Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (289)

Search Parameters:
Keywords = dipole antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8208 KB  
Review
General Overview of Antennas for Unmanned Aerial Vehicles: A Review
by Sara Reis, Fábio Silva, Daniel Albuquerque and Pedro Pinho
Electronics 2025, 14(16), 3205; https://doi.org/10.3390/electronics14163205 - 12 Aug 2025
Viewed by 1771
Abstract
Unmanned Aerial Vehicles (UAVs), commonly known as drones, are becoming increasingly important in multiple areas and various applications, including communication, detection, and monitoring. This review paper examines the development of antennas for UAVs, with a particular focus on miniaturization techniques, polarization strategies, and [...] Read more.
Unmanned Aerial Vehicles (UAVs), commonly known as drones, are becoming increasingly important in multiple areas and various applications, including communication, detection, and monitoring. This review paper examines the development of antennas for UAVs, with a particular focus on miniaturization techniques, polarization strategies, and beamforming solutions. It explores both structural and material-based methods, such as meander lines, slots, high-dielectric substrates, and metasurfaces, which aim to make the antenna more compact without compromising performance. Different antenna types including dipole, monopole, horn, vivaldi, and microstrip patch are explored to identify solutions that meet performance standards while respecting UAV constraints. In terms of polarization strategies, these are often implemented in the feeding network to achieve linear or circular polarization, and beamforming techniques like beam-steering and beam-switching enhance communication efficiency by improving signal directionality. Future research should focus on more lightweight, structurally integrated, and reconfigurable apertures that push miniaturization through conformal substrates and programmable metasurfaces, extending efficient operation from 5/6 GHz into the sub-THz regime and supporting agile beamforming for dense UAV swarms. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Graphical abstract

14 pages, 5264 KB  
Article
Compact Circularly Polarized Cavity-Backed Crossed-Dipole Antenna with Ultra-Wide Bandwidth for Integrated GNSS–SatCom Terminals
by Kunshan Mo, Xing Jiang, Ling Peng, Rui Fang, Qiushou Liu and Zhengde Li
Electronics 2025, 14(16), 3193; https://doi.org/10.3390/electronics14163193 - 11 Aug 2025
Viewed by 495
Abstract
As wireless systems evolve toward multiband, multifunctional convergence and high-throughput services, the demand for ultra-wideband circularly polarized (CP) antennas for multi-standard terrestrial–satellite terminals continues to grow; however, because of the dispersive nature of the three-quarter-ring phase shifter, the relative bandwidth achievable with conventional [...] Read more.
As wireless systems evolve toward multiband, multifunctional convergence and high-throughput services, the demand for ultra-wideband circularly polarized (CP) antennas for multi-standard terrestrial–satellite terminals continues to grow; however, because of the dispersive nature of the three-quarter-ring phase shifter, the relative bandwidth achievable with conventional crossed-dipole antennas rarely exceeds 100%. This paper presents a compact left-hand circularly polarized (LHCP) crossed-dipole antenna that combines a cavity-backed ground, ground-slot perturbations, and parasitic patches to simultaneously broaden the impedance and axial-ratio bandwidths. The fabricated prototype achieves an impedance bandwidth (IMBW) of 0.71–3.89 GHz (138%) and a 3 dB axial-ratio bandwidth (ARBW) of 0.98–3.27 GHz (108%), while maintaining gains above 3.5 dBic across most of the frequency range. The good agreement validates the multi-technique co-design and shows that the compact architecture (0.302 λ × 0.302 λ × 0.129 λ) breaks classical crossed-dipole limits. The antenna provides a scalable building block for wideband conformal arrays in next-generation integrated GNSS–SatCom systems. Full article
Show Figures

Figure 1

11 pages, 5939 KB  
Article
Low-Cost Phased Array with Enhanced Gain at the Largest Deflection Angle
by Haotian Wen, Hansheng Su, Yan Wen, Xin Ma and Deshuang Zhao
Electronics 2025, 14(15), 3111; https://doi.org/10.3390/electronics14153111 - 5 Aug 2025
Cited by 1 | Viewed by 740
Abstract
This paper presents a low-cost 1-bit phased array operating at 17 GHz (Ku band) with an enhanced scanning gain at the largest deflection angle to extend the beam coverage for ground target detection. The phased array is designed using 16 (2 × 8) [...] Read more.
This paper presents a low-cost 1-bit phased array operating at 17 GHz (Ku band) with an enhanced scanning gain at the largest deflection angle to extend the beam coverage for ground target detection. The phased array is designed using 16 (2 × 8) radiation-phase reconfigurable dipoles and a fixed-phase feeding network, achieving 1-bit beam steering via a direct current (DC) bias voltage of ±5 V. Measurement results demonstrate a peak gain of 9.2 dBi at a deflection angle of ±37°, with a 3 dB beamwidth of 94° across the scanning plane. Compared with conventional phased array radars with equivalent peak gains, the proposed design achieves a 16% increase in the detection range at the largest deflection angle. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 4331 KB  
Article
Simulation-Based Design of a Low-Cost Broadband Wide-Beamwidth Crossed-Dipole Antenna for Multi-Global Navigational Satellite System Positioning
by Songyuan Xu, Jiwon Heo, Won Seok Choi, Seong-Gon Choi and Bierng-Chearl Ahn
Sensors 2025, 25(15), 4665; https://doi.org/10.3390/s25154665 - 28 Jul 2025
Viewed by 585
Abstract
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio [...] Read more.
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio beamwidth. The design is carried out using CST Studio Suite for a single dipole antenna followed by a crossed-dipole antenna, a feed network, and the entire antenna structure. The designed multi-GNSS antenna shows, at 1.16–1.61 GHz, a reflection coefficient of less than −17 dB, a zenith gain of 3.9–5.8 dBic, a horizontal gain of −3.3 to −0.2 dBic, a zenith axial ratio of 0.6–1.0 dB, and horizontal axial ratio of 0.4–5.9 dB. The proposed antenna has a dimension of 0.48 × 0.48 × 0.25 λ at the center frequency of 1.39 GHz. The proposed antenna can also operate as an LHCP antenna for L-band satellite phone communication at 1.525–1.661 GHz. Full article
Show Figures

Figure 1

15 pages, 4646 KB  
Article
A Wideband Magneto-Electric (ME) Dipole Antenna Enabled by ME Resonance and Aperture-Coupled Excitation
by Hyojin Jang, Seyeon Park, Junghyeon Kim, Kyounghwan Kim and Sungjoon Lim
Micromachines 2025, 16(8), 853; https://doi.org/10.3390/mi16080853 - 24 Jul 2025
Viewed by 935
Abstract
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the [...] Read more.
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the electric dipole and a pair of vertical metal patches forming the magnetic dipole. A key innovation is the aperture-coupled feeding mechanism, where electromagnetic energy is transferred from a tapered microstrip line to the dipole structure through a slot etched in the ground plane. This design not only excites the characteristic ME resonances effectively but also significantly improves impedance matching, delivering a markedly broader impedance bandwidth. To validate the proposed concept, a prototype antenna was fabricated and experimentally characterized. Measurements show an impedance bandwidth of 84.48% (3.61–8.89 GHz) for S11 ≤ −10 dB and a maximum in-band gain of 7.88 dBi. The antenna also maintains a stable, unidirectional radiation pattern across the operating band, confirming its potential for wideband applications such as 5G wireless communications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

14 pages, 3371 KB  
Article
A Symmetry-Driven Broadband Circularly Polarized Magnetoelectric Dipole Antenna with Bandpass Filtering Response
by Xianjing Lin, Zuhao Jiang, Miaowang Zeng and Zengpei Zhong
Symmetry 2025, 17(7), 1145; https://doi.org/10.3390/sym17071145 - 17 Jul 2025
Viewed by 362
Abstract
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally [...] Read more.
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally placed metallic ME dipoles combined with a phase delay line, creating balanced current distributions for optimal CP characteristics. The design further incorporates symmetrical parasitic elements—a pair of identical inverted L-shaped metallic structures placed perpendicular to the ground plane at −45° relative to the ME dipoles—which introduce an additional CP resonance through their mirror-symmetric configuration, thereby significantly broadening the axial ratio bandwidth. The filtering functionality is realized through a combination of symmetrical modifications: grid slots etched in the metallic ground plane and an open-circuited stub loaded on the microstrip feed line work in tandem to create two radiation nulls in the upper stopband, while the inherent symmetrical properties of the ME dipoles naturally produce a radiation null in the lower stopband. This comprehensive symmetry-based approach results in a well-balanced bandpass filtering response across a wide operating bandwidth. Experimental validation through prototype measurement confirms the effectiveness of the symmetric design with compact dimensions of 0.96λ0 × 0.55λ0 × 0.17λ0 (λ0 is the wavelength at the lowest operating frequency), demonstrating an impedance bandwidth of 66.4% (2.87–5.05 GHz), an AR bandwidth of 31.9% (3.32–4.58 GHz), an average passband gain of 5.5 dBi, and out-of-band suppression levels of 11.5 dB and 26.8 dB at the lower and upper stopbands, respectively, along with good filtering performance characterized by a gain-suppression index (GSI) of 0.93 and radiation skirt index (RSI) of 0.58. The proposed antenna is suitable for satellite communication terminals requiring wide AR bandwidth and strong interference rejection in L/S-bands. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

14 pages, 2184 KB  
Article
A Wideband Circularly Polarized Filtering Dipole Antenna
by Xianjing Lin, Ruishan Huang, Miaowang Zeng and An Yan
Symmetry 2025, 17(7), 1047; https://doi.org/10.3390/sym17071047 - 3 Jul 2025
Viewed by 485
Abstract
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass [...] Read more.
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass filtering effects, radiation nulls are introduced on both sides of the passband. By vertically extending the ends of the four dipole arms, a ring-shaped current is formed between adjacent dipoles, generating the upper-band radiation null. Additionally, four parasitic patches are introduced parallel to the ends of the crossed dipole arms, creating another upper-band radiation null, further enhancing the frequency selectivity at the band edges and broadening the axial ratio (AR) bandwidth. Moreover, a square-ring slot is etched on the ground plane to introduce a lower-band radiation null, ultimately achieving a good bandpass filtering response. The proposed wideband CP filtering dipole antenna is implemented and tested. The antenna has a compact size of 0.49λ0× 0.49λ0× 0.16λ0 (where λ0 denotes the wavelength corresponding to the lowest operating frequency). The measured results show that the proposed antenna has an impedance bandwidth of 75% (1.65–3.66 GHz) and an overlapping AR bandwidth of 46.9% (2.25–3.63 GHz). Without additional filtering circuits, the antenna exhibits a stable gain of approximately 7 dB and three radiation nulls, with suppression levels of 20 dB in both the lower and upper stopbands, achieving good bandpass filtering performance. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

13 pages, 3951 KB  
Article
A 26.2:1 Bandwidth Ultra-Wideband Low-Profile Tightly Coupled Dipole Array with Integrated Feed Network
by Bailin Deng, Yu Yang, Xiuyuan Xu, Eryan Yan and Hongbin Chen
Sensors 2025, 25(11), 3418; https://doi.org/10.3390/s25113418 - 29 May 2025
Viewed by 908
Abstract
This article presents a novel tightly coupled dipole array (TCDA) with a bandwidth of 26.2:1 (VSWR < 3) across 0.20–5.23 GHz. By adding a new dual-stopband resistive frequency selective surface (RFSS) between the dipole and the floor, the short-circuit points formed by the [...] Read more.
This article presents a novel tightly coupled dipole array (TCDA) with a bandwidth of 26.2:1 (VSWR < 3) across 0.20–5.23 GHz. By adding a new dual-stopband resistive frequency selective surface (RFSS) between the dipole and the floor, the short-circuit points formed by the floor at the frequency points corresponding to λ = 2 h and h are both eliminated (h is the height from the antenna to the floor). A specially integrated feed network is also applied to significantly reduce the complexity and profile height to 0.05 λlow. The simulation and experimental results show that the designed TCDA has extremely wide bandwidth, good directivity and beam scanning potential. Compared with previous designs, it greatly extends the bandwidth, improves the gain, reduces the profile height, and simplifies the feeding method. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 8477 KB  
Article
Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications
by Zahra Mousavirazi, Mohamed Mamdouh M. Ali, Abdel R. Sebak and Tayeb A. Denidni
Sensors 2025, 25(11), 3387; https://doi.org/10.3390/s25113387 - 28 May 2025
Cited by 2 | Viewed by 1099
Abstract
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance [...] Read more.
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance by eliminating parasitic radiation from the feed network, thus significantly enhancing the reliability and efficiency required by IoT communication systems, particularly for smart cities, autonomous vehicles, and high-speed sensor networks. The proposed antenna achieves superior radiation characteristics through a cross-shaped magneto-electric (ME) dipole backed by an artificial magnetic conductor (AMC) cavity and electromagnetic bandgap (EBG) structures. These features suppress surface waves, reduce edge diffraction, and minimize back-lobe emissions, enabling stable, high-quality IoT connectivity. The antenna demonstrates a wide impedance bandwidth of 24% centered at 30 GHz and exceptional isolation exceeding 40 dB, ensuring interference-free dual-polarized operation crucial for densely populated IoT environments. Fabrication and testing validate the design, consistently achieving a gain of approximately 13.88 dBi across the operational bandwidth. The antenna’s performance effectively addresses the critical requirements of emerging IoT systems, including ultra-high data throughput, reduced latency, and robust wireless connectivity, essential for real-time applications such as healthcare monitoring, vehicular communication, and smart infrastructure. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

20 pages, 6160 KB  
Article
A Computational Approach to Increasing the Antenna System’s Sensitivity in a Doppler Radar Designed to Detect Human Vital Signs in the UHF-SHF Frequency Ranges
by David Vatamanu and Simona Miclaus
Sensors 2025, 25(10), 3235; https://doi.org/10.3390/s25103235 - 21 May 2025
Cited by 1 | Viewed by 1188
Abstract
In the context of Doppler radar, studies have examined the changes in the phase shift of the S21 transmission coefficient related to minute movements of the human chest as a response to breathing or heartbeat. Detecting human vital signs remains a challenge, [...] Read more.
In the context of Doppler radar, studies have examined the changes in the phase shift of the S21 transmission coefficient related to minute movements of the human chest as a response to breathing or heartbeat. Detecting human vital signs remains a challenge, especially when obstacles interfere with the attempt to detect the presence of life. The sensitivity of a measurement system’s perception of vital signs is highly dependent on the monitoring systems and antennas that are used. The current work proposes a computational approach that aims to extract an empirical law of the dependence of the phase shift of the transmission coefficient (S21) on the sensitivity at reception, based upon a set of four parameters. These variables are as follows: (a) the frequency of the continuous wave utilized; (b) the antenna type and its gain/directivity; (c) the electric field strength distribution on the chest surface (and its average value); and (d) the type of material (dielectric properties) impacted by the incident wave. The investigated frequency range is (1–20) GHz, while the simulations are generated using a doublet of dipole or gain-convenient identical Yagi antennas. The chest surface is represented by a planar rectangle that moves along a path of only 3 mm, with a step of 0.3 mm, mimicking respiration movement. The antenna–target system is modeled in the computational space in each new situation considered. The statistics illustrate the multiple regression function, empirically extracted. This enables the subsequent building of a continuous-wave bio-radar Doppler system with controlled and improved sensitivity. Full article
Show Figures

Figure 1

14 pages, 20644 KB  
Article
A High-Gain Circularly Polarized Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications
by Jun Xiao, Jing Wu, Zihang Ye, Tongyu Ding, Chongzhi Han and Qiubo Ye
Sensors 2025, 25(10), 3046; https://doi.org/10.3390/s25103046 - 12 May 2025
Cited by 1 | Viewed by 786
Abstract
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) [...] Read more.
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) coupling slot to achieve CP radiation. Through the use of all-metal radiating structures with a height of 3.4 mm, high-gain and high-efficiency radiation performances are achieved. For proof of concept, a 4 × 4 antenna array with a SIW feeding network is designed, fabricated, and measured. The measured impedance bandwidth of the proposed 4 × 4 CP antenna array is 19.2% from 33.9 to 41.1 GHz for |S11| ≤ −10 dB. The measured 3 db AR bandwidth is 10.3% from 37 to 41 GHz. The measured peak gain is 20.3 dBic at 41 GHz. The measured and simulated results are in good agreement. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

17 pages, 4117 KB  
Review
Review of Printed Log-Periodic Dipole Array Antenna Design for EMC Applications
by Abdulghafor A. Abdulhameed and Zdeněk Kubík
Inventions 2025, 10(3), 34; https://doi.org/10.3390/inventions10030034 - 25 Apr 2025
Viewed by 1732
Abstract
This article presents a brief evaluation and discussion of eight proposed printed log-periodic dipole array (PLPDA) antennas that have been introduced in the last decade for EMC applications. These proposed antennas could serve as reference antennas for radiation and immunity tests inside the [...] Read more.
This article presents a brief evaluation and discussion of eight proposed printed log-periodic dipole array (PLPDA) antennas that have been introduced in the last decade for EMC applications. These proposed antennas could serve as reference antennas for radiation and immunity tests inside the EMC chamber. Step-by-step design procedures have been detailed with various feeding methods, showing their effect on the wideband characteristic compared to the design complexity. Different miniaturization and bandwidth improvement methods have been utilized to tackle the size reduction and bandwidth enhancement goals. Furthermore, the comprehensive view of the specifications of the reference antenna design inside the EMC chamber has been explained in detail, which presents the motivation for using a printed antenna rather than the classical one for these applications. The achievements of the presented designs have been listed, compared, and discussed with the classical LPDA antenna (HyperLOG 7060) offered for sale. Finally, a brief conclusion presents the recommendations for the design and analysis of the PLPDA antenna for EMC measurements. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

23 pages, 18184 KB  
Article
A Wearable Dual-Band Magnetoelectric Dipole Rectenna for Radio Frequency Energy Harvesting
by Xin Sun, Jingwei Zhang, Wenjun Wang and Daping He
Electronics 2025, 14(7), 1314; https://doi.org/10.3390/electronics14071314 - 26 Mar 2025
Cited by 2 | Viewed by 931
Abstract
This article presents a novel, compact, and flexible dual-band magnetoelectric dipole rectenna designed for radio frequency (RF) energy harvesting. The rectenna consists of a unique antenna structure, combining electric and magnetic dipoles to create unidirectional radiation patterns, minimizing interference from the human body. [...] Read more.
This article presents a novel, compact, and flexible dual-band magnetoelectric dipole rectenna designed for radio frequency (RF) energy harvesting. The rectenna consists of a unique antenna structure, combining electric and magnetic dipoles to create unidirectional radiation patterns, minimizing interference from the human body. The rectifier is integrated with the antenna through conjugate matching, eliminating the need for additional matching circuits, reducing circuit losses, minimizing design complexity, and improving conversion efficiency. The proposed rectenna utilizes a flexible graphene film as the radiating element, which offers excellent conductivity and corrosion resistance, enabling conformal operation in diverse scenarios. Simulation and experimental results show that the rectenna operates effectively at 3.5 GHz and 4.9 GHz, achieving peak conversion efficiencies of 53.43% and 43.95%, respectively, at an input power of 4 dBm. The simulated and measured results achieved good agreement. The rectenna maintains stable performance under various bending conditions, demonstrating its suitability for flexible, wearable RF energy-harvesting systems. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

9 pages, 3098 KB  
Article
Terahertz Reconfigurable Planar Graphene Hybrid Yagi–Uda Antenna
by Qimeng Liu, Renbin Zhong, Boli Xu, Jiale Dong, Gefu Teng, Ke Zhong, Zhenhua Wu, Kaichun Zhang, Min Hu and Diwei Liu
Nanomaterials 2025, 15(7), 488; https://doi.org/10.3390/nano15070488 - 25 Mar 2025
Cited by 1 | Viewed by 824
Abstract
In this paper, we design a frequency reconfigurable antenna for terahertz communication. The antenna is based on a Yagi design, with the main radiating elements being a pair of dipole antennas printed on the top and bottom of a dielectric substrate, respectively. The [...] Read more.
In this paper, we design a frequency reconfigurable antenna for terahertz communication. The antenna is based on a Yagi design, with the main radiating elements being a pair of dipole antennas printed on the top and bottom of a dielectric substrate, respectively. The director and reflector elements give the antenna end-fire characteristics. The ends of the two arms of the dipole are constructed by staggered metal and graphene parasitic patches. By utilizing the effect of gate voltage on the conductivity of graphene, the equivalent length of the dipole antenna arms are altered and thereby adjust the antenna’s operating frequency. The proposed reconfigurable hybrid Yagi–Uda antenna can operate in five frequency bands separately at a peak gain of 4.53 dB. This reconfigurable antenna can meet the diverse requirements of the system without changing its structure and can reduce the size and cost while improving the performance. Full article
Show Figures

Figure 1

13 pages, 15867 KB  
Article
Development of Metal-Compatible Dipole Antenna for RFID
by Kazuki Suehiro, Kenta Nakashima, Kenji Ito, Eriko Aibara, Koji Sakakibara, Kyrillos Youssef and Haruichi Kanaya
Electronics 2025, 14(6), 1154; https://doi.org/10.3390/electronics14061154 - 14 Mar 2025
Viewed by 1193
Abstract
We developed a metal-compatible RFID dipole antenna. The antenna consists of three layers, including the top metal, dielectric substrate, and bottom metal, with the top metal and bottom metal of the dipole antenna shorted at the side edges of the antenna. In order [...] Read more.
We developed a metal-compatible RFID dipole antenna. The antenna consists of three layers, including the top metal, dielectric substrate, and bottom metal, with the top metal and bottom metal of the dipole antenna shorted at the side edges of the antenna. In order to accurately measure the gain and reflection coefficient (|S11|) of the antenna in the desired frequency band, an impedance matching circuit was created using an open stub around the feeding section of the antenna. The simulation and measurement results of the |S11| and antenna’s realized gain are presented in this paper. The measured |S11| has similar characteristics to the design results at around 915–940 MHz. The size of the proposed antenna is 70 mm × 50 mm × 1.636 mm. In addition, the antenna can be bent at 0, 3, or 5 divisions to fit curved metal objects such as lithium-ion batteries (LIBs). This antenna structure is a fundamental area of study for future application to flexible substrates. Conductive adhesive tape (copper tape) was used to connect each section. The surface of the copper tape was fixed with adhesive to prevent it from peeling off. In the simulation and measurement, it was confirmed that our proposed antenna could operate around the desired frequency band. In the future, we plan to install an IC chip in the antenna input section and work towards implementing it in society. Full article
(This article belongs to the Special Issue Antenna Design and Its Applications)
Show Figures

Figure 1

Back to TopTop