Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = derringer’s function

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7116 KB  
Article
Analysis of Roughness, the Material Removal Rate, and the Acoustic Emission Signal Obtained in Flat Grinding Processes
by Piotr Sender, Irene Buj-Corral and Jesús Álvarez-Flórez
Machines 2024, 12(2), 110; https://doi.org/10.3390/machines12020110 - 6 Feb 2024
Cited by 1 | Viewed by 2106
Abstract
In this work, the analysis of the acoustic emission (AE) signal in grinding processes is addressed. The proposed analysis method decomposes the acoustic signal into three frequency ranges. The total energy of each range is determined, as well as the highest frequency. Different [...] Read more.
In this work, the analysis of the acoustic emission (AE) signal in grinding processes is addressed. The proposed analysis method decomposes the acoustic signal into three frequency ranges. The total energy of each range is determined, as well as the highest frequency. Different grinding experiments were carried out, according to a full factorial design of experiments (DOE), in which feed speed, depth of cut, and transversal step (table cross feed) were varied. Arithmetic average roughness Ra and the material removal rate (MRR) were determined. It was observed that Ra depends mainly on the transversal step, followed by feed speed and the interaction between the transversal step and depth of cut, while MRR is greatly influenced by the transversal step. According to multi-objective optimization with the Derringer–Suich function, in order to simultaneously minimize Ra and maximize MRR, a transversal step of 9 mm per longitudinal pass, feed speed of 20 m/min, and depth of cut of 0.020 mm should be selected. Full article
Show Figures

Figure 1

16 pages, 2028 KB  
Article
Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)
by Milica Lučić, Nebojša Potkonjak, Ivana Sredović Ignjatović, Steva Lević, Zora Dajić-Stevanović, Stefan Kolašinac, Miona Belović, Aleksandra Torbica, Ivan Zlatanović, Vladimir Pavlović and Antonije Onjia
Foods 2023, 12(13), 2468; https://doi.org/10.3390/foods12132468 - 23 Jun 2023
Cited by 19 | Viewed by 2549
Abstract
This study investigates the effects of ultrasound, in combination with chemical pretreatments, on the quality attributes (total phenolic and carotenoid content, antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl assay (DPPH)), ferric-reducing ability (FRAP), CIE L* a* b* color, non-enzymatic browning, rehydration ratio, textural and morphological properties) of [...] Read more.
This study investigates the effects of ultrasound, in combination with chemical pretreatments, on the quality attributes (total phenolic and carotenoid content, antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl assay (DPPH)), ferric-reducing ability (FRAP), CIE L* a* b* color, non-enzymatic browning, rehydration ratio, textural and morphological properties) of red pepper subjected to drying (hot air drying or freeze drying). The fractional factorial design was used to assess the impact of factors. The global Derringer desirability function was used to determine the optimal conditions for the best quality attributes of dried pepper. The drying method influenced total phenolic content, a* (redness), and initial rehydration ratio; pretreatment time significantly affected FRAP antiradical activity, a*, chroma and non-browning index, while pH-value had a significant effect on the texture of dried pepper. Non-enzymatic browning was reduced to 72.6%, while the DPPH antioxidant capacity of freeze-dried peppers was enhanced from 4.2% to 71.9%. Ultrasonic pretreatment led to changes in the pepper morphology, while potassium metabisulfite (KMS) was a more effective additive than citric acid. Full article
Show Figures

Figure 1

20 pages, 7807 KB  
Article
Experimental Investigation and Optimization of Rough EDM of High-Thermal-Conductivity Tool Steel with a Thin-Walled Electrode
by Dorota Oniszczuk-Świercz, Rafał Świercz, Adrian Kopytowski and Rafał Nowicki
Materials 2023, 16(1), 302; https://doi.org/10.3390/ma16010302 - 28 Dec 2022
Cited by 15 | Viewed by 2422
Abstract
The industrial application of electrical discharge machining (EDM) for manufacturing injection molding, in many cases, requires forming depth cavities with high length-to-width ratios, which is quite challenging. During slot EDM with thin-walled electrodes, short-circuits and arcing discharges occur, as a result of low [...] Read more.
The industrial application of electrical discharge machining (EDM) for manufacturing injection molding, in many cases, requires forming depth cavities with high length-to-width ratios, which is quite challenging. During slot EDM with thin-walled electrodes, short-circuits and arcing discharges occur, as a result of low efficiency in removing debris and bubble gas from the gap. Furthermore, unstable discharges can cause increases in tool wear and shape deviation of the machined parts. In order to characterize the influence of the type of electrode material and EDM parameters on the deep slot machining of high-thermal-conductivity tool steel (HTCS), experimental studies were conducted. An analytical and experimental investigation is carried out on the influence of EDM parameters on discharge current and pulse-on-time on the tool wear (TW), surface roughness (Ra), slot width (S)—dimension of the cavity, and material removal rate (MRR). The analyses of the EDS spectrum of the electrode indicate the occurrence of the additional carbon layer on the electrode. Carbon deposition on the anode surface can provide an additional thermal barrier that reduces electrode wear in the case of the copper electrode but for graphite electrodes, uneven deposition of carbon on the electrode leads to unstable discharges and leads to increase tool wear. The response surface methodology (RSM) was used to build empirical models of the influence of the discharge current I and pulse-on-time ton on Ra, S, TW, and MRR. Analysis of variance (ANOVA) was used to establish the statistical significance parameters. The calculated contribution indicated that the discharge current had the most influence (over 70%) on the Ra, S, TW, and MRR, followed by the discharge time. Multicriteria optimization with Derringer’s function was then used to minimize the surface roughness, slot width, and TW, while maximizing MRR. A validation test confirms that the maximal error between the predicted and obtained values did not exceed 7%. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-Volume 2)
Show Figures

Figure 1

22 pages, 4264 KB  
Article
Response Surface Modeling and Optimization of the Extraction of Phenolic Antioxidants from Olive Mill Pomace
by Filipa Paulo, Loleny Tavares and Lúcia Santos
Molecules 2022, 27(23), 8620; https://doi.org/10.3390/molecules27238620 - 6 Dec 2022
Cited by 11 | Viewed by 2489
Abstract
Bioactive compounds from olive mill pomace (OMP) were extracted through a two-step solid-liquid extraction procedure considering four factors at five levels of a central composite rotatable response surface design. The influence of the process variables time of the primary extraction (2.0–4.0 h), solvent-to-sample [...] Read more.
Bioactive compounds from olive mill pomace (OMP) were extracted through a two-step solid-liquid extraction procedure considering four factors at five levels of a central composite rotatable response surface design. The influence of the process variables time of the primary extraction (2.0–4.0 h), solvent-to-sample ratio during the primary extraction (5.0–10.0 mL/g), time of the secondary extraction (1.0–2.0 h), and the solvent-to-sample ratio during the secondary extraction (3.0–5.0 mL/g) were examined. The content of bioactive compounds was determined spectrophotometrically, and the individual phenolic compounds were evaluated by reserved-phase high-performance liquid chromatography (RP-HPLC). The Derringer’s function was used to optimize the extraction process, and the best conditions were found to be 3.2 h for the primary extraction, 10.0 mL/g for the solvent-to-sample ratio and 1.3 h for the secondary extraction associated with a solvent-to-sample ratio of 3.0 mL/g, obtaining a total phenolic content of 50.0 (expressed as mg gallic acid equivalents (GAE)/g dry weight (dw). The response surface methodology proved to be a great alternative for reducing the number of tests, allowing the optimization of the extraction of phenolic antioxidants from OMP with a reduced number of experiments, promoting reductions in cost and analysis time. Full article
(This article belongs to the Special Issue Natural Products from Plant: From Determination to Application)
Show Figures

Figure 1

19 pages, 2883 KB  
Article
Multi-Variate and Multi-Response Analysis of Hydrothermal Carbonization of Food Waste: Hydrochar Composition and Solid Fuel Characteristics
by Jaime E. Borbolla-Gaxiola, Andrew B. Ross and Valerie Dupont
Energies 2022, 15(15), 5342; https://doi.org/10.3390/en15155342 - 22 Jul 2022
Cited by 17 | Viewed by 2577
Abstract
To maximize food waste utilization, it is necessary to understand the effect of process variables on product distribution. To this day, there is a lack of studies evaluating the effects of the multiple variables of HTC on food waste. A Design of Experiment [...] Read more.
To maximize food waste utilization, it is necessary to understand the effect of process variables on product distribution. To this day, there is a lack of studies evaluating the effects of the multiple variables of HTC on food waste. A Design of Experiment (DoE) approach has been used to investigate the influence of three process variables on the product distribution and composition of process streams from the HTC of food waste. This work evaluates the effect of hydrothermal carbonization process conditions on the composition and utilization capabilities of hydrochar from food waste. Parametric analysis was carried out with a design of experiments of central composite rotatable design (CCRD) and response surface methodology (RSM). Derringer’s desirability function was employed to perform a multi-response evaluation. The optimized process conditions were 260.4 °C, 29.5 min reaction time, and 19.6% solid load. The predicted optimized responses were EMC = 2.7%, SY = 57.1%, EY = 84.7%, ED = 1.5, and HHV of 31.8 MJ/Kg, with a composite desirability of 0.68. Temperature and solid load had a significant effect on all evaluated responses, while reaction time was non-significant. Full article
Show Figures

Figure 1

11 pages, 1076 KB  
Article
Dispersive Solid–Liquid Microextraction Based on the Poly(HDDA)/Graphene Sorbent Followed by ICP-MS for the Determination of Rare Earth Elements in Coal Fly Ash Leachate
by Latinka Slavković-Beškoski, Ljubiša Ignjatović, Guido Bolognesi, Danijela Maksin, Aleksandra Savić, Goran Vladisavljević and Antonije Onjia
Metals 2022, 12(5), 791; https://doi.org/10.3390/met12050791 - 4 May 2022
Cited by 15 | Viewed by 2868
Abstract
A dispersive solid-phase microextraction (DSPME) sorbent consisting of poly(1,6-hexanediol diacrylate)-based polymer microspheres, with embedded graphene microparticles (poly(HDDA)/graphene), was synthesized by microfluidic emulsification/photopolymerization and characterized by optical microscopy and X-ray fluorescence spectrometry. This sorbent was applied for simple, fast, and sensitive vortex-assisted DSPME of [...] Read more.
A dispersive solid-phase microextraction (DSPME) sorbent consisting of poly(1,6-hexanediol diacrylate)-based polymer microspheres, with embedded graphene microparticles (poly(HDDA)/graphene), was synthesized by microfluidic emulsification/photopolymerization and characterized by optical microscopy and X-ray fluorescence spectrometry. This sorbent was applied for simple, fast, and sensitive vortex-assisted DSPME of rare earth elements (RREs) in coal fly ash (CFA) leachate, prior to their quantification by inductively coupled plasma mass spectrometry (ICP-MS). Among nine DSPME variables, the Plackett–Burman screening design (PBD), followed by the central composite optimization design (CCD) using the Derringer desirability function (D), identified the eluent type as the most influencing DSPME variable. The optimum conditions with maximum D (0.65) for the chelating agent di-(2-ethylhexyl) phosphoric acid (D2EHPA) amount, the sorbent amount, the eluting solvent, the extraction temperature, the centrifuge speed, the vortexing time, the elution time, the centrifugation time, and pH, were set to 60 μL, 30 mg, 2 M HNO3, 25 °C, 6000 rpm, 1 min, 1 min, 5 min, and 4.2, respectively. Analytical validation of the DSPME method for 16 REEs (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in CFA leachate samples estimated the detection limits at the low ppt level, the recovery range 43–112%, and relative standard deviation within ± 22%. This method was applied to a water extraction procedure (EP) and acetic acid toxicity characteristic leaching procedure (TCLP) for leachate of CFA, from five different coal-fired thermoelectric power plants. The most abundant REEs in leachate (20 ÷ 1 solid-to-liquid ratio) are Ce, Y, and La, which were found in the range of 22–194 ng/L, 35–105 ng/L, 48–95 ng/L, and 9.6–51 μg/L, 7.3–22 μg/L, 2.4–17 μg/L, for EP and TCLP leachate, respectively. The least present REE in TCLP leachate was Lu (42–125 ng/L), which was not detected in EP leachate. Full article
(This article belongs to the Special Issue Advanced Sorbents for Separation of Metal Ions)
Show Figures

Figure 1

18 pages, 7760 KB  
Article
Integration of Response Surface Methodology (RSM) and Principal Component Analysis (PCA) as an Optimization Tool for Polymer Inclusion Membrane Based-Optodes Designed for Hg(II), Cd(II), and Pb(II)
by Jeniffer García-Beleño and Eduardo Rodríguez de San Miguel
Membranes 2021, 11(4), 288; https://doi.org/10.3390/membranes11040288 - 14 Apr 2021
Cited by 9 | Viewed by 3427
Abstract
An optimization of the composition of polymer inclusion membrane (PIM)-based optodes, and their exposure times to metal ion solutions (Hg(II), Cd(II), and Pb(II)) was performed using two different chromophores, diphenylthiocarbazone (dithizone) and 1-(2-pyridylazo)-2-naphthol (PAN). Four factors were evaluated (chromophore (0.06–1 mg), cellulose triacetate [...] Read more.
An optimization of the composition of polymer inclusion membrane (PIM)-based optodes, and their exposure times to metal ion solutions (Hg(II), Cd(II), and Pb(II)) was performed using two different chromophores, diphenylthiocarbazone (dithizone) and 1-(2-pyridylazo)-2-naphthol (PAN). Four factors were evaluated (chromophore (0.06–1 mg), cellulose triacetate (25–100 mg) and plasticizer amounts (25–100 mg), and exposure time (20–80 min)). Derringer’s desirability functions values were employed as response variables to perform the optimization obtained from the results of three different processes of spectral data treatment: two full-spectrum methods (M1 and M3) and one band-based method (M2). The three different methods were compared using a heatmap of the coefficients and dendrograms of the Principal Component Analysis (PCA)reductions of their desirability functions. The final recommended M3 processing method, i.e., using the scores values of the first two principal components in PCA after subtraction of the normalized spectra of the membranes before and after complexation, gave more discernable differences between the PIMs in the Design of Experiments (DoE), as the nodes among samples appeared at longer distances and varyingly distributed in the dendrogram analysis. The optimal values were time of 35–65 min, 0.53 mg–1.0 mg of chromophores, plasticizers 34.4–71.9 of chromophores, and 62.5–100 mg of CTA, depending on the metal ion. In addition, the method yielded the best outcomes in terms of interpretability and an easily discernable color change so that it is recommended as a novel optimization method for this kind of PIM optode. Full article
(This article belongs to the Special Issue Polymer Inclusion Membranes)
Show Figures

Figure 1

15 pages, 1286 KB  
Article
Multi-Element Determination of Toxic and Nutrient Elements by ICP-AES after Dispersive Solid-Phase Extraction with Modified Graphene Oxide
by Natalia Manousi, Eleni Deliyanni and George Zachariadis
Appl. Sci. 2020, 10(23), 8722; https://doi.org/10.3390/app10238722 - 5 Dec 2020
Cited by 9 | Viewed by 3143
Abstract
A novel graphene-oxide-derived material was synthesized after modification of graphene oxide with sodium hydroxide and used for the dispersive solid-phase extraction (d-SPE) of different elements (Pb, Cd, Ba, Zn, Cu and Ni) prior to their determination by inductively coupled plasma atomic emission spectrometry [...] Read more.
A novel graphene-oxide-derived material was synthesized after modification of graphene oxide with sodium hydroxide and used for the dispersive solid-phase extraction (d-SPE) of different elements (Pb, Cd, Ba, Zn, Cu and Ni) prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The prepared nanomaterial was characterized by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Full factorial design and Derringer’s type desirability function were used for the optimization of the d-SPE procedure. Pareto charts illustrated the effects of each of the examined factors and their interactions on the determination of the elements. Under the optimum conditions, detection limits (LODs) for the elements ranged between 0.01 and 0.21 μg g−1, intra-day repeatability (n = 5) was lower than 1.9% and inter-day repeatability (n = 5 × 3) was lower than 4.7%. Relative recovery values ranged between 88.1 and 117.8%. The method was validated and successfully applied for the determination of trace elements in poultry, pork and beef samples from the local market. The proposed method is simple, rapid, sensitive and the novel sorbent can be used at least ten times. Full article
(This article belongs to the Special Issue Graphene Growth and Its Nanostructuring)
Show Figures

Graphical abstract

20 pages, 5754 KB  
Article
The Effect of Sea Salt, Dry Sourdough and Fermented Sugar as Sodium Chloride Replacers on Rheological Behavior of Wheat Flour Dough
by Andreea Voinea, Silviu-Gabriel Stroe and Georgiana Gabriela Codină
Foods 2020, 9(10), 1465; https://doi.org/10.3390/foods9101465 - 14 Oct 2020
Cited by 11 | Viewed by 3926
Abstract
The aim of this study was to investigate the effects of formulation factors, sea salt (SS), dry sourdough (SD) and fermented sugar (FS) as sodium chloride replacers in wheat flour on dough mixing, extension, pasting and fermentation rheological properties, evaluated by Farinograph, Extensograph, [...] Read more.
The aim of this study was to investigate the effects of formulation factors, sea salt (SS), dry sourdough (SD) and fermented sugar (FS) as sodium chloride replacers in wheat flour on dough mixing, extension, pasting and fermentation rheological properties, evaluated by Farinograph, Extensograph, Amylograph and Rheofermentometer devices. With regard to mixing and extension properties, SS and FS presented a strengthening effect, whereas SD presented a weakening one. SS and FS presented a positive effect on dough stability, energy and resistance, whereas SD presented a negative one. On the Amylograph, peak viscosity increased by SS and FS addition and decreased when SD was incorporated in the dough recipe. During fermentation, dough development and gas production in the dough system increased after SS and SD addition, whereas they decreased after FS addition. Response surface methodology (RSM) was used to investigate the effect of independent variables on the rheological properties of the dough. Mathematical models between the independent variables, SS, SD and FS, and the dependent variables, represented by the rheological values of the dough, were obtained. The best formulation obtained was of 0.30 g/100 g SS, 0.50 g/100 g SD and 1.02 mL/100 g FS addition with a 0.618 desirability value, following Derringer’s desirability function approach. For this formulation, bread quality characteristics were better appreciated than for those obtained for the control sample, in which 1.5% NaCl was incorporated in wheat flour. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

18 pages, 3729 KB  
Article
Ultrasonic-Assisted Pelleting of Sorghum Stalk: Predictive Models for Pellet Density and Durability Using Multiple Response Surface Methodology
by Qi Zhang, Zhenzhen Shi, Pengfei Zhang, Meng Zhang, Zhichao Li, Xi Chen and Jiping Zhou
Energies 2018, 11(5), 1214; https://doi.org/10.3390/en11051214 - 10 May 2018
Cited by 7 | Viewed by 3322
Abstract
In the field of renewable energy, feedstock such as cellulosic biomass has been proposed as a renewable source of fuel to produce energy. However, the use of raw biomass as feedstock causes high costs in handling, transportation, and storage. Compressing raw cellulosic biomass [...] Read more.
In the field of renewable energy, feedstock such as cellulosic biomass has been proposed as a renewable source of fuel to produce energy. However, the use of raw biomass as feedstock causes high costs in handling, transportation, and storage. Compressing raw cellulosic biomass into pellets significantly increases the density and durability of cellulosic biomass, reducing the transportation and handling costs of feedstock. To ensure high pellet quality, high pellet density and durability are desired during a compressing process. In this study, ultrasonic vibration-assisted (UV-A) pelleting, as a novel pelleting method, was applied to measure pellet density and durability during experiments. Response surface methodology (RSM) was employed to investigate the effects of pelleting time, ultrasonic power, and pelleting pressure on the pellet density and pellet durability. The model was validated by comparing the predictive results with experimental data and demonstrated a good predictive ability (R2 > 0.95). By employing a Derringer and Suich’s desirability function, our results suggest that the optimal pellet density and durability are 1239 kg/m3 and 93%, respectively, when the pelleting time was set to 44 s, the ultrasonic power was set to 50%, and pressure was set to 42 psi (289,580 Pa). Full article
Show Figures

Figure 1

15 pages, 4346 KB  
Article
Optimization of the Extraction Conditions for Buddleja officinalis Maxim. Using Response Surface Methodology and Exploration of the Optimum Harvest Time
by Guoyong Xie, Ran Li, Yu Han, Yan Zhu, Gang Wu and Minjian Qin
Molecules 2017, 22(11), 1877; https://doi.org/10.3390/molecules22111877 - 1 Nov 2017
Cited by 17 | Viewed by 5168
Abstract
The Box-Behnken design was used to evaluate the effects of the methanol concentration (60–100%), liquid to solid ratio (20:1 to 40:1 mL/g) and extraction time (20–40 min) on the yield of 11 constituents from Buddleja officinalis Maxim using ultrasound-assisted extraction. The Derringer’s desirability [...] Read more.
The Box-Behnken design was used to evaluate the effects of the methanol concentration (60–100%), liquid to solid ratio (20:1 to 40:1 mL/g) and extraction time (20–40 min) on the yield of 11 constituents from Buddleja officinalis Maxim using ultrasound-assisted extraction. The Derringer’s desirability function approach showed that the modified optimum extraction conditions were: 76% methanol concentration, 33 min extraction time and a 34:1 mL/g solvent to solid ratio. Under these conditions, the experimentally measured yields of the compounds were in good agreement with the predicted values. An accurate and sensitive method was also established using high-performance liquid chromatography with diode-array detection for the simultaneous determination of the 11 compounds in Buddleja officinalis. The newly developed method was used to determine the amounts of bioactive components in Buddleja officinalis during four different growth stages. According to these results, we recommend that the full blossom stage is the best time for harvesting this plant to obtain the highest yield of crude materials. Full article
Show Figures

Graphical abstract

17 pages, 3016 KB  
Article
Optimization of the Ultrasonic-Assisted Extraction of Bioactive Flavonoids from Ampelopsis grossedentata and Subsequent Separation and Purification of Two Flavonoid Aglycones by High-Speed Counter-Current Chromatography
by Hongbing Zhang, Guoyong Xie, Mei Tian, Qian Pu and Minjian Qin
Molecules 2016, 21(8), 1096; https://doi.org/10.3390/molecules21081096 - 20 Aug 2016
Cited by 38 | Viewed by 6990
Abstract
The fermented leaf of Ampelopsis grossedentata has been used as a beverage and folk medicine called “vine tea” in the southern region of China. In this paper, the optimum extraction conditions for the maximum recovery amounts of total flavonoids (TF), dihydromyricetin (DMY), myricitrin [...] Read more.
The fermented leaf of Ampelopsis grossedentata has been used as a beverage and folk medicine called “vine tea” in the southern region of China. In this paper, the optimum extraction conditions for the maximum recovery amounts of total flavonoids (TF), dihydromyricetin (DMY), myricitrin (MYG) and myricetin (MY) from natural Ampelopsis grossedentata leaves subjected to ultrasonic-assisted extraction (UAE) were determined and optimized by using response surface methodology. The method was employed by the Box–Behnken design (BBD) and Derringer’s desirability function using methanol concentration, extraction time, liquid/solid ratio as factors and the contents of TF, DMY, MYG and MY as responses. The obtained optimum UAE conditions were as follows: a solvent of 80.87% methanol, an extraction time of 31.98 min and a liquid/solid ratio of 41.64:1 mL/g. Through analysis of the response surface, it implied that methanol concentration and the liquid/solid ratio had significant effects on TF, DMY, MYG and MY yields, whereas extraction time had relatively little effects. The established extraction and analytical methods were successfully applied to determine the contents of the total flavonoids and three individual flavonoids in 10 batches of the leaf samples of A. grossedentata from three counties in Fujian Province, China. The results suggested the variability in the quality of A. grossedentata leaves from different origins. In addition, high purities of dihydromyricetin and myricetin were simultaneously separated and purified from the extract subjected to optimized UAE, by high-speed counter-current chromatography using a solvent system of N-hexane–ethyl acetate–methanol–water (1:3:2:4; v/v/v/v). In a single operation, 200 mg of the extract were separated to yield 86.46 mg of dihydromyricetin and 3.61 mg of myricetin with the purity of 95.03% and 99.21%, respectively. The results would be beneficial for further exploiting the herbal products and controlling the quality of the herb and its derived products. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Show Figures

Figure 1

14 pages, 653 KB  
Article
An Improved HPLC Method with the Aid of a Chemometric Protocol: Simultaneous Determination of Atorvastatin and Its Metabolites in Plasma
by Milkica Crevar-Sakač, Zorica Vujić, Jasmina Brborić, Vesna Kuntić and Snežana Uskoković-Marković
Molecules 2013, 18(3), 2469-2482; https://doi.org/10.3390/molecules18032469 - 25 Feb 2013
Cited by 9 | Viewed by 8612
Abstract
The aim of the present study was to optimize a chromatographic method for the analysis of atorvastatin (acid and lactone forms), ortho- and para-hydroxyatorvastatin by using an experimental design approach. Optimization experiments were conducted through a process of screening and optimization. [...] Read more.
The aim of the present study was to optimize a chromatographic method for the analysis of atorvastatin (acid and lactone forms), ortho- and para-hydroxyatorvastatin by using an experimental design approach. Optimization experiments were conducted through a process of screening and optimization. The purpose of a screening design is to identify the factors that have significant effects on the selected chromatographic responses, and for this purpose a full 23 factorial design was used. The location of the true optimum was established by applying Derringer’s desirability function, which provides simultaneously optimization of all seven responses. The ranges of the independent variables used for the optimization were content of acetonitrile in mobile phase (60–70%), temperature of column (30–40 °C) and flow rate (0.8–1.2 mL min−1). The influences of these independent variables were evaluated for the output responses: retention time of first peak (p-hydroxyatorvastatin) and of last peak (atorvastatin, lactone form), symmetries of all four peaks and relative retention time of p-hydroxyatorvastatin. The primary goal of this investigation was establishing a new simple and sensitive method that could be used in analysis of biological samples. The method was validated and successfully applied for determination of atorvastatin (acid and lactone forms) and its metabolites in plasma. Full article
Show Figures

Figure 1

14 pages, 819 KB  
Article
Simultaneous Analysis of Irbesartan and Hydrochlorothiazide: An Improved HPLC Method with the Aid of a Chemometric Protocol
by Zorica Vujić, Nedžad Mulavdić, Miralem Smajić, Jasmina Brborić and Predrag Stankovic
Molecules 2012, 17(3), 3461-3474; https://doi.org/10.3390/molecules17033461 - 16 Mar 2012
Cited by 38 | Viewed by 9097
Abstract
Experimental design method was used for HPLC determination of irbesartan and hydrochlorothiazide in combined dosage forms. The traditional approach for optimization of experiments is time-consuming, involves a large number of runs and does not allow establishing the multiple interacting parameters. The main advantages [...] Read more.
Experimental design method was used for HPLC determination of irbesartan and hydrochlorothiazide in combined dosage forms. The traditional approach for optimization of experiments is time-consuming, involves a large number of runs and does not allow establishing the multiple interacting parameters. The main advantages of the experimental design method include the simultaneous screening of a larger number of factors affecting response and the estimation of possible interactions. On the basis of preliminary experiments, three factors-independent variables were selected as inputs (methanol content, pH of the mobile phase and temperature) and as dependent variables, five responses (resolution, symmetry of irbesartan peak, symmetry of hydrochlorothiazide peak, retention factor of irbesartan and retention factor of hydrochlorothiazide) were chosen. A full 23 factorial design, where factors were examined at two different levels (“low” and “high”) was used to determine which factors had an effect on the studied response. Afterwards, experimental design was used to optimize these influent parameters in the previously selected experimental domain. The novelty of our method lies in the optimization step accomplished by Derringer¢s desirability function. After optimizing the experimental conditions a separation was conducted on a Supelcosil C18 (150 mm × 4.6 mm, 5 mm particle size) column with a mobile phase consisting of methanol-tetrahydrofuran-acetate buffer 47:10:43 v/v/v, pH 6.5 and a column temperature of 25 °C. The developed method was successfully applied to the simultaneous separation of these drug-active compounds in their commercial pharmaceutical dosage forms. Full article
Show Figures

Figure 1

Back to TopTop