Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,777)

Search Parameters:
Keywords = device success

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1534 KB  
Article
A Decision Tree Regression Algorithm for Real-Time Trust Evaluation of Battlefield IoT Devices
by Ioana Matei and Victor-Valeriu Patriciu
Algorithms 2025, 18(10), 641; https://doi.org/10.3390/a18100641 (registering DOI) - 10 Oct 2025
Abstract
This paper presents a novel gateway-centric architecture for context-aware trust evaluation in Internet of Battle Things (IoBT) environments. The system is structured across multiple layers, from embedded sensing devices equipped with internal modules for signal filtering, anomaly detection, and encryption, to high-level data [...] Read more.
This paper presents a novel gateway-centric architecture for context-aware trust evaluation in Internet of Battle Things (IoBT) environments. The system is structured across multiple layers, from embedded sensing devices equipped with internal modules for signal filtering, anomaly detection, and encryption, to high-level data processing in a secure cloud infrastructure. At its core, the gateway evaluates the trustworthiness of sensor nodes by computing reputation scores based on behavioral and contextual metrics. This design offers operational advantages, including reduced latency, autonomous decision-making in the absence of central command, and real-time responses in mission-critical scenarios. Our system integrates supervised learning, specifically Decision Tree Regression (DTR), to estimate reputation scores using features such as transmission success rate, packet loss, latency, battery level, and peer feedback. The results demonstrate that the proposed approach ensures secure, resilient, and scalable trust management in distributed battlefield networks, enabling informed and reliable decision-making under harsh and dynamic conditions. Full article
Show Figures

Figure 1

23 pages, 2817 KB  
Article
Characterizing and Optimizing Spatial Selectivity of Peripheral Nerve Stimulation Montages and Electrode Configurations In Silico
by Jonathan Brand, Ryan Kochis, Vasav Shah and Wentai Liu
Algorithms 2025, 18(10), 635; https://doi.org/10.3390/a18100635 (registering DOI) - 9 Oct 2025
Abstract
Spatially selective nerve stimulation is an active area of research, with the capability to reduce side effects and increase the clinical efficacy of nerve stimulation technologies. Several research groups have demonstrated proof-of-concept devices capable of performing spatially selective stimulation with multi-contact cuff electrodes [...] Read more.
Spatially selective nerve stimulation is an active area of research, with the capability to reduce side effects and increase the clinical efficacy of nerve stimulation technologies. Several research groups have demonstrated proof-of-concept devices capable of performing spatially selective stimulation with multi-contact cuff electrodes in vivo; however, optimizing the technique is difficult due to the large possibility space granted by a multi-electrode cuff. Our work attempts to elucidate the most valuable stimulation montages (current ratios between stimulating electrodes) provided by a multi-contact cuff. We characterized the performance of five different montage types when stimulating fibers in different “electrode configurations”, with configurations including up to three rings of electrode contacts, 13 different counts of electrodes per ring, and five electrode arc lengths per electrode count (for 195 unique configurations). Selected montages included several methods from prior art, as well as our own. Among montage types, the most spatially selective stimulation was one we refer to as “X-Adjacent” stimulation, in which three adjacent electrodes are active per ring. Optimized X-adjacent montages achieved an average fiber specificity of 71.9% for single-ring electrode configurations when stimulating fibers located at a depth of two-thirds of the nerve radius, and an average fiber specificity of 77.2% for two-ring configurations. These values were the highest among montages tested, and in combination with our other metrics, led these montages to perform best in the majority of cost functions investigated. This success leads us to recommend X-Adjacent montages to researchers exploring spatially selective stimulation. Full article
(This article belongs to the Special Issue Machine Learning in Medical Signal and Image Processing (4th Edition))
Show Figures

Figure 1

13 pages, 504 KB  
Review
Recent Advances in Ultrasound-Guided Peripheral Intravenous Catheter Insertion
by Amélie Bruant and Laure Normand
Nurs. Rep. 2025, 15(10), 359; https://doi.org/10.3390/nursrep15100359 - 8 Oct 2025
Viewed by 34
Abstract
Background/Objectives: This narrative review addresses ongoing controversies and advancements concerning ultrasound-guided peripheral intravenous (IV) catheter insertion, and the impact of ultrasound guidance on success rate, procedural time, patient and staff experience, complications and costs, as well as requirements for its use. Methods: A [...] Read more.
Background/Objectives: This narrative review addresses ongoing controversies and advancements concerning ultrasound-guided peripheral intravenous (IV) catheter insertion, and the impact of ultrasound guidance on success rate, procedural time, patient and staff experience, complications and costs, as well as requirements for its use. Methods: A literature review was conducted. Results: Growing evidence suggests that ultrasound-guided insertion of peripheral IV catheter represents a superior technique across various patient populations, particularly those presenting with difficult IV access (DIVA). Key findings highlight significant improvements in first-attempt success rates, reduction of procedural complications, and enhanced patient comfort. Ultrasound-guided insertion is also associated with an increase in catheter dwell time, a reduction in repeat procedures and in central line placements, leading to improved resource utilization and the potential for substantial long-term cost-effectiveness, despite the cost of initial investment and training. However, obtaining these improvements involves a critical importance for standardized training, adherence to rigorous aseptic techniques, and generalization of the transformative impact of ongoing technological advancements in ultrasound devices. Conclusions: The collective body of evidence supports the widespread adoption of ultrasound-guided peripheral IV cannulation as an evidence-based best practice in modern healthcare. Full article
(This article belongs to the Section Nursing Education and Leadership)
Show Figures

Figure 1

21 pages, 16332 KB  
Article
Med-Diffusion: Diffusion Model-Based Imputation of Multimodal Sensor Data for Surgical Patients
by Zhenyu Cheng, Boyuan Zhang, Yanbo Hu, Yue Du, Tianyong Liu, Zhenxi Zhang, Chang Lu, Shoujun Zhou and Zhuoxu Cui
Sensors 2025, 25(19), 6175; https://doi.org/10.3390/s25196175 - 5 Oct 2025
Viewed by 251
Abstract
The completeness and integrity of multimodal medical data are critical determinants of surgical success and postoperative recovery. However, because of issues such as poor sensor contact, small vibrations, and device discrepancies during signal acquisition, there are frequent missing values in patients’ medical data. [...] Read more.
The completeness and integrity of multimodal medical data are critical determinants of surgical success and postoperative recovery. However, because of issues such as poor sensor contact, small vibrations, and device discrepancies during signal acquisition, there are frequent missing values in patients’ medical data. This issue is especially prominent in rare or complex cases, where the inherent complexity and sparsity of multimodal data limit dataset diversity and degrade predictive model performance. As a result, clinicians’ understanding of patient conditions is restricted, and the development of robust algorithms to predict preoperative, intraoperative, and postoperative disease progression is hindered. To address these challenges, we propose Med-Diffusion, a diffusion-based generative framework designed to enhance sensor data by imputing missing multimodal clinical data, including both categorical and numerical variables. The framework integrates one-hot encoding, simulated bit encoding, and feature tokenization to improve adaptability to heterogeneous data types, utilizing conditional diffusion modeling for accurate data completion. Med-Diffusion effectively learns the underlying distributions of multimodal datasets, synthesizing plausible data for incomplete records, and it mitigates the data sparsity caused by poor sensor contact, vibrations, and device discrepancies. Extensive experiments demonstrate that Med-Diffusion accurately reconstructs missing multimodal clinical information and significantly enhances the performance of downstream predictive models. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

48 pages, 4261 KB  
Systematic Review
From Static to Adaptive: A Systematic Review of Smart Materials and 3D/4D Printing in the Evolution of Assistive Devices
by Muhammad Aziz Sarwar, Nicola Stampone and Muhammad Usman
Actuators 2025, 14(10), 483; https://doi.org/10.3390/act14100483 - 3 Oct 2025
Viewed by 145
Abstract
People with disabilities often face challenges like moving around independently and depending on personal caregivers for daily life activities. Traditional assistive devices are universally accepted by these communities, but they are designed with one-size-fits-all approaches that cannot adjust to individual human sizes, are [...] Read more.
People with disabilities often face challenges like moving around independently and depending on personal caregivers for daily life activities. Traditional assistive devices are universally accepted by these communities, but they are designed with one-size-fits-all approaches that cannot adjust to individual human sizes, are not easily customized, and are made from rigid materials that do not adapt as a person’s condition changes over time. This systematic review examines the integration of smart materials, sensors, actuators, and 3D/4D printing technologies in advancing assistive devices, with a particular emphasis on mobility aids. In this work, the authors conducted a comparative analysis of traditional devices with commercially available innovative prototypes and research stage assistive devices by focusing on smart adaptable materials and sustainable additive manufacturing techniques. The results demonstrate how artificial intelligence drives smart assistive devices in hospital decentralized additive manufacturing, and policy frameworks agree with the Sustainable Development Goals, representing the future direction for adaptive assistive technology. Also, by combining 3D/4D printing and AI, it is possible to produce adaptive, affordable, and patient centered rehabilitation with feedback and can also provide predictive and preventive healthcare strategies. The successful commercialization of adaptive assistive devices relies on cost effective manufacturing techniques clinically aligned development supported by cross disciplinary collaboration to ensure scalable, sustainable, and universally accessible smart solutions. Ultimately, it paves the way for smart, sustainable, and clinically viable assistive devices that outperform conventional solutions and promote equitable access for all users. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

15 pages, 1705 KB  
Article
Enhancing Two-Step Random Access in LEO Satellite Internet an Attack-Aware Adaptive Backoff Indicator (AA-BI)
by Jiajie Dong, Yong Wang, Qingsong Zhao, Ruiqian Ma and Jiaxiong Yang
Future Internet 2025, 17(10), 454; https://doi.org/10.3390/fi17100454 - 1 Oct 2025
Viewed by 167
Abstract
Low-Earth-Orbit Satellite Internet (LEO SI), with its capability for seamless global coverage, is a key solution for connecting IoT devices in areas beyond terrestrial network reach, playing a vital role in building a future ubiquitous IoT system. Inspired by the IEEE 802.15.4 Improved [...] Read more.
Low-Earth-Orbit Satellite Internet (LEO SI), with its capability for seamless global coverage, is a key solution for connecting IoT devices in areas beyond terrestrial network reach, playing a vital role in building a future ubiquitous IoT system. Inspired by the IEEE 802.15.4 Improved Adaptive Backoff Algorithm (I-ABA), this paper proposes an Attack-Aware Adaptive Backoff Indicator (AA-BI) mechanism to enhance the security and robustness of the two-step random access process in LEO SI. The mechanism constructs a composite threat intensity indicator that incorporates collision probability, Denial-of-Service (DoS) attack strength, and replay attack intensity. This quantified threat level is smoothly mapped to a dynamic backoff window to achieve adaptive backoff adjustment. Simulation results demonstrate that, with 200 pieces of user equipment (UE), the AA-BI mechanism significantly improves the access success rate (ASR) and jamming resistance rate (JRR) under various attack scenarios compared to the I-ABA and Binary Exponential Backoff (BEB) algorithms. Notably, under high-attack conditions, AA-BI improves ASR by up to 25.1% and 56.6% over I-ABA and BEB, respectively. Moreover, under high-load conditions with 800 users, AA-BI still maintains superior performance, achieving an ASR of 0.42 and a JRR of 0.68, thereby effectively ensuring the access performance and reliability of satellite Internet in malicious environments. Full article
Show Figures

Figure 1

11 pages, 1723 KB  
Perspective
New Approaches to Treatment of Tricuspid Regurgitation
by Carlo Rostagno, Alfredo Cerillo, Anna Rita Manca, Camilla Tozzetti and Pier Luigi Stefàno
J. Clin. Med. 2025, 14(19), 6878; https://doi.org/10.3390/jcm14196878 - 28 Sep 2025
Viewed by 451
Abstract
Tricuspid valve diseases are an increasing cause of cardiovascular mortality, peaking in the eighth decade of life. More than 75% of severe tricuspid regurgitations are recognized via functional mechanisms, often secondary to left heart disease and pulmonary hypertension. Surgical risk for isolated correction [...] Read more.
Tricuspid valve diseases are an increasing cause of cardiovascular mortality, peaking in the eighth decade of life. More than 75% of severe tricuspid regurgitations are recognized via functional mechanisms, often secondary to left heart disease and pulmonary hypertension. Surgical risk for isolated correction of tricuspid regurgitation, both repair or replacement, is associated with prohibitive risk mainly in elderly patients, with several comorbidities and right ventricular dysfunction. In the past decade, different percutaneous devices have been developed to treat a large group of high-surgical-risk patients. Early diagnosis and careful patient selection are essential to improving prognosis in severe TR. Potential treatment options may vary in different stages of disease. The current available results from present studies have proven the safety and effectiveness of these devices under proper clinical indications, although selection bias and non-randomization in most investigations at present do not allow for definite indications. Ideal anatomic and clinical parameters to predict interventional success are in continuous evolution and need definite standardization. We report three cases in which different percutaneous techniques were employed for treatment when surgery was not suitable. The literature is discussed for each condition. Despite promising results in terms of safety and success rate, further randomized studies are needed to better understand which patients may be subject to long-term effects on survival and quality of life. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

19 pages, 3021 KB  
Article
Design of a Mobile Assisting Robot for Blind and Elderly People
by María Garrosa, Marco Ceccarelli, Matteo Russo and Bowen Yang
Appl. Sci. 2025, 15(19), 10474; https://doi.org/10.3390/app151910474 - 27 Sep 2025
Viewed by 302
Abstract
This paper presents the design, development, and experimental evaluation of a hybrid wheel–leg guide robot intended to assist blind and elderly people with mobility tasks indoors and outdoors. The design requirements are derived from an analysis of safety, usability, and affordability needs for [...] Read more.
This paper presents the design, development, and experimental evaluation of a hybrid wheel–leg guide robot intended to assist blind and elderly people with mobility tasks indoors and outdoors. The design requirements are derived from an analysis of safety, usability, and affordability needs for assisting devices. The resulting design consists of a compact platform with two front leg–wheel assemblies and three additional wheels, two of which are motorized, arranged in a triangular configuration that provides stable support and reliable traction. The proposed locomotion system is innovative because existing guide robots typically rely exclusively on either wheels or legs. In contrast, this hybrid configuration combines the energy efficiency of wheeled locomotion with the capability of leg-assisted stepping, enabling improved terrain adaptability. Experiments with a prototype were carried out in indoor environments, including straight-line motion, turning, and obstacle-overcoming tests. The prototype, with a total weight of 1.9 kg and a material cost of 255 euros, maintained stable movement and achieved a 100% success rate for obstacles up to 30 mm, with partial success up to 40 mm. Additional test results indicate an average cruising speed of 0.1 m/s, and a practical endurance of 4.5–5 h. The proposed design aims to contribute to the development of more inclusive, efficient, and user-centered robotic solutions, promoting greater autonomy and quality of life for blind and elderly people. Full article
(This article belongs to the Special Issue Application of Computer Science in Mobile Robots, 3rd Edition)
Show Figures

Figure 1

14 pages, 3353 KB  
Article
Computational Analysis of the Effects of Power on the Electromagnetic Characteristics of Microwave Systems with Plasma
by Kamal Hadidi, Camille E. Williams and Vadim V. Yakovlev
Energies 2025, 18(19), 5128; https://doi.org/10.3390/en18195128 - 26 Sep 2025
Viewed by 179
Abstract
The scaling of microwave plasma technologies from successful laboratory demonstrations to larger industrial applications usually involves an increase in microwave power. This upgrade is accompanied by a higher electron density (and electric conductivity) of the plasma that often limits the power efficiency of [...] Read more.
The scaling of microwave plasma technologies from successful laboratory demonstrations to larger industrial applications usually involves an increase in microwave power. This upgrade is accompanied by a higher electron density (and electric conductivity) of the plasma that often limits the power efficiency of the device. In this paper, we address this issue through a focused computational study of electromagnetic characteristics of a microwave system containing plasma. Our approach employs finite-different time-domain analysis supported by a simple model which characterizes the plasma medium using plasma frequency and the frequency of electron-neutral collisions. Based on experimental data for electron density with respect to power, the plasma frequency is generated as a linear function of power, thus enabling a direct understanding of how frequency characteristics of the reflection coefficient and patterns of the electric field may vary for different power levels in a variety of plasma scenarios. For a cavity modeled after conventional plasma applicators, computational results illustrate complex behavior of the field with respect to power. When the power is increased, energy efficiency may decrease, remain low, or increase depending on where the operating frequency stands with respect to the system’s resonances. The proposed modeling approach identifies the system parameters which are most impactful in tuning the system to resonance, thus informing the design variables for subsequent computer-aided design of the scaled system. Full article
(This article belongs to the Special Issue Progress in Electromagnetic Analysis and Modeling of Heating Systems)
Show Figures

Figure 1

21 pages, 1271 KB  
Article
Feasibility and Limitations of Generalized Grover Search Algorithm-Based Quantum Asymmetric Cryptography: An Implementation Study on Quantum Hardware
by Tzung-Her Chen and Wei-Hsiang Hung
Electronics 2025, 14(19), 3821; https://doi.org/10.3390/electronics14193821 - 26 Sep 2025
Viewed by 238
Abstract
The emergence of quantum computing poses significant threats to conventional public-key cryptography, driving the urgent need for quantum-resistant cryptographic solutions. While quantum key distribution addresses secure key exchange, its dependency on symmetric keys and point-to-point limitations present scalability constraints. Quantum Asymmetric Encryption (QAE) [...] Read more.
The emergence of quantum computing poses significant threats to conventional public-key cryptography, driving the urgent need for quantum-resistant cryptographic solutions. While quantum key distribution addresses secure key exchange, its dependency on symmetric keys and point-to-point limitations present scalability constraints. Quantum Asymmetric Encryption (QAE) offers a promising alternative by leveraging quantum mechanical principles for security. This paper presents the first practical implementation of a QAE protocol on IBM Quantum devices, building upon the theoretical framework originally proposed by Yoon et al. We develop a generalized Grover Search Algorithm (GSA) framework that supports non-standard initial quantum states through novel diffusion operator designs, extending its applicability beyond idealized conditions. The complete QAE protocol, including key generation, encryption, and decryption stages, is translated into executable quantum circuits and evaluated on both IBM Quantum simulators and real quantum hardware. Experimental results demonstrate significant scalability challenges, with success probabilities deteriorating considerably for larger systems. The 2-qubit implementation achieves near-perfect accuracy (100% on the simulator, and 93.88% on the hardware), while performance degrades to 78.15% (simulator) and 45.84% (hardware) for 3 qubits, and declines critically to 48.08% (simulator) and 7.63% (hardware) for 4 qubits. This degradation is primarily attributed to noise and decoherence effects in current Noisy Intermediate-Scale Quantum (NISQ) devices, highlighting the limitations of single-iteration GSA approaches. Our findings underscore the critical need for enhanced hardware fidelity and algorithmic optimization to advance the practical viability of quantum cryptographic systems, providing valuable insights for bridging the gap between theoretical quantum cryptography and real-world implementations. Full article
Show Figures

Figure 1

12 pages, 2144 KB  
Article
Microvascular ALT-Flap Reconstruction for Distal Forearm and Hand Defects: Outcomes and Single-Case Application of a Bone-Anchored Venous Anastomosis
by Adrian Matthias Vater, Matthias Michael Aitzetmüller-Klietz, Philipp Edmund Lamby, Julia Stanger, Rainer Meffert, Karsten Schmidt, Michael Georg Jakubietz and Rafael Gregor Jakubietz
J. Clin. Med. 2025, 14(19), 6807; https://doi.org/10.3390/jcm14196807 - 26 Sep 2025
Viewed by 278
Abstract
Background: Reconstruction of distal forearm and hand soft tissue defects remains a complex surgical challenge due to the functional and aesthetic significance of the region. Several flap options have been established such as the posterior interosseous artery flap (PIA) or temporalis fascia flap [...] Read more.
Background: Reconstruction of distal forearm and hand soft tissue defects remains a complex surgical challenge due to the functional and aesthetic significance of the region. Several flap options have been established such as the posterior interosseous artery flap (PIA) or temporalis fascia flap (TFF), yet the anterolateral thigh flap (ALT) has gained increasing attention for its versatility and favorable risk profile. Methods: We retrospectively analyzed 12 patients (7 males, 5 females; mean age 51.8 years) who underwent free microvascular ALT reconstruction for distal forearm and hand defects between May 2020 and May 2025. Etiologies included infection, chemical burns, explosion injuries, and traffic accidents. The mean defect size was 75.4 cm2, and the average operative time was 217 min. Secondary flap thinning was performed in eight cases. In one patient without available recipient veins, a pedicle vein was anastomosed using a coupler device anchored into a cortical window of the distal radius to establish venous outflow via the bone marrow. Results: All flaps demonstrated complete survival with successful integration. Minor complications included transient venous congestion in one case and superficial wound dehiscence in four cases. Functional outcomes were favorable, with postoperative hand function rated as very good in 10 of 12 patients at follow-up. The bone-anchored venous anastomosis provided effective venous drainage in the salvage case. Conclusions: The free microvascular ALT is a reliable and highly adaptable method for distal forearm and hand reconstruction. It provides excellent soft tissue coverage, allows for secondary contouring, and achieves both functional and aesthetic goals. Furthermore, intraosseous venous anastomosis using a coupler device might represent a novel adjunct that may expand reconstructive options in cases with absent or unusable recipient veins. Full article
(This article belongs to the Special Issue Microsurgery: Current and Future Challenges)
Show Figures

Figure 1

34 pages, 11521 KB  
Article
Explainable AI-Driven 1D-CNN with Efficient Wireless Communication System Integration for Multimodal Diabetes Prediction
by Radwa Ahmed Osman
AI 2025, 6(10), 243; https://doi.org/10.3390/ai6100243 - 25 Sep 2025
Viewed by 563
Abstract
The early detection of diabetes risk and effective management of patient data are critical for avoiding serious consequences and improving treatment success. This research describes a two-part architecture that combines an energy-efficient wireless communication technology with an interpretable deep learning model for diabetes [...] Read more.
The early detection of diabetes risk and effective management of patient data are critical for avoiding serious consequences and improving treatment success. This research describes a two-part architecture that combines an energy-efficient wireless communication technology with an interpretable deep learning model for diabetes categorization. In Phase 1, a unique wireless communication model is created to assure the accurate transfer of real-time patient data from wearable devices to medical centers. Using Lagrange optimization, the model identifies the best transmission distance and power needs, lowering energy usage while preserving communication dependability. This contribution is especially essential since effective data transport is a necessary condition for continuous monitoring in large-scale healthcare systems. In Phase 2, the transmitted multimodal clinical, genetic, and lifestyle data are evaluated using a one-dimensional Convolutional Neural Network (1D-CNN) with Bayesian hyperparameter tuning. The model beat traditional deep learning architectures like LSTM and GRU. To improve interpretability and clinical acceptance, SHAP and LIME were used to find global and patient-specific predictors. This approach tackles technological and medicinal difficulties by integrating energy-efficient wireless communication with interpretable predictive modeling. The system ensures dependable data transfer, strong predictive performance, and transparent decision support, boosting trust in AI-assisted healthcare and enabling individualized diabetes control. Full article
Show Figures

Figure 1

20 pages, 5553 KB  
Article
Transmit Power Optimization for Intelligent Reflecting Surface-Assisted Coal Mine Wireless Communication Systems
by Yang Liu, Xiaoyue Li, Bin Wang and Yanhong Xu
IoT 2025, 6(4), 59; https://doi.org/10.3390/iot6040059 - 25 Sep 2025
Viewed by 240
Abstract
The adverse propagation environment in underground coal mine tunnels caused by enclosed spaces, rough surfaces, and dense scatterers severely degrades reliable wireless signal transmission, which further impedes the deployment of IoT applications such as gas monitors and personnel positioning terminals. However, the conventional [...] Read more.
The adverse propagation environment in underground coal mine tunnels caused by enclosed spaces, rough surfaces, and dense scatterers severely degrades reliable wireless signal transmission, which further impedes the deployment of IoT applications such as gas monitors and personnel positioning terminals. However, the conventional power enhancement solutions are infeasible for the underground coal mine scenario due to strict explosion-proof safety regulations and battery-powered IoT devices. To address this challenge, we propose singular value decomposition-based Lagrangian optimization (SVD-LOP) to minimize transmit power at the mining base station (MBS) for IRS-assisted coal mine wireless communication systems. In particular, we first establish a three-dimensional twin cluster geometry-based stochastic model (3D-TCGBSM) to accurately characterize the underground coal mine channel. On this basis, we formulate the MBS transmit power minimization problem constrained by user signal-to-noise ratio (SNR) target and IRS phase shifts. To solve this non-convex problem, we propose the SVD-LOP algorithm that performs SVD on the channel matrix to decouple the complex channel coupling and introduces the Lagrange multipliers. Furthermore, we develop a low-complexity successive convex approximation (LC-SCA) algorithm to reduce computational complexity, which constructs a convex approximation of the objective function based on a first-order Taylor expansion and enables suboptimal solutions. Simulation results demonstrate that the proposed SVD-LOP and LC-SCA algorithms achieve transmit power peaks of 20.8dBm and 21.4dBm, respectively, which are slightly lower than the 21.8dBm observed for the SDR algorithm. It is evident that these algorithms remain well below the explosion-proof safety threshold, which achieves significant power reduction. However, computational complexity analysis reveals that the proposed SVD-LOP and LC-SCA algorithms achieve O(N3) and O(N2) respectively, which offers substantial reductions compared to the SDR algorithm’s O(N7). Moreover, both proposed algorithms exhibit robust convergence across varying user SNR targets while maintaining stable performance gains under different tunnel roughness scenarios. Full article
Show Figures

Figure 1

25 pages, 35400 KB  
Article
Detection and Continuous Tracking of Breeding Pigs with Ear Tag Loss: A Dual-View Synergistic Method
by Weijun Duan, Fang Wang, Honghui Li, Na Liu and Xueliang Fu
Animals 2025, 15(19), 2787; https://doi.org/10.3390/ani15192787 - 24 Sep 2025
Viewed by 220
Abstract
The lossof ear tags in breeding pigs can lead to the loss or confusion of individual identity information. Timely and accurate detection, along with continuous tracking of breeding pigs that have lost their ear tags, is crucial for improving the precision of farm [...] Read more.
The lossof ear tags in breeding pigs can lead to the loss or confusion of individual identity information. Timely and accurate detection, along with continuous tracking of breeding pigs that have lost their ear tags, is crucial for improving the precision of farm management. However, considering the real-time requirements for the detection of ear tag-lost breeding pigs, coupled with tracking challenges such as similar appearances, clustered occlusion, and rapid movements of breeding pigs, this paper proposed a dual-view synergistic method for detecting ear tag-lost breeding pigs and tracking individuals. First, a lightweight ear tag loss detector was developed by combining the Cascade-TagLossDetector with a channel pruning algorithm. Second, a synergistic architecture was designed that integrates a localized top-down view with a panoramic oblique view, where the detection results of ear tag-lost breeding pigs from the localized top-down view were mapped to the panoramic oblique view for precise localization. Finally, an enhanced tracker incorporating Motion Attention was proposed to continuously track the localized ear tag-lost breeding pigs. Experimental results indicated that, during the ear tag loss detection stage for breeding pigs, the pruned detector achieved a mean average precision of 94.03% for bounding box detection and 90.16% for instance segmentation, with a parameter count of 28.04 million and a detection speed of 37.71 fps. Compared to the unpruned model, the parameter count was reduced by 20.93 million, and the detection speed increased by 12.38 fps while maintaining detection accuracy. In the tracking stage, the success rate, normalized precision, and precision of the proposed tracker reached 86.91%, 92.68%, and 89.74%, respectively, representing improvements of 4.39, 3.22, and 4.77 percentage points, respectively, compared to the baseline model. These results validated the advantages of the proposed method in terms of detection timeliness, tracking continuity, and feasibility of deployment on edge devices, providing significant reference value for managing livestock identity in breeding farms. Full article
Show Figures

Figure 1

18 pages, 7576 KB  
Review
Clinical Efficacy of Clear Aligners in Class II Malocclusion: From Pediatric to Adult Cases–A Narrative Review
by Gianna Dipalma, Grazia Marinelli, Francesco Inchingolo, Marialuisa Longo, Maral Di Giulio Cesare, Sharon Di Serio, Andrea Palermo, Massimo Del Fabbro, Alessio Danilo Inchingolo and Angelo Michele Inchingolo
J. Funct. Biomater. 2025, 16(9), 354; https://doi.org/10.3390/jfb16090354 - 19 Sep 2025
Viewed by 754
Abstract
Background: Class II malocclusion is one of the most common and challenging orthodontic problems, often requiring complex, lengthy treatment and sometimes involving extractions or surgery. While conventional fixed appliances have been the gold standard, the increasing demand for aesthetic and comfortable treatment alternatives [...] Read more.
Background: Class II malocclusion is one of the most common and challenging orthodontic problems, often requiring complex, lengthy treatment and sometimes involving extractions or surgery. While conventional fixed appliances have been the gold standard, the increasing demand for aesthetic and comfortable treatment alternatives has made clear aligners a prevalent choice. Understanding the specific biomechanics, limitations, and successful clinical strategies for using aligners—especially in managing vertical dimension and achieving skeletal correction (mandibular advancement)—is crucial for expanding non-invasive treatment options and improving outcomes for a broad range of Class II patients. Objective: The objective of this review is to examine the effectiveness and clinical approaches of clear aligners in Class II correction across different age groups, with particular attention to vertical control, mandibular advancement methods, and the predictability of tooth movements in both growing and fully mature patients. Materials and Methods: This review narratively discusses the most relevant clinical findings and practical strategies for managing Class II malocclusions with clear aligners. Particular attention is given to the integration of auxiliary devices, such as elastics, attachments, and temporary anchorage devices (TADs), which can enhance biomechanical control. Results: The combination of aligners with mini-implants and attachments resulted in a consequent decrease in excessive overjet, improvement in facial profile, and long-term stability supported by fixed retention. In growing patients, correction benefited from mandibular advancement protocols and control of molar extrusion, allowing for preservation of the mandibular plane angle. Movement predictability showed higher reliability in anterior torque movements, whereas maxillary incisor intrusion remained less predictable. Conclusions: Clear aligners, especially when supported by auxiliary device, such as mini-implants and attachments, offer a reliable and aesthetic alternative to conventional orthodontic treatment for Class II malocclusions. However, certain tooth movements may still be less predictable, highlighting the need for careful planning, individualized biomechanics, and ongoing technological improvements. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials (2nd Edition))
Show Figures

Figure 1

Back to TopTop