthosis usage recommendations. However, their integration into orthoses is still in the early stages, requiring further research and clinical validation. Finally, smart sensors have been extensively studied for the real-time monitoring of joint movement and rehabilitation progress, enabling personalized therapy and improved clinical outcomes. In conclusion, these emerging technologies—additive manufacturing, auxetic metamaterials, and smart sensors—hold great promise for next-generation orthotic devices, but widespread adoption will depend on addressing technical, economic, and practical limitations. Full article
(This article belongs to the Special Issue Recent Progress and Challenges of Digital Health and Bioengineering)
Show Figures

Figure 1

18 pages, 3306 KB  
Article
Towards a New Plastination Technique for Moisture Management of Western Red Cedar Without Loss of Strength and with Enhanced Stability
by Olivia H. Margoto, Madisyn M. Szypula, Grant R. Bogyo, Victor Yang and Abbas S. Milani
Materials 2025, 18(18), 4353; https://doi.org/10.3390/ma18184353 - 17 Sep 2025
Viewed by 414
Abstract
Amidst environmental concerns regarding the use of petroleum-based materials, wood and wood-based products are among the key players in the pursuit of green construction practices. However, environmental degradation of these materials remains a concern during structural design, particularly for outdoor applications. Borrowed from [...] Read more.
Amidst environmental concerns regarding the use of petroleum-based materials, wood and wood-based products are among the key players in the pursuit of green construction practices. However, environmental degradation of these materials remains a concern during structural design, particularly for outdoor applications. Borrowed from anatomy to preserve human body parts, this study applies and assesses a technique called ‘plastination’ as a new means for moisture management of Western Red Cedar (WRC). Specifically, the proposed technique includes acetone dehydration of WRC, followed by SS-151 silicone vacuum-assisted impregnation and silicone curing. To evaluate the method’s effectiveness, Micro X-ray Computed Tomography (μCT), Fourier Transform Infrared (FTIR) Spectroscopy, Thermogravimetric Analysis (TGA), and static water contact angle measurements were employed. Tensile testing was also performed to quantify the treatment’s effect on WRC’s mechanical properties under moisture conditioning. μCT confirmed an impregnation depth of 21.5%, while FTIR and TGA results showed reduced moisture retention (3.6 wt%) in plastinated WRC due to the absence of hydroxyl groups. Mechanical testing revealed enhanced deformability in treated samples without compromising tensile strength. Upon moisture conditioning, plastinated WRC retained its tensile properties and showed 59% lower moisture absorption and 15% lower weight as compared to conditioned virgin samples. Full article
Show Figures

Graphical abstract

17 pages, 8378 KB  
Article
Integrated Optomechanical Analysis of the Impact of an Ø 800 mm Primary Mirror on the Imaging Quality of an Optical System
by Ruijing Liu, Yi Zhang, Yu Liu and Qingya Li
Sensors 2025, 25(18), 5759; https://doi.org/10.3390/s25185759 - 16 Sep 2025
Viewed by 418
Abstract
With the rapid advancements that are occurring in space technology, there is an increasing demand for improvements in the image quality of high-resolution space optical telescopes. The optical performance of the primary mirror plays a crucial role in determining the overall image quality [...] Read more.
With the rapid advancements that are occurring in space technology, there is an increasing demand for improvements in the image quality of high-resolution space optical telescopes. The optical performance of the primary mirror plays a crucial role in determining the overall image quality of these optical systems. In this study, we analyze the rigid-body displacement and mirror deformation of an optical mirror in terms of the entire satellite hierarchy, utilizing integrated optomechanical analysis methods to assess the modulation transfer function (MTF) of the optical system. Additionally, we simulate MTF degradation under gravitational effects. Further, we conduct an experimental optical detection test on the main mirror assembly to validate our simulation analysis. This study provides valuable insights into structuring whole-satellite layouts and designing mirror support structures. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 1621 KB  
Article
Extended Tibial Tuberosity Osteotomy: A Practical Tool for Implant Removal in Difficult Knee Revision Arthroplasties in Patients with Hemophilia
by Dimitrios Kalatzis, Georgios Zoumpoulis, Konstantinos Zygogiannis, Konstantinos Kaoullas, Ioannis Fotoniatas, Anna Kouramba and Georgios Thivaios
Medicina 2025, 61(9), 1670; https://doi.org/10.3390/medicina61091670 - 15 Sep 2025
Viewed by 357
Abstract
Background and Objectives: Hemophilic arthropathy, the end result of recurrent hemarthroses in patients with hemophilia, often necessitates total knee arthroplasty (TKA) using constrained implants to address severe deformities and joint destruction. Revision TKA is often required due to aseptic loosening, implant malposition, [...] Read more.
Background and Objectives: Hemophilic arthropathy, the end result of recurrent hemarthroses in patients with hemophilia, often necessitates total knee arthroplasty (TKA) using constrained implants to address severe deformities and joint destruction. Revision TKA is often required due to aseptic loosening, implant malposition, infection, or periprosthetic fractures. The extended tibial tuberosity osteotomy (ETTO) has emerged as a critical technique for the safe removal of well-fixed tibial stems in such complex cases, demonstrating high union rates and minimal complications. The aim of this study is to evaluate the safety, effectiveness, and clinical outcomes of the ETTO technique during complex revision TKA in patients with hemophilia. Materials and Methods: A retrospective analysis was conducted on seven male hemophilic patients who underwent revision TKA with ETTO between 2015 and 2023. The procedure involved the creation of an extended proximal tibial bone flap, laterally retracted to facilitate tibial stem exposure and removal. Postoperative outcomes included radiological confirmation of osteotomy union, assessment of complications, and evaluation of functional outcomes, including range of motion and extensor mechanism integrity. Results: Osteotomy union was achieved in all patients (mean age 57.5 ± 1.50 years and mean body mass index 26.07 ± 0.67 kg/m2) within four months, confirmed by radiographic evidence of bridging callus. No significant complications, such as nonunion, fragment displacement, or symptomatic hardware, were observed. There was one patient who experienced delayed wound healing, managed successfully with surgical debridement. Postoperative mean knee flexion was 92°, with no extensor lag reported. ETTO enabled safe tibial stem removal and successful revision arthroplasties in all cases. Conclusions: ETTO is a technically demanding but indispensable approach for addressing the challenges of revision TKA in patients with hemophilia. It allows for secure tibial stem removal while maintaining excellent union outcomes and a low rate of complications. Due to its complexity, ETTO should be performed by experienced surgeons in specialized centers. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Graphical abstract

Back to TopTop