Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,140)

Search Parameters:
Keywords = dependence on the elemental composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7086 KB  
Article
Formation and Study of Bismuth Sulphide Thin Films on Textiles of Different Compositions
by Veja Sruogaite and Valentina Krylova
Appl. Sci. 2025, 15(18), 9904; https://doi.org/10.3390/app15189904 - 10 Sep 2025
Abstract
The study aimed to form thin Bi2S3 films simultaneously on various textile materials using the environmentally friendly, low-cost successive ionic layer adsorption and reaction (SILAR) method at ambient temperature, and to evaluate the influence of the textile’s composition on the [...] Read more.
The study aimed to form thin Bi2S3 films simultaneously on various textile materials using the environmentally friendly, low-cost successive ionic layer adsorption and reaction (SILAR) method at ambient temperature, and to evaluate the influence of the textile’s composition on the resulting composites’ surface phase composition, morphology, and optical properties. The deposited films were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and ultraviolet–visible (UV-Vis) diffuse reflectance spectroscopy. This paper discusses how the structure and composition of the textiles affect the phase and elemental composition, crystallinity, morphology and optical properties of the formed films. The properties of the films are then compared. Depending on the textiles used, the formed films can be amorphous or polycrystalline, and can be rich in sulphur or near stoichiometric. Accordingly, the normalised atomic percentages of Bi in the films range from 3.62% to 33.87%, and those of S range from 96.38% to 66.13%. The optical energy gap value of the composites also varies depending on the textile substrate, ranging from Eg = 1.58 eV to Eg = 1.8 eV. These properties directly impact the films’ applications. We have obtained a rather low value of the optical energy gap in a simpler way. Full article
(This article belongs to the Special Issue Interdisciplinary Approaches and Applications of Optics & Photonics)
Show Figures

Figure 1

14 pages, 3149 KB  
Article
Effects of Surface Morphology on Mesoporous Silicon-Modified Nanofiltration Membranes for High Rejection Performances
by Ying Ding, Aifang Ding, Yuqing Liu and Dong Liu
Membranes 2025, 15(9), 274; https://doi.org/10.3390/membranes15090274 - 10 Sep 2025
Abstract
A novel approach was developed in this work in which composite nanofiltration (NF) membranes were directly and efficiently fabricated with control of the membrane pore structure and surface morphology. The fabrication of mesoporous silicon-modified polysulfone blend membranes is achieved via a phase inversion [...] Read more.
A novel approach was developed in this work in which composite nanofiltration (NF) membranes were directly and efficiently fabricated with control of the membrane pore structure and surface morphology. The fabrication of mesoporous silicon-modified polysulfone blend membranes is achieved via a phase inversion method. The structural morphology, surface functional group analysis, elemental analysis, hydrophilicity, chargeability, and nitrogen pollutant (ammonia nitrogen, nitrate nitrogen, total nitrogen) rejection properties of the modified membranes were found to be dependent on the amount of mesoporous silicon incorporated. The combination of the mesoporous silicon framework layer can not only effectively improve the surface structure of the modified membrane with a narrow pore size distribution but also increase the rejection of nitrogen pollutants compared with pure NF membranes. The mesoporous material interlayer can absorb and store the aqueous amino solution to facilitate the subsequent interfacial polymerization as well as induce changes in the pore radius and surface structure. Compared with pure NF composite membranes, the modified blend membranes exhibit increased water permeation flux as high as 29.09 L m−2 h−1 at 0.2 MPa. The results show that the optimum doping amount of mesoporous silicon is in the range of 0.5–1.0%. Characterization studies demonstrated that the addition of mesoporous silicon leads to a decreased membrane pore size. Then the retention of nitrogen pollutants was enhanced because of a combination of hydrophilicity enhancement from the carboxylic and hydroxyl functional groups present in their surfaces leading to electrostatic repulsion between functional groups present in the membranes and the nitrogen pollutant molecules. Full article
Show Figures

Figure 1

21 pages, 5363 KB  
Article
Organic Fertilizers Promote Accumulation of Mineral Nutrients in Citrus Leaves by Affecting Soil Biochemical Properties and Bacteria
by Lei Yang, Min Wang, Jianjun Yu, Shuang Li and Lin Hong
Plants 2025, 14(18), 2826; https://doi.org/10.3390/plants14182826 - 10 Sep 2025
Abstract
This study aimed to investigate the influence of different organic fertilizers and their concentrations on the growth of ‘Orah’ (Citrus reticulata Blanco) seedlings, as well as on the mineral nutrient contents, chemical and biological properties, and microbial community of the [...] Read more.
This study aimed to investigate the influence of different organic fertilizers and their concentrations on the growth of ‘Orah’ (Citrus reticulata Blanco) seedlings, as well as on the mineral nutrient contents, chemical and biological properties, and microbial community of the soil. Five types of organic fertilizers and three concentrations were studied. The seedling growth indexes, leaf mineral elements, soil mineral elements, soil enzyme activity, and soil microorganisms were measured. The results showed that organic fertilization significantly increased the contents of eight mineral elements in leaves, depending on the types and concentrations used. Specifically, rapeseed cake fertilizer was found to significantly increase the content of iron (Fe), manganese (Mn), and zinc (Zn) in the leaves. Furthermore, compared with applying only chemical fertilizers or no fertilizers at all, the application of organic fertilizer significantly increased the content of soil organic matter (SOM) and several mineral elements in the soil. The bacterial species composition of soil treated with common organic fertilizer and bio-organic fertilizer, and sheep manure were similar; however, the bacterial composition was significantly different in the soil which been treated with rapeseed cake compared to these other three fertilizers. Additionally, PICRUSt function predicting indicates that the core microbial community in the rapeseed cake group could promote synthesis and the transport of sugar, iron and other substances. Organic fertilizer can change soil chemical and biological properties by affecting the core microbial community structure, and further promote accumulation of mineral elements in the leaves of citrus seedlings. Full article
Show Figures

Figure 1

17 pages, 6176 KB  
Article
Research on the Configuration and Composition Characteristics of Courtyards in Japanese Independent Residential Works: A Case Study of Projects from 2015 to 2024
by Yanchen Sun, Anzhuo Wang, Keke Zheng and Luyang Li
Buildings 2025, 15(18), 3253; https://doi.org/10.3390/buildings15183253 - 9 Sep 2025
Abstract
Residential courtyards serve as critical mediators between architecture and nature in contemporary high-density urban environments. However, extant scholarship predominantly examines isolated courtyard typologies, lacking comprehensive systemic analysis, while contemporary designs frequently suffer from functional diminishment. This study investigates 72 representative Japanese detached residential [...] Read more.
Residential courtyards serve as critical mediators between architecture and nature in contemporary high-density urban environments. However, extant scholarship predominantly examines isolated courtyard typologies, lacking comprehensive systemic analysis, while contemporary designs frequently suffer from functional diminishment. This study investigates 72 representative Japanese detached residential projects (2015–2024) to systematically analyze spatial configurations, compositional characteristics, and functional interrelationships between courtyards and interior spaces. The methodological framework incorporates typological classification based on spatial positioning and constituent elements, coupled with analytical examination of aperture connections, interpreted through the lens of pattern language theory. Findings reveal a distinct hierarchical organization and a set of recurrent design patterns: front courtyards predominantly employ “partially walkable” surfaces with symbol trees to reconcile circulatory and esthetic functions, establishing a transitional sequence; central courtyards achieve daylight optimization and spatial extension through compact dimensions and non-paved surfaces, creating intimate outdoor rooms; side courtyards demonstrate scale-dependent adaptive strategies for privacy and microclimate regulation. The predominant living room-courtyard interface configuration features “group-planted trees with large openings,” creating vertically stratified visual experiences. This tripartite system translates traditional nature concepts into evidence-based spatial patterns, providing a transferable design matrix and pattern language for human-centered courtyard design in high-density contexts. Full article
Show Figures

Figure 1

19 pages, 3474 KB  
Article
Shear Band Formation in Thin-Film Multilayer Columns Under Compressive Loading: A Mechanistic Study
by Yu-Lin Shen and Kasandra Escarcega Herrera
Materials 2025, 18(17), 4215; https://doi.org/10.3390/ma18174215 - 8 Sep 2025
Abstract
Micro-pillar compression is a popular experimental technique used for characterizing the mechanical behavior of nano- and micro-laminates. The compressive stress–strain response of the column-shaped thin-film composite can be measured, and the deformation and damage features can be revealed by post-test cross-section microscopy. The [...] Read more.
Micro-pillar compression is a popular experimental technique used for characterizing the mechanical behavior of nano- and micro-laminates. The compressive stress–strain response of the column-shaped thin-film composite can be measured, and the deformation and damage features can be revealed by post-test cross-section microscopy. The development of plastic instability in the form of localized strain concentration (shear bands), leading to eventual failure, is frequently observed. In the present study, a computational approach is used to illustrate the commonality of shear band formation from a continuum standpoint. Systematic finite element analyses are conducted, showing that the strain field tends to become localized once plastic yielding commences. Distinct shear offsets of the layered structure can be revealed from the numerical model, which is similar to those observed in experiments. The actual appearance of shear bands depends on the materials’ constitutive behavior and precise geometries. Post-yield strain hardening reduces the propensity of shear band formation, while strain softening enhances it. Imperfections such as the undulated layer geometry, as well as the frictional characteristics between the specimen and test apparatus, can also influence the shear band morphology and overall stress–strain response. Full article
(This article belongs to the Special Issue Computational Tools for Predicting Mechanical Properties of Materials)
Show Figures

Graphical abstract

13 pages, 4881 KB  
Article
Optimisation of Fibre-Reinforced Hybrid Composites Under Combined Loading
by Chensong Dong and Joseph Abel Philip Vaidyan
J. Compos. Sci. 2025, 9(9), 486; https://doi.org/10.3390/jcs9090486 - 8 Sep 2025
Abstract
Fibre-reinforced hybrid composites offer an effective balance between strength, weight, and cost by combining multiple fibre types within a single matrix. This study focuses on optimising the design of carbon/glass fibre-reinforced hybrid composites under combined bending and torsional loading using finite element analysis [...] Read more.
Fibre-reinforced hybrid composites offer an effective balance between strength, weight, and cost by combining multiple fibre types within a single matrix. This study focuses on optimising the design of carbon/glass fibre-reinforced hybrid composites under combined bending and torsional loading using finite element analysis (FEA) and response surface methodology. Twelve different layup configurations, including sandwich and non-sandwich hybrid designs, were analysed to identify the optimal ply angles and fibre volume fractions that maximise failure load while minimising material cost and density. The results reveal that sandwich-type layups, such as [C3G]S, [C2G2]S, and [CG3]S, demonstrate superior strength-to-weight performance, achieving failure loads exceeding 300 N. The study also confirms that optimal ply angles range from 12° to 30°, depending on the layup configuration, and that increasing the carbon fibre volume fraction generally enhances failure load, though an optimal balance with glass fibres must be maintained. The findings provide valuable design guidelines for engineers seeking to tailor hybrid composites for aerospace, automotive, and structural applications. Future work should focus on experimental validation and extending the analysis to additional loading conditions, such as impact and fatigue, to further improve the robustness of hybrid composite structures. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

13 pages, 2422 KB  
Article
Luminescence of (YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce Radiation-Synthesized Ceramics
by Aida Tulegenova, Victor Lisitsyn, Gulnur Nogaibekova, Renata Nemkayeva and Aiymkul Markhabayeva
Ceramics 2025, 8(3), 112; https://doi.org/10.3390/ceramics8030112 - 5 Sep 2025
Viewed by 124
Abstract
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the [...] Read more.
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the corresponding oxide components. Five-component ceramics were obtained from oxide powders of Y2O3, Lu2O3, Gd2O3, Al2O3, Ga2O3, and Ce2O3 in less than 1 s, without the use of any additional reagents or process stimulants. The average productivity of the synthesis process was approximately 5 g/s. The reaction yield, defined as the mass ratio of the synthesized ceramic to the initial mixture, ranged from 94% to 99%. The synthesized ceramics exhibit photoluminescence when excited by radiation in the 340–450 nm spectral range. The position of the luminescence bands depends on the specific composition, with the emission maxima located within the 525–560 nm range. It is suggested that under high radiation power density, the element exchange rate between the particles of the initial materials is governed by the formation of an ion–electron plasma. Full article
Show Figures

Figure 1

12 pages, 781 KB  
Article
Correlation Between Urinary Osteopontin Concentration and the Mineral Content and Composition of Kidney Stones
by Maciej Jaromin, Piotr Kutwin, Tomasz Konecki, Hanna Jerczyńska, Piotr Wysocki, Magdalena Gajek, Waldemar Maniukiewicz, Małgorzata Iwona Szynkowska-Józwik and Dariusz Moczulski
J. Clin. Med. 2025, 14(17), 6247; https://doi.org/10.3390/jcm14176247 - 4 Sep 2025
Viewed by 356
Abstract
Background and Objective: Information about the type of kidney stones is important for informed therapeutic decisions and the prevention of urolithiasis. Urinary stones are heterogeneous, and their elemental composition and crystal structure vary between patients. The formation of urinary stone deposits depends, [...] Read more.
Background and Objective: Information about the type of kidney stones is important for informed therapeutic decisions and the prevention of urolithiasis. Urinary stones are heterogeneous, and their elemental composition and crystal structure vary between patients. The formation of urinary stone deposits depends, among other things, on physiological conditions, the concentration of promoters and inhibitors of crystallization, and proteins found in the urine. The aim of this study was to determine differences in urine osteopontin (OPN) levels between groups of different stone-formers. Methods: Urinary stone specimens (n = 44) were acquired during elective endoscopic procedures. Specimens were divided into subgroups by k-means cluster analysis depending on calcium and phosphorus concentrations. The concentration of urine OPN was determined and compared for each subgroup and the control group. Results: Cluster analysis divided the deposits into three clusters. Cluster 1 contained mainly calcium oxalate deposits; Cluster 2 contained uric acid deposits; Cluster 3 contained deposits with a high content of calcium phosphate. Urine OPN concentration in CaP stone-formers (5.77 ng/mL) differed significantly from those of controls (17.05 ng/mL, p = 0.013) and CaOx stone-formers (15.31 ng/mL, p = 0.048). Conclusions: The concentration of urine OPN varies depending on the elemental composition of renal calculi. The lowest concentration of OPN was determined in the group of patients with a high content of calcium phosphate in the deposits. Full article
(This article belongs to the Special Issue Targeted Treatment of Kidney Stones)
Show Figures

Figure 1

20 pages, 1042 KB  
Review
Architecting Durability: Synergies in Assembly, Self-Repair, and Advanced Characterization of Carbon Nanotube Materials
by Monika R. Snowdon, Shasvat Rathod, Robert L. F. Liang and Marina Freire-Gormaly
Nanomaterials 2025, 15(17), 1352; https://doi.org/10.3390/nano15171352 - 2 Sep 2025
Viewed by 509
Abstract
Carbon nanotubes (CNTs) have remarkable mechanical, electrical, and thermal properties, making them highly attractive as foundational elements for advanced materials. However, translating their nanoscale potential into macroscale reliability and longevity requires a holistic design approach that integrates precise architectural control with robust damage [...] Read more.
Carbon nanotubes (CNTs) have remarkable mechanical, electrical, and thermal properties, making them highly attractive as foundational elements for advanced materials. However, translating their nanoscale potential into macroscale reliability and longevity requires a holistic design approach that integrates precise architectural control with robust damage mitigation strategies. This review presents a synergistic perspective on enhancing the durability of CNT-based systems by critically examining the interplay between molecular assembly, self-repair mechanisms, and the advanced characterization techniques required for their validation. We first establish how foundational architectural control—achieved through strategies like chemical functionalization, field-directed alignment, and dispersion—governs the ultimate performance of CNT materials. A significant focus is placed on advanced functionalization, such as fluorination, and its verification using high-powered spectroscopic tools, including X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Subsequently, this manuscript delves into the mechanisms of self-repair, systematically analyzing both the intrinsic capacity of the carbon lattice to heal atomic-level defects and the extrinsic strategies that incorporate engineered healing agents into composites. This discussion is uniquely supplemented by an exploration of the experimental techniques, such as electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES), that provide crucial evidence for irradiation-induced healing dynamics. Finally, we argue that a “characterization gap” has limited the field’s progress and highlight the critical role of techniques like in situ Raman spectroscopy for quantitatively monitoring healing efficiency at the molecular level. By identifying current challenges and future research frontiers, this review underscores that the creation of truly durable materials depends on an integrated understanding of how to build, repair, and precisely measure CNT-based systems. Full article
Show Figures

Graphical abstract

17 pages, 3153 KB  
Review
Fabrication and Properties of Hard Coatings by a Hybrid PVD Method
by Rui Zhang, Qimin Wang, Yuxiang Xu, Lisheng Li and Kwang Ho Kim
Lubricants 2025, 13(9), 390; https://doi.org/10.3390/lubricants13090390 - 1 Sep 2025
Viewed by 465
Abstract
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition [...] Read more.
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition conditions, nano-composite coatings are fabricated, which can be tailored to possess combining properties of super hardness, low friction coefficient, and excellent thermal/chemical stability. For the deposition with larger rotating periods, layer-by-layer deposition was observed. By the nano-multilayered coating design, superior mechanical properties (hardness ≥ 35 GPa), modulated residual stresses, and enhanced high-temperature properties can be obtained. In addition, lubricious elements, low friction (friction coefficient < 0.4), and low wear (<10−5 mm3/N∙m) both at ambient temperature and high temperature can be realized. Among these coatings, some have been specifically designed to achieve outstanding cutting performance in high-speed cutting applications. Several nitride and oxide hard coatings, such as AlTiN, TiAlN/TiSiN, AlCrN/Cu, and AlCrO, were deposited using a hybrid industrial physical vapor deposition (PVD) coating system. The microstructure, mechanical properties, and cutting performance of these coatings will be discussed. Full article
(This article belongs to the Special Issue Wear and Friction of High-Performance Coatings and Hardened Surfaces)
Show Figures

Figure 1

17 pages, 4862 KB  
Article
Enzymatic SPR Approach for the Detection of Nano and Microplastic Particles Using Rainwater as Matrices
by Denise Margarita Rivera-Rivera, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, Jonathan Muthuswamy Ponniah, José Manuel Rodríguez-Delgado, Erika Iveth Cedillo-González, Garima Kaushik, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Microplastics 2025, 4(3), 57; https://doi.org/10.3390/microplastics4030057 - 1 Sep 2025
Viewed by 487
Abstract
The increasing presence of microplastics (MPs) and nanoplastics (NPs) in environmental matrices presents substantial analytical challenges due to their small size and chemical diversity. This study introduces a novel enzymatic biosensor based on the Surface Plasmon Resonance (SPR) platform for the sensitive detection [...] Read more.
The increasing presence of microplastics (MPs) and nanoplastics (NPs) in environmental matrices presents substantial analytical challenges due to their small size and chemical diversity. This study introduces a novel enzymatic biosensor based on the Surface Plasmon Resonance (SPR) platform for the sensitive detection of MPs and NPs, utilizing laccase as the recognition element. Standard plastic particles, including polystyrene (PS, 0.1 µm), polymethyl methacrylate (PMMA, 1.0 µm and 100 µm), and polyethylene (PE, 34–50 µm), were analyzed using SPR angular interrogation along with a fixed-angle scheme. The angular approach revealed a clear relationship between the resonance angle, particle size, and refractive index, while the fixed-angle method, combined with immobilized laccase, facilitated specific detection through enzyme/substrate interactions. The analytical parameters showed detection limits ranging from 7.5 × 10−4 µg/mL (PE, 34–50 µm) to 253.2 µg/mL (PMMA, 1 µm), with significant differences based on polymer type and enzymatic affinity. Application of the biosensor to real rainwater samples collected from two regions in Mexico (Tula and Molango) confirmed its functionality, although performance varied depending on matrix composition, exhibiting inhibition in samples with high manganese (Mn2+), chromium (Cr2+), and zinc (Zn2+) content. Despite these limitations, the sensor achieved a 113% recovery rate in Tula rainwater, demonstrating its potential for straightforward in situ environmental monitoring. This study highlights the capabilities of laccase-based SPR biosensors in enhancing microplastic detection and underscores the necessity of considering matrix effects for real-world applications. Full article
Show Figures

Figure 1

18 pages, 4673 KB  
Article
Influence of Electrical Parameters in a Composite Wing Actuated by Shape Memory Alloys Wires: A Numerical–Experimental Study
by Miriam Battaglia, Valerio Acanfora and Aniello Riccio
J. Compos. Sci. 2025, 9(9), 460; https://doi.org/10.3390/jcs9090460 - 1 Sep 2025
Viewed by 361
Abstract
This study investigates the influence of electrical actuation parameters on the performance of a morphing composite aerodynamic profile actuated by Shape Memory Alloy (SMA) wires. A fully coupled electro-thermo-mechanical finite element model has been developed to simulate the transient response of NiTi SMA, [...] Read more.
This study investigates the influence of electrical actuation parameters on the performance of a morphing composite aerodynamic profile actuated by Shape Memory Alloy (SMA) wires. A fully coupled electro-thermo-mechanical finite element model has been developed to simulate the transient response of NiTi SMA, capturing the nonlinear interplay between temperature evolution, phase transformation, and mechanical deformation under Joule heating. The model incorporates phase-dependent material properties, heat effects, and geometric constraints, enabling accurate prediction of actuation dynamics. To validate the model, a morphing spoiler prototype has been fabricated using high-performance additive manufacturing with a carbon fibre-reinforced polymer. The SMA wires have been pretensioned and electrically actuated at different current levels (3 A and 6 A), and the resulting deformation has been recorded through video analysis with embedded timers. Experimental measurements confirmed the model’s ability to predict both actuation time and displacement, with maximum deflections of 33 mm and 40 mm corresponding to different current inputs. This integrated approach demonstrates an efficient and compact solution for active aerodynamic surfaces without the need for mechanical linkages, enabling future developments in adaptive structures for automotive and aerospace applications. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

25 pages, 9854 KB  
Article
Numerical Analysis on Mechanical Properties of Different Fiber-Reinforced Cold-Formed Steel–Concrete Composite Corner Columns
by Mengyao Li, Yi Hu, Lanzhe Rao, Liqiang Jiang, Jingbin Li, Shizhong Zhou, Hongyu Sun, Shi Peng, Xia Pang, Yuanjun Chen, Jun Hu and Ping Xie
Polymers 2025, 17(17), 2365; https://doi.org/10.3390/polym17172365 - 30 Aug 2025
Viewed by 462
Abstract
To overcome brittle failure in conventional cold-formed steel–concrete (CFS-C) corner columns, this paper used fiber-reinforced concrete to replace ordinary concrete, investigating failure mechanisms and performance through systematic numerical simulations. A finite element model (FEM) was established and validated by experiments, and the errors [...] Read more.
To overcome brittle failure in conventional cold-formed steel–concrete (CFS-C) corner columns, this paper used fiber-reinforced concrete to replace ordinary concrete, investigating failure mechanisms and performance through systematic numerical simulations. A finite element model (FEM) was established and validated by experiments, and the errors for ultimate capacity were within 10%. A series of numerical models was established for parametric analyses focusing on the effects of the parameters of polypropylene fiber (PF), carbon fiber (CF), steel fiber (SF), and bamboo fiber (BF) with different volume dosages and the thickness of cold-formed steel (CFS) on the axial compression ultimate capacity and corresponding displacement of CFS composite corner columns. The results indicated that (1) PF effectiveness was dependent on steel thickness: thicker steel suppressed micro-defects, activated the toughening potential of PF, and increased the ultimate capacity of the columns by 24.8%. (2) CF had a critical dosage of 0.4%: at this dosage, CF increased the column’s ultimate capacity by 14.1% through stress redistribution, while when the dosage exceeded this value, fiber agglomeration caused a reduction in the column’s strength, with a maximum decrease of 16.2%. (3) SF effectiveness showed a linear increase: at a dosage of 1.6%, SF formed a synergistic three-dimensional bridging network and generated a confinement effect, increasing the column’s ultimate capacity by 36.5% and displacement by 92.2%. (4) BF mainly improved the ductility of columns: through crack bridging and pull-out energy dissipation, BF increased column displacement by 33.2%. (5) The modified Eurocode 4 formula could reduce the calculation error of ultimate capacity from 6.3% to within 1%. The findings guide optimal fiber selection and dosage in practice, promoting such columns’ use in seismic and load-bearing structures. Full article
Show Figures

Graphical abstract

34 pages, 9260 KB  
Review
Recent Advances in the Analysis of Functional and Structural Polymer Composites for Wind Turbines
by Francisco Lagos, Brahim Menacer, Alexis Salas, Sunny Narayan, Carlos Medina, Rodrigo Valle, César Garrido, Gonzalo Pincheira, Angelo Oñate, Renato Hunter-Alarcón and Víctor Tuninetti
Polymers 2025, 17(17), 2339; https://doi.org/10.3390/polym17172339 - 28 Aug 2025
Viewed by 887
Abstract
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application [...] Read more.
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application of high-fidelity computational methods—finite element analysis (FEA), computational fluid dynamics (CFD), and fluid–structure interaction (FSI)—to optimize structural integrity and aerodynamic performance. It also explores the transformative role of artificial intelligence (AI) in structural health monitoring (SHM) and the integration of Internet of Things (IoT) systems, which are becoming essential for predictive maintenance and lifecycle management. Special focus is given to harsh offshore environments, where polymer composites must withstand extreme wind and wave conditions. This review further addresses the growing importance of circular economy strategies for managing end-of-life composite blades. While innovations such as the geometric redesign of floating platforms and the aerodynamic refinement of blade components have yielded substantial gains—achieving up to a 30% mass reduction in PLA prototypes—more conservative optimizations of internal geometry configurations in GFRP blades provide only around 7% mass reduction. Nevertheless, persistent challenges related to polymer composite degradation and fatigue under severe weather conditions are driving the adoption of real-time hybrid predictive models. A bibliometric analysis of over 1000 publications confirms more than 25 percent annual growth in research across these interconnected areas. This review serves as a comprehensive reference for engineers and researchers, identifying three strategic frontiers that will shape the future of wind turbine blade technology: advanced composite materials, integrated computational modeling, and scalable recycling solutions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 4122 KB  
Article
Comprehensive Assessment of Ash and Slag Waste for the Synthesis of Silicon-Based Functional Materials
by Aknur Seisenova, Assiya Nuraly, Dauren Baiseitov, Omirzak Kapizov, Sandugash Oryngaliyeva, Zhamila Alimkulova and Alibek Mutushev
Processes 2025, 13(9), 2722; https://doi.org/10.3390/pr13092722 - 26 Aug 2025
Viewed by 464
Abstract
This study focuses on the utilization of ash and slag waste from coal combustion for the production of ceramic construction materials. Detailed chemical and granulometric analyses were performed to determine the multicomponent composition of ash and slag, highlighting its dependence on particle size [...] Read more.
This study focuses on the utilization of ash and slag waste from coal combustion for the production of ceramic construction materials. Detailed chemical and granulometric analyses were performed to determine the multicomponent composition of ash and slag, highlighting its dependence on particle size fractions. The macro- and microelement contents of fresh and aged ash and slag, as well as the coal fuel, were assessed. Significant amounts of SiO2 (up to 54%), Al2O3 (27.5%), Fe2O3 (7%), and CaO (6.5%) were found, along with trace elements potentially hazardous to the environment, including Pb, Cu, Mo, and Y. Storage was shown to increase the concentrations of several elements (Pb, Cu, Ga, and Y) due to physicochemical weathering and pollutant migration. Based on comprehensive experimental data, criteria for evaluating ash and slag as raw materials were developed, and new qualitative and quantitative characteristics were identified, demonstrating their feasibility for use in construction material production. These results provide a foundation for systematic monitoring and environmentally responsible utilization of ash and slag waste. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop