Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = di-rhamnolipid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1876 KB  
Article
Pseudomonas aeruginosa Rhamnolipids Produced by Andiroba (Carapa guianensis Aubl.) (Sapindales: Meliaceae) Biomass Waste from Amazon: A Potential Weapon Against Aedes aegypti L. (Diptera: Culicidae)
by Giulian César da Silva Sá, Pedro Vitor Vale Bezerra, Evelly Oliveira Ramos, Alexandre Orsato, Karoline Leite, Alan Moura Feio, Lucas Mariano Siqueira Pimentel, Joane de Almeida Alves, Glenda Soares Gomes, Pamela Dias Rodrigues, Cristina M. Quintella, Sinara Pereira Fragoso, Emilly Cruz da Silva, Adriana Ferreira Uchôa and Sidnei Cerqueira dos Santos
Molecules 2025, 30(3), 618; https://doi.org/10.3390/molecules30030618 - 31 Jan 2025
Viewed by 1372
Abstract
Rhamnolipids, biosurfactants synthesized from natural resources, demonstrate significant applications, including notable insecticidal efficacy against Aedes aegypti L., the primary vector for numerous arboviruses. The global spread of A. aegypti poses substantial public health challenges, requiring innovative and sustainable control strategies. This research investigates [...] Read more.
Rhamnolipids, biosurfactants synthesized from natural resources, demonstrate significant applications, including notable insecticidal efficacy against Aedes aegypti L., the primary vector for numerous arboviruses. The global spread of A. aegypti poses substantial public health challenges, requiring innovative and sustainable control strategies. This research investigates the use of andiroba (Carapa guianensis Aubl.) biomass waste as a substrate for synthesizing a rhamnolipid biosurfactant (BSAW) produced by Pseudomonas aeruginosa and evaluates its insecticidal activity against A. aegypti. The findings indicate a biosurfactant yield of 4.42 mg mL−1, alongside an emulsification index approaching 60%. BSAW successfully reduced both surface and interfacial tensions to below 30 mN/m and 4 mN/m, respectively. Characterization revealed that BSAW is a di-rhamnolipid, consisting of two rhamnose units covalently linked to a saturated C10 fatty acid chain. At a concentration of 1.0 mg mL−1, BSAW exhibited notable larvicidal activity, leading to structural impairments and cellular dysfunctions in A. aegypti larvae while also disrupting their associated bacterial microbiota. Moreover, BSAW effectively deterred oviposition in adult mosquitoes. These findings underscore BSAW’s potential to compromise various developmental stages of A. aegypti, supporting integrated arbovirus management approaches. Furthermore, this research emphasizes the feasibility of utilizing agro-industrial waste as substrates for microbial rhamnolipid production. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

23 pages, 4517 KB  
Article
Rhamnolipid-Enriched PA3 Fraction from Pseudomonas aeruginosa SWUC02 Primes Chili Plant Defense Against Anthracnose
by Natthida Sudyoung, Siritron Samosorn, Kulvadee Dolsophon, Kwannan Nantavisai, Onanong Pringsulaka, Supaart Sirikantaramas, Akira Oikawa and Siriruk Sarawaneeyaruk
Int. J. Mol. Sci. 2024, 25(23), 12593; https://doi.org/10.3390/ijms252312593 - 23 Nov 2024
Cited by 1 | Viewed by 1486
Abstract
Chili anthracnose, caused by Colletotrichum truncatum, causes significant yield loss in chili production. In this study, we investigated the elicitor properties of a rhamnolipid (RL)-enriched PA3 fraction derived from Pseudomonas aeruginosa SWUC02 in inducing systemic resistance in yellow chili seedlings and antifungal [...] Read more.
Chili anthracnose, caused by Colletotrichum truncatum, causes significant yield loss in chili production. In this study, we investigated the elicitor properties of a rhamnolipid (RL)-enriched PA3 fraction derived from Pseudomonas aeruginosa SWUC02 in inducing systemic resistance in yellow chili seedlings and antifungal activity against C. truncatum CFPL01 (Col). Fractionation of the ethyl acetate extract yielded 12 fractions, with PA3 demonstrating the most effective disease suppression, reducing the disease severity index to 4 ± 7.35% at 7 days post-inoculation compared with Col inoculation alone (83 ± 23.57%). PA3 also exhibited direct antifungal activity, inhibiting Col mycelial growth by 41 ± 0.96% at 200 µg/mL. Subfractionation revealed PA3 as a mixture of mono- and di-RLs, confirmed by 1H nuclear magnetic resonance and electrospray ionization mass spectrometry data. Additionally, PA3 enhanced seed germination and promoted plant growth without causing phytotoxicity. Transcriptomics revealed that PA3 pre-treatment prior to Col infection primed the defense response, upregulating defense-related genes involved in the phenylpropanoid, flavonoid, and jasmonic acid biosynthesis pathways, as well as those associated with cell wall reinforcement. Our findings highlight the potential of RL-enriched PA3 as both an antifungal agent and a plant defense elicitor, with transcriptome data providing new insights into defense priming and resistance pathways in chili, offering an eco-friendly solution for sustainable anthracnose management. Full article
Show Figures

Figure 1

18 pages, 2359 KB  
Article
Assessment of Phenanthrene Degradation Potential by Plant-Growth-Promoting Endophytic Strain Pseudomonas chlororaphis 23aP Isolated from Chamaecytisus albus (Hacq.) Rothm.
by Magdalena Anna Karaś, Sylwia Wdowiak-Wróbel, Monika Marek-Kozaczuk, Wojciech Sokołowski, Krystsina Melianchuk and Iwona Komaniecka
Molecules 2023, 28(22), 7581; https://doi.org/10.3390/molecules28227581 - 14 Nov 2023
Cited by 4 | Viewed by 2030
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common xenobiotics that are detrimental to the environment and human health. Bacterial endophytes, having the capacity to degrade PAHs, and plant growth promotion (PGP) may facilitate their biodegradation. In this study, phenanthrene (PHE) utilization of a newly isolated [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are common xenobiotics that are detrimental to the environment and human health. Bacterial endophytes, having the capacity to degrade PAHs, and plant growth promotion (PGP) may facilitate their biodegradation. In this study, phenanthrene (PHE) utilization of a newly isolated PGP endophytic strain of Pseudomonas chlororaphis 23aP and factors affecting the process were evaluated. The data obtained showed that strain 23aP utilized PHE in a wide range of concentrations (6–100 ppm). Ethyl-acetate-extractable metabolites obtained from the PHE-enriched cultures were analyzed by gas chromatography–mass spectrometry (GC-MS) and thin-layer chromatography (HPTLC). The analysis identified phthalic acid, 3-(1-naphthyl)allyl alcohol, 2-hydroxybenzalpyruvic acid, α-naphthol, and 2-phenylbenzaldehyde, and allowed us to propose that the PHE degradation pathway of strain 23aP is initiated at the 1,2-, 3,4-carbon positions, while the 9,10-C pathway starts with non-enzymatic oxidation and is continued by the downstream phthalic pathway. Moreover, the production of the biosurfactants, mono- (Rha-C8-C8, Rha-C10-C8:1, Rha-C12:2-C10, and Rha-C12:1-C12:1) and dirhamnolipids (Rha-Rha-C8-C10), was confirmed using direct injection–electrospray ionization–mass spectrometry (DI-ESI-MS) technique. Changes in the bacterial surface cell properties in the presence of PHE of increased hydrophobicity were assessed with the microbial adhesion to hydrocarbons (MATH) assay. Altogether, this suggests the strain 23aP might be used in bioaugmentation—a biological method supporting the removal of pollutants from contaminated environments. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

14 pages, 2540 KB  
Article
Economical Di-Rhamnolipids Biosynthesis by Non-Pathogenic Burkholderia thailandensis E264 Using Post-Consumption Food Waste in a Biorefinery Approach
by Rajat Kumar, Davidraj Johnravindar, Jonathan W. C. Wong, Raffel Dharma Patria and Guneet Kaur
Sustainability 2023, 15(1), 59; https://doi.org/10.3390/su15010059 - 21 Dec 2022
Cited by 11 | Viewed by 2771
Abstract
Rhamnolipids (RLs) are one of the most promising eco-friendly green alternatives to commercially viable fossil fuel-based surfactants. However, the current bioprocess practices cannot meet the required affordability, quantity, and biocompatibility within an industrially relevant framework. To circumvent these issues, our study aims to [...] Read more.
Rhamnolipids (RLs) are one of the most promising eco-friendly green alternatives to commercially viable fossil fuel-based surfactants. However, the current bioprocess practices cannot meet the required affordability, quantity, and biocompatibility within an industrially relevant framework. To circumvent these issues, our study aims to develop a sustainable biorefinery approach using post-consumption food waste as a second-generation feedstock. In-depth substrate screening revealed that food waste hydrolysate (FWH) was rich in readily assimilable carbohydrates, volatile fatty acids, and amino acids. The fermentative valorization of FWH as a sole carbon and energy source with Burkholderis thailandensis E264 in a bioreactor showed active RLs biosynthesis of up to 0.6–0.8 g/L (34–40 mg/g FWH) in a short duration (72 h). In terms of the kinetic parameters, the FWH-RLs outperformed other supplemented pure/waste streams. Interestingly, the recovered RLs had a long chain length, with Rha-Rha-C12-C14 being the predominant isoform and exhibiting a strong emulsification ability (E24, 54.6%). To the best of our knowledge, this study is the first to prove bioreactor-level RLs production and their abundance in food waste. Moreover, the feasibility of this developed process could propel next-generation biosurfactants, lower waste burdens, and increase the industrial applicability of RLs, thereby significantly contributing to the development of a circular bioeconomy. Full article
(This article belongs to the Special Issue Recent Advances in Biowaste Treatment—towards a Circular Bioeconomy)
Show Figures

Figure 1

11 pages, 3302 KB  
Article
Emulsifying Properties of Rhamnolipids and Their In Vitro Antifungal Activity against Plant Pathogenic Fungi
by Dongmei Li, Weiyi Tao, Dinghua Yu and Shuang Li
Molecules 2022, 27(22), 7746; https://doi.org/10.3390/molecules27227746 - 10 Nov 2022
Cited by 16 | Viewed by 2433
Abstract
Rhamnolipids have significant emulsifying activity and the potential to become a component of pesticide emulsifier. Rhamnolipids are usually composed of two main components: mono-rhamnolipids (Rha-C10-C10) and di-rhamnolipids (Rha2-C10-C10). The proportion of di-rhamnolipids in [...] Read more.
Rhamnolipids have significant emulsifying activity and the potential to become a component of pesticide emulsifier. Rhamnolipids are usually composed of two main components: mono-rhamnolipids (Rha-C10-C10) and di-rhamnolipids (Rha2-C10-C10). The proportion of di-rhamnolipids in the products ranged between 15% and 90%, affected by the production strains and fermentation process. In this paper, three kinds of rhamnolipid products containing di-rhamnolipids proportions, of 25.45, 46.46 and 89.52%, were used to test their emulsifying ability toward three conventional solvents used in pesticide (S-200, xylene, cyclohexanone) and antifungal activities against five strains of plant pathogenic fungi (Phytophthora capsici, Phytophthora parasitica var.nicotianae, Colletotrichum destructivum, Colletotrichum sublineolum, Fusarium oxysporum). The results indicated that although the CMC of the three rhamnolipids were significantly different, their emulsification properties had no remarkable differences, at a concentration of 10 g/L. However, their antifungal activities were significantly different: the more di-rhamnolipids, the stronger the antifungal activity. This work helps to promote the application of rhamnolipids as pesticides adjuvants. Full article
Show Figures

Graphical abstract

18 pages, 2678 KB  
Article
Rhamnolipid Micellization and Adsorption Properties
by Yi Zhang, Tess L. Placek, Ruksana Jahan, Paschalis Alexandridis and Marina Tsianou
Int. J. Mol. Sci. 2022, 23(19), 11090; https://doi.org/10.3390/ijms231911090 - 21 Sep 2022
Cited by 24 | Viewed by 5224
Abstract
Biosurfactants are naturally occurring amphiphiles that are being actively pursued as alternatives to synthetic surfactants in cleaning, personal care, and cosmetic products. On the basis of their ability to mobilize and disperse hydrocarbons, biosurfactants are also involved in the bioremediation of oil spills. [...] Read more.
Biosurfactants are naturally occurring amphiphiles that are being actively pursued as alternatives to synthetic surfactants in cleaning, personal care, and cosmetic products. On the basis of their ability to mobilize and disperse hydrocarbons, biosurfactants are also involved in the bioremediation of oil spills. Rhamnolipids are low molecular weight glycolipid biosurfactants that consist of a mono- or di-rhamnose head group and a hydrocarbon fatty acid chain. We examine here the micellization of purified mono-rhamnolipids and di-rhamnolipids in aqueous solutions and their adsorption on model solid surfaces. Rhamnolipid micellization in water is endothermic; the CMC (critical micellization concentration) of di-rhamnolipid is lower than that of mono-rhamnolipid, and both CMCs decrease upon NaCl addition. Rhamnolipid adsorption on gold surface is mostly reversible and the adsorbed layer is rigid. A better understanding of biosurfactant self-assembly and adsorption properties is important for their utilization in consumer products and environmental applications. Full article
(This article belongs to the Special Issue Adsorption Materials and Adsorption Behavior)
Show Figures

Figure 1

11 pages, 1482 KB  
Article
Di- and Mono-Rhamnolipids Produced by the Pseudomonas putida PP021 Isolate Significantly Enhance the Degree of Recovery of Heavy Oil from the Romashkino Oil Field (Tatarstan, Russia)
by Liliya Biktasheva, Alexander Gordeev, Svetlana Selivanovskaya and Polina Galitskaya
Processes 2022, 10(4), 779; https://doi.org/10.3390/pr10040779 - 15 Apr 2022
Cited by 13 | Viewed by 3591
Abstract
Around the globe, only 30–50% of the amount of oil estimated to be in reservoirs (“original oil in place”) can be obtained using primary and secondary oil recovery methods. Enhanced oil recovery methods are required in the oil processing industry, and the use [...] Read more.
Around the globe, only 30–50% of the amount of oil estimated to be in reservoirs (“original oil in place”) can be obtained using primary and secondary oil recovery methods. Enhanced oil recovery methods are required in the oil processing industry, and the use of microbially produced amphiphilic molecules (biosurfactants) is considered a promising efficient and environmentally friendly method. In the present study, biosurfactants produced by the Pseudomonas putida PP021 isolate were extracted and characterized, and their potential to enhance oil recovery was demonstrated. It was found that the cell-free biosurfactant-containing supernatant decreased the air–water interface tension from 74 to 28 mN m−1. Using TLC and FTIR methods, the biosurfactants produced by the isolate were classified as mono- and di-rhamnolipid mixtures. In the isolates’ genome, the genes rhlB and rhlC, encoding enzymes involved in the synthesis of mono- and di-rhamnolipids, respectively, were revealed. Both genes were expressed when the strain was cultivated on glycerol nitrate medium. As follows from the sand-packed column and core flooding simulations, biosurfactants produced by P. putida PP021 significantly enhance the degree of recovery, resulting in additional 27% and 21%, respectively. Full article
(This article belongs to the Topic Chemical and Biochemical Processes for Energy Sources)
Show Figures

Figure 1

16 pages, 1752 KB  
Article
Synthetic and Natural Surfactants for Potential Application in Mobilization of Organic Contaminants: Characterization and Batch Study
by Neda Amanat, Berardino Barbati, Marta M. Rossi, Marco Bellagamba, Marco Buccolini, Luciano Galantini and Marco Petrangeli Papini
Water 2022, 14(8), 1182; https://doi.org/10.3390/w14081182 - 7 Apr 2022
Cited by 14 | Viewed by 4002
Abstract
In this paper, we investigated the abilities of five sugar-based synthetic surfactants and biosurfactants from three different families (i.e., alkyl polyglycoside (APG), sophorolipid (SL), and rhamnolipid (RL)) to dissolve and mobilize non-aqueous phase liquid (NAPL) components, i.e., toluene and perchloroethylene (PCE), adsorbed on [...] Read more.
In this paper, we investigated the abilities of five sugar-based synthetic surfactants and biosurfactants from three different families (i.e., alkyl polyglycoside (APG), sophorolipid (SL), and rhamnolipid (RL)) to dissolve and mobilize non-aqueous phase liquid (NAPL) components, i.e., toluene and perchloroethylene (PCE), adsorbed on porous matrices. The objective of this study was to establish a benchmark for the selection of suitable surfactants for the flushing aquifer remediation technique. The study involved a physicochemical characterization of the surfactants to determine the critical micelle concentration (CMCs) and interfacial properties. Subsequently, a batch study, through the construction of adsorption isotherms, made it possible to evaluate the surfactants’ capacities in contaminant mobilization via the reduction of their adsorptions onto a reference adsorbent material, a pine wood biochar (PWB). The results indicate that a synthetic surfactant from the APG family with a long fatty acid chain and a di-rhamnolipid biosurfactant with a shorter hydrophobic group offered the highest efficiency values; they reduced water surface tension by up to 54.7% and 52%, respectively. These two surfactants had very low critical micelle concentrations (CMCs), 0.0071 wt% and 0.0173 wt%, respectively; this is critical from an economical point of view. The batch experiments showed that these two surfactants, at concentrations just five times their CMCs, were able to reduce the adsorption of toluene on PWB by up to 74% and 65%, and of PCE with APG and RL by up to 65% and 86%, respectively. In general, these results clearly suggest the possibility of using these two surfactants in surfactant-enhanced aquifer remediation technology. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2112 KB  
Article
Bioreactor Rhamnolipid Production Using Palm Oil Agricultural Refinery By-Products
by Mohd Nazren Radzuan, James Winterburn and Ibrahim Banat
Processes 2021, 9(11), 2037; https://doi.org/10.3390/pr9112037 - 14 Nov 2021
Cited by 11 | Viewed by 3392
Abstract
Palm fatty acid distillate (PFAD) and fatty acid methyl ester (FAME) are used by P. aeruginosa PAO1 to produce rhamnolipid biosurfactant. The process of fermentation producing of biosurfactant was structured in a 2 L bioreactor using 2% of PFAD and FAME as carbon [...] Read more.
Palm fatty acid distillate (PFAD) and fatty acid methyl ester (FAME) are used by P. aeruginosa PAO1 to produce rhamnolipid biosurfactant. The process of fermentation producing of biosurfactant was structured in a 2 L bioreactor using 2% of PFAD and FAME as carbon sources in minimal medium and with a nitrogen concentration of 1 g L−1. Mass spectrometry results show the crude biosurfactant produced was predominantly monorhamnolipid (Rha-C10-C10) and dirhamnolipid (Rha-Rha-C10-C10) at 503 and 649 m/z value for both substrates. Maximum production of crude rhamnolipid for PFAD was 1.06 g L−1 whereas for FAME it was 2.1 g L−1, with a reduction in surface tension of Tris-HCl pH 8.0 solution to 28 mN m−1 and a critical micelle concentration (CMC) of 26 mg L−1 measured for both products. Furthermore, the 24 h emulsification indexes in kerosene, hexadecane, sunflower oil, and rapeseed oil using 1 g L−1 of crude rhamnolipid were in the range 20–50%. Consequently, PFAD and FAME, by-products from the agricultural refining of palm oil, may result in a product that has a higher added-value, rhamnolipid biosurfactant, in the process of integrated biorefinery. Full article
(This article belongs to the Topic Bioreactors: Control, Optimization and Applications)
Show Figures

Graphical abstract

18 pages, 6407 KB  
Article
Rhamnolipids as Effective Green Agents in the Destabilisation of Dolomite Suspension
by Krzysztof Jan Legawiec, Mateusz Kruszelnicki, Anna Bastrzyk and Izabela Polowczyk
Int. J. Mol. Sci. 2021, 22(19), 10591; https://doi.org/10.3390/ijms221910591 - 30 Sep 2021
Cited by 6 | Viewed by 2775
Abstract
In this paper, we describe an application of mono- and dirhamnolipid homologue mixtures of a biosurfactant as a green agent for destabilisation of a dolomite suspension. Properties of the biosurfactant solution were characterised using surface tension and aggregate measurements to prove aggregation of [...] Read more.
In this paper, we describe an application of mono- and dirhamnolipid homologue mixtures of a biosurfactant as a green agent for destabilisation of a dolomite suspension. Properties of the biosurfactant solution were characterised using surface tension and aggregate measurements to prove aggregation of rhamnolipids at concentrations much lower than the critical micelle concentration. Based on this information, the adsorption process of biosurfactant molecules on the surface of the carbonate mineral dolomite was investigated, and the adsorption mechanism was proposed. The stability of the dolomite suspension after rhamnolipid adsorption was investigated by turbidimetry. The critical concentration of rhamnolipid at which destabilisation of the suspension occurred most effectively was found to be 50 mg·dm−3. By analysing backscattering profiles, solid-phase migration velocities were calculated. With different amounts of biomolecules, this parameter can be modified from 6.66 to 20.29 mm·h−1. Our study indicates that the dolomite suspension is destabilised by hydrophobic coagulation, which was proved by examining the wetting angle of the mineral surface using the captive bubble technique. The relatively low amount of biosurfactant used to destabilise the system indicates the potential application of this technology for water treatment or modification of the hydrophobicity of mineral surfaces in mineral engineering. Full article
(This article belongs to the Special Issue Biosurfactants: Current Research Trends and Applications)
Show Figures

Figure 1

20 pages, 2160 KB  
Article
Diverse Effects of Natural and Synthetic Surfactants on the Inhibition of Staphylococcus aureus Biofilm
by Gianna Allegrone, Chiara Ceresa, Maurizio Rinaldi and Letizia Fracchia
Pharmaceutics 2021, 13(8), 1172; https://doi.org/10.3390/pharmaceutics13081172 - 29 Jul 2021
Cited by 24 | Viewed by 4967
Abstract
A major challenge in the biomedical field is the creation of materials and coating strategies that effectively limit the onset of biofilm-associated infections on medical devices. Biosurfactants are well known and appreciated for their antimicrobial/anti-adhesive/anti-biofilm properties, low toxicity, and biocompatibility. In this study, [...] Read more.
A major challenge in the biomedical field is the creation of materials and coating strategies that effectively limit the onset of biofilm-associated infections on medical devices. Biosurfactants are well known and appreciated for their antimicrobial/anti-adhesive/anti-biofilm properties, low toxicity, and biocompatibility. In this study, the rhamnolipid produced by Pseudomonas aeruginosa 89 (R89BS) was characterized by HPLC-MS/MS and its ability to modify cell surface hydrophobicity and membrane permeability as well as its antimicrobial, anti-adhesive, and anti-biofilm activity against Staphylococcus aureus were compared to two commonly used surfactants of synthetic origin: Tween® 80 and TritonTM X-100. The R89BS crude extract showed a grade of purity of 91.4% and was composed by 70.6% of mono-rhamnolipids and 20.8% of di-rhamnolipids. The biological activities of R89BS towards S. aureus were higher than those of the two synthetic surfactants. In particular, the anti-adhesive and anti-biofilm properties of R89BS and of its purified mono- and di-congeners were similar. R89BS inhibition of S. aureus adhesion and biofilm formation was ~97% and 85%, respectively, and resulted in an increased inhibition of about 33% after 6 h and of about 39% after 72 h when compared to their chemical counterparts. These results suggest a possible applicability of R89BS as a protective coating agent to limit implant colonization. Full article
Show Figures

Graphical abstract

14 pages, 19629 KB  
Article
Rhamnolipid Biosurfactants—Possible Natural Anticancer Agents and Autophagy Inhibitors
by Severina Semkova, Georgi Antov, Ivan Iliev, Iana Tsoneva, Pavel Lefterov, Nelly Christova, Lilyana Nacheva, Ivanka Stoineva, Lyudmila Kabaivanova, Galya Staneva and Biliana Nikolova
Separations 2021, 8(7), 92; https://doi.org/10.3390/separations8070092 - 28 Jun 2021
Cited by 24 | Viewed by 4341
Abstract
Background/Aim: A number of biologically active substances were proved as an alternative to conventional anticancer medicines. The aim of the study is in vitro investigation of the anticancer activity of mono- and di-Rhamnolipids (RL-1 and RL-2) against human breast cancer. Additionally, the combination [...] Read more.
Background/Aim: A number of biologically active substances were proved as an alternative to conventional anticancer medicines. The aim of the study is in vitro investigation of the anticancer activity of mono- and di-Rhamnolipids (RL-1 and RL-2) against human breast cancer. Additionally, the combination with Cisplatin was analyzed. Materials and Methods: Breast cell lines (MCF-10A, MCF-7 and MDA-MB-231) were treated with RLs and in combination with Cisplatin. The viability was analyzed using MTT assay, and investigation of autophagy was performed via acridine orange staining. Results: In contrast to the healthy cells, both tested cancer lines exhibited sensitivity to RLs treatment. This effect was accompanied by an influence on the autophagy-related acidic formation process. Only for the triple-negative breast cancer cell line (MDA-MB-231) the synergistic effect of the combined treatment (10 µM Cisplatin and 1 µg/mL RL-2) was observed. Conclusion: Based on studies on the reorganization of membrane models in the presence of RL and the data about a higher amount of lipid rafts in cancer cell membranes than in non-tumorigenic, we suggest a possible mechanism of membrane remodelling by formation of endosomes. Shortly, in order to have a synergistic effect, it is necessary to have Cisplatin andRL-2 as RL2 is a molecule inducingpositive membrane curvature. Full article
(This article belongs to the Special Issue Innovation of Analysis Methods in Pharmaceutical Chemistry)
Show Figures

Figure 1

16 pages, 1546 KB  
Article
Novel Bioformulations Developed from Pseudomonas putida BSP9 and Its Biosurfactant for Growth Promotion of Brassica juncea (L.)
by Isha Mishra, Tahmish Fatima, Dilfuza Egamberdieva and Naveen Kumar Arora
Plants 2020, 9(10), 1349; https://doi.org/10.3390/plants9101349 - 12 Oct 2020
Cited by 32 | Viewed by 6060
Abstract
In this study, Pseudomonas putida BSP9 isolated from rhizosphere of Brassica juncea was investigated for its plant growth promoting and biosurfactant producing activities. The isolate showed the ability to produce indole acetic acid, siderophore, phosphate solubilization activity and was an efficient producer of [...] Read more.
In this study, Pseudomonas putida BSP9 isolated from rhizosphere of Brassica juncea was investigated for its plant growth promoting and biosurfactant producing activities. The isolate showed the ability to produce indole acetic acid, siderophore, phosphate solubilization activity and was an efficient producer of biosurfactant. Purification (of the biosurfactant) by thin layer chromatography (TLC) and further characterization by Fourier transform infrared spectroscopy (FTIR) revealed that biosurfactant produced by the isolate belonged to the glycolipid category, which is largely produced by Pseudomonas sp. In addition, liquid chromatography-mass spectroscopy (LC-MS) analysis showed the presence of a mixture of six mono-rhamnolipidic and a di-rhamnolipidic congeners, confirming it as a rhamnolipid biosurfactant. Bioformulations were developed using BSP9 and its biosurfactant to check their impact on promoting plant growth in B. juncea. It was noted from the study that bioformulations amended with biosurfactant (singly or in combination with BSP9) resulted in enhancement in the growth parameters of B. juncea as compared to untreated control. Maximum increment was achieved by plants inoculated with bioformulation that had BSP9 plus biosurfactant. The study also suggested that growth promotion was significant up to a threshold level of biosurfactant and that further increasing the concentration did not further enhance the growth parameter values of the plant. The study proves that novel bioformulations can be developed by integrating plant growth promoting rhizobacteria (PGPR) and their biosurfactant, and they can be effectively used for increasing agricultural productivity while minimizing our dependence on agrochemicals. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Graphical abstract

14 pages, 3484 KB  
Article
Low-Temperature Biosurfactants from Polar Microbes
by Benjamin Trudgeon, Markus Dieser, Narayanaganesh Balasubramanian, Mitch Messmer and Christine M. Foreman
Microorganisms 2020, 8(8), 1183; https://doi.org/10.3390/microorganisms8081183 - 3 Aug 2020
Cited by 20 | Viewed by 6609
Abstract
Surfactants, both synthetic and natural, are used in a wide range of industrial applications, including the degradation of petroleum hydrocarbons. Organisms from extreme environments are well-adapted to the harsh conditions and represent an exciting avenue of discovery of naturally occurring biosurfactants, yet microorganisms [...] Read more.
Surfactants, both synthetic and natural, are used in a wide range of industrial applications, including the degradation of petroleum hydrocarbons. Organisms from extreme environments are well-adapted to the harsh conditions and represent an exciting avenue of discovery of naturally occurring biosurfactants, yet microorganisms from cold environments have been largely overlooked for their biotechnological potential as biosurfactant producers. In this study, four cold-adapted bacterial isolates from Antarctica are investigated for their ability to produce biosurfactants. Here we report on the physical properties and chemical structure of biosurfactants from the genera Janthinobacterium, Psychrobacter, and Serratia. These organisms were able to grow on diesel, motor oil, and crude oil at 4 °C. Putative identification showed the presence of sophorolipids and rhamnolipids. Emulsion index test (E24) activity ranged from 36.4–66.7%. Oil displacement tests were comparable to 0.1–1.0% sodium dodecyl sulfate (SDS) solutions. Data presented herein are the first report of organisms of the genus Janthinobacterium to produce biosurfactants and their metabolic capabilities to degrade diverse petroleum hydrocarbons. The organisms’ ability to produce biosurfactants and grow on different hydrocarbons as their sole carbon and energy source at low temperatures (4 °C) makes them suitable candidates for the exploration of hydrocarbon bioremediation in low-temperature environments. Full article
(This article belongs to the Special Issue Microbial Biosurfactants)
Show Figures

Graphical abstract

10 pages, 4197 KB  
Article
Antibacterial Activities of Selected Pure Compounds Isolated from Gut Bacteria of Animals Living in Polluted Environments
by Noor Akbar, Ruqaiyyah Siddiqui, Mazhar Iqbal and Naveed Ahmed Khan
Antibiotics 2020, 9(4), 190; https://doi.org/10.3390/antibiotics9040190 - 17 Apr 2020
Cited by 31 | Viewed by 4371
Abstract
Antibiotic resistance is a global threat to public health, further accelerated by the misuse of antibiotics in humans and animals. Our recent studies have shown that gut bacteria of animals living in polluted environments are a potential source of antibacterials. Gut bacteria of [...] Read more.
Antibiotic resistance is a global threat to public health, further accelerated by the misuse of antibiotics in humans and animals. Our recent studies have shown that gut bacteria of animals living in polluted environments are a potential source of antibacterials. Gut bacteria of cockroaches, water monitor lizards and the turtle exhibited molecules such as curcumenol, docosanedioic acid, N-acyl-homoserine lactone, L-homotyrosine and Di-rhamnolipids. Using purified compounds, assays were performed to determine their antibacterial properties using serial dilution method, cytotoxic effects using lactate dehydrogenase release, and cell viability using MTT assay. The results revealed that the purified compounds exhibited significant antibacterial activities (p < 0.05) against selected Gram-negative (Pseudomonas aeruginosa) and Gram-positive bacteria (Streptococcus pyogenes) with effective MIC50 and MIC90 at µg concentrations, and with minimal effects on human cells as observed from LDH and MTT assays. These findings are significant and provide a basis for the rational development of therapeutic antibacterials. Future studies are needed to determine in vivo effects of the identified molecules together with their mode of action, which could lead to the development of novel antibacterial(s). Full article
Show Figures

Figure 1

Back to TopTop