Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = double screen innovation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4547 KB  
Systematic Review
A Systematic Literature Review of Artificial Intelligence in Prehospital Emergency Care
by Omar Elfahim, Kokou Laris Edjinedja, Johan Cossus, Mohamed Youssfi, Oussama Barakat and Thibaut Desmettre
Big Data Cogn. Comput. 2025, 9(9), 219; https://doi.org/10.3390/bdcc9090219 - 26 Aug 2025
Viewed by 1479
Abstract
Background: The emergency medical services (EMS) sector, as a complex system, presents substantial hurdles in providing excellent treatment while operating within limited resources, prompting greater adoption of artificial intelligence (AI) as a tool for improving operational efficiency. While AI models have proved beneficial [...] Read more.
Background: The emergency medical services (EMS) sector, as a complex system, presents substantial hurdles in providing excellent treatment while operating within limited resources, prompting greater adoption of artificial intelligence (AI) as a tool for improving operational efficiency. While AI models have proved beneficial in healthcare operations, there is limited explainability and interpretability, as well as a lack of data used in their application and technological advancement. Methods: The scoping review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for scoping reviews, using PubMed, IEEE Xplore, and Web of Science, with a procedure of double screening and extraction. The search included articles published from 2018 to the beginning of 2025. Studies were excluded if they did not explicitly identify an artificial intelligence (AI) component, lacked relevance to emergency department (ED) or prehospital contexts, failed to report measurable outcomes or evaluations, or did not exploit real-world data. We analyzed the data source used, clinical subclasses, AI domains, ML algorithms, their performance, as well as potential roles for large language models (LLMs) in future applications. Results: A comprehensive PRISMA-guided methodology was used to search academic databases, finding 1181 papers on prehospital emergency treatment from 2018 to 2025, with 65 articles identified after an extensive screening procedure. The results reveal a significant increase in AI publications. A notable technological advancement in the application of AI in EMS using different types of data was explored. Conclusions: These findings highlighted that AI and ML have emerged as revolutionary innovations with huge potential in the fields of healthcare and medicine. There are several promising AI interventions that can improve prehospital emergency care, particularly for out-of-hospital cardiac arrest and triage prioritization scenarios. Implications for EMS Practice: Integrating AI methods into prehospital care can optimize the use of available resources, as well as triage and dispatch efficiency. LLMs may have the potential to improve understanding and assist in decision-making under pressure in emergency situations by combining various forms of recorded data. However, there is a need to emphasize continued research and strong collaboration between AI experts and EMS physicians to ensure the safe, ethical, and effective integration of AI into EMS practice. Full article
Show Figures

Figure 1

20 pages, 3985 KB  
Article
Activity Analysis and Inhibition Mechanism of Four Novel Angiotensin I-Converting Enzyme Inhibitory Peptides Prepared from Flammulina velutipes by Enzymatic Hydrolysis
by Yajie Zhang, Xueqi Zhao, Xia Ma, Jiaqi Li, Xiaoyu Ye, Xuerui Wang, Wenwei Zhang and Jianmin Yun
Foods 2025, 14(15), 2619; https://doi.org/10.3390/foods14152619 - 26 Jul 2025
Viewed by 436
Abstract
In order to innovatively develop high-activity ACE inhibitory peptides from edible fungi, the conditions for a double-enzymatic hydrolysis preparation of ACE inhibitory peptides from Flammulina velutipes were optimized by response surface methodology. After purification by macroporous resin, gel chromatography, and RP-HPLC, a crude [...] Read more.
In order to innovatively develop high-activity ACE inhibitory peptides from edible fungi, the conditions for a double-enzymatic hydrolysis preparation of ACE inhibitory peptides from Flammulina velutipes were optimized by response surface methodology. After purification by macroporous resin, gel chromatography, and RP-HPLC, a crude peptide fraction was obtained; its ACE inhibition rate was 85.73 ± 0.95% (IC50 = 0.83 ± 0.09 mg/mL). Based on LC-MS/MS sequencing, the four novel peptides, namely, FAGGP, FDGY, FHPGY, and WADP, were screened by computer analysis and molecular docking technology. The four peptides exhibited a binding energy between −9.4 and −10.3 kcal/mol, and formed hydrogen bonds with Tyr523, Ala354, and Glu384 in the S1 pocket, Tyr520 and His353 in the S2 pocket, and His383 in the HEXXH zinc-coordinating motif of ACE, indicating their good affinity with the ACE active site. The IC50 values of the four ACE inhibitory peptides were 29.17, 91.55, 14.79, and 41.27 μM, respectively, suggesting that these peptides could potentially contribute to the development of new antihypertensive products. Full article
(This article belongs to the Special Issue Bioactive Peptides and Probiotic Bacteria: Modulators of Human Health)
Show Figures

Graphical abstract

24 pages, 5751 KB  
Article
Explainable Machine Learning with Two-Layer Multi-Objective Optimization Algorithm Applied to Sealing Structure Design
by Weiru Zhou and Zonghong Xie
Materials 2025, 18(10), 2307; https://doi.org/10.3390/ma18102307 - 15 May 2025
Cited by 1 | Viewed by 567
Abstract
This study addresses the challenge of optimizing seal structure design through a novel two-stage interpretable optimization framework. Focusing on O-ring waterproof performance under hyperelastic material behavior, this study proposes a double-layer optimization method integrating explainable machine learning with hierarchical clustering algorithms. The key [...] Read more.
This study addresses the challenge of optimizing seal structure design through a novel two-stage interpretable optimization framework. Focusing on O-ring waterproof performance under hyperelastic material behavior, this study proposes a double-layer optimization method integrating explainable machine learning with hierarchical clustering algorithms. The key innovation lies in employing modified hierarchical clustering to categorize design parameters into two interpretable groups: bolt preload and groove depth. This clustering enables dimensionality reduction while maintaining the physical interpretability of critical parameters. In the first layer, systematic parameter screening and optimization are applied to the preload variable to reduce the database, with six remaining data points that constitute one-seventh of the original data. The second layer subsequently refines configurations using E-TOPSIS (Entropy Weight—Technique for Order Preference by Similarity to Ideal Solution) optimization. All evaluations are performed through FEA (finite element analysis) considering nonlinear material responses. The optimal design is a groove depth of 0.8 mm and a preload of 80 N. The experimental validation demonstrates that this method efficiently identifies optimal designs meeting IPX8 waterproof requirements, with zero leakage observed in both O-ring surfaces and motor interiors. The proposed methodology provides physically meaningful design guidelines. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

43 pages, 2542 KB  
Article
Mathematical Background and Algorithms of a Collection of Android Apps for a Google Play Store Page
by Roland Szabo
Appl. Sci. 2025, 15(8), 4431; https://doi.org/10.3390/app15084431 - 17 Apr 2025
Viewed by 510
Abstract
This paper discusses three algorithmic strategies tailored for distinct applications, each aiming to tackle specific operational challenges. The first application unveils an innovative SMS messaging system that substitutes manual typing with voice interaction. The key algorithm facilitates real-time conversion from speech to text [...] Read more.
This paper discusses three algorithmic strategies tailored for distinct applications, each aiming to tackle specific operational challenges. The first application unveils an innovative SMS messaging system that substitutes manual typing with voice interaction. The key algorithm facilitates real-time conversion from speech to text for message creation and from text to speech for message playback, thus turning SMS communication into an audio-focused exchange while preserving conventional messaging standards. The second application suggests a secure file management system for Android, utilizing encryption and access control algorithms to safeguard user privacy. Its mathematical framework centers on cryptographic methods for file security and authentication processes to prevent unauthorized access. The third application redefines flashlight functionality using an optimized touch interface algorithm. By employing a screen-wide double-tap gesture recognition system, this approach removes the reliance on a physical button, depending instead on advanced event detection and hardware control logic to activate the device’s flash. All applications are fundamentally based on mathematical modeling and algorithmic effectiveness, emphasizing computational approaches over implementation specifics. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

16 pages, 2000 KB  
Proceeding Paper
The Utilization of Printed Circuit Boards (PCBs) in Axial Flux Machines: A Systematic Review
by Isiaka Shuaibu, Eric Ho Tatt Wei, Ramani Kannan and Yau Alhaji Samaila
Eng. Proc. 2025, 87(1), 13; https://doi.org/10.3390/engproc2025087013 - 6 Mar 2025
Cited by 1 | Viewed by 2175
Abstract
The rapid advancement of technology has increased our reliance on axial flux permanent magnet machines (AFPMMs), making Printed Circuit Boards (PCBs) essential for modern, lightweight designs. This study reviews PCB roles in AFPMMs for low- and high-power applications by examining research from 2019 [...] Read more.
The rapid advancement of technology has increased our reliance on axial flux permanent magnet machines (AFPMMs), making Printed Circuit Boards (PCBs) essential for modern, lightweight designs. This study reviews PCB roles in AFPMMs for low- and high-power applications by examining research from 2019 to 2024. Using the PRISMA methodology, 38 articles from IEEE Xplore and Web of Science were analyzed. This review focuses on advancements in PCB manufacturing, defect mitigation, winding topologies, software tools, and optimization methods. A structured Boolean search strategy (“Printed Circuit Board” OR “PCB” AND “axial flux permanent magnet machine” OR “AFPM”) guided the literature retrieval process. Articles were meticulously screened using the Rayyan software for titles, abstracts, and content, with duplicate removal performed via the Mendeley software V2.120.0. Findings show significant progress in lightweight AFPMMs with PCBs, improving power quality and performance. Research activity over the 6 years showed inconsistent growth, with concentrated trapezoidal winding emerging as the dominant configuration, followed by distributed winding designs. These configurations were particularly applied in single stator double rotor (SSDR) coreless AFPM machines, characterized by minimal defects, minimal losses, and optimized single-layer winding designs utilizing tools such as ANSYS and COMSOL. Growing interest in double stator single rotor (DSSR) and multi-disk configurations highlights opportunities for innovative designs and advanced optimization techniques. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

27 pages, 7929 KB  
Review
Recent Progress of Chemical Reactions Induced by Contact Electrification
by Xinyi Huo, Shaoxin Li, Bing Sun, Zhong Lin Wang and Di Wei
Molecules 2025, 30(3), 584; https://doi.org/10.3390/molecules30030584 - 27 Jan 2025
Cited by 3 | Viewed by 2756
Abstract
Contact electrification (CE) spans from atomic to macroscopic scales, facilitating charge transfer between materials upon contact. This interfacial charge exchange, occurring in solid–solid (S–S) or solid–liquid (S–L) systems, initiates radical generation and chemical reactions, collectively termed contact-electro-chemistry (CE-Chemistry). As an emerging platform for [...] Read more.
Contact electrification (CE) spans from atomic to macroscopic scales, facilitating charge transfer between materials upon contact. This interfacial charge exchange, occurring in solid–solid (S–S) or solid–liquid (S–L) systems, initiates radical generation and chemical reactions, collectively termed contact-electro-chemistry (CE-Chemistry). As an emerging platform for green chemistry, CE-Chemistry facilitates redox, luminescent, synthetic, and catalytic reactions without the need for external power sources as in traditional electrochemistry with noble metal catalysts, significantly reducing energy consumption and environmental impact. Despite its broad applicability, the mechanistic understanding of CE-Chemistry remains incomplete. In S–S systems, CE-Chemistry is primarily driven by surface charges, whether electrons, ions, or radicals, on charged solid interfaces. However, a comprehensive theoretical framework is yet to be established. While S–S CE offers a promising platform for exploring the interplay between chemical reactions and triboelectric charge via surface charge modulation, it faces significant challenges in achieving scalability and optimizing chemical efficiency. In contrast, S–L CE-Chemistry focuses on interfacial electron transfer as a critical step in radical generation and subsequent reactions. This approach is notably versatile, enabling bulk-phase reactions in solutions and offering the flexibility to choose various solvents and/or dielectrics to optimize reaction pathways, such as the degradation of organic pollutants and polymerization, etc. The formation of an interfacial electrical double layer (EDL), driven by surface ion adsorption following electron transfer, plays a pivotal role in CE-Chemical processes within aqueous S–L systems. However, the EDL can exert a screening effect on further electron transfer, thereby inhibiting reaction progress. A comprehensive understanding and optimization of charge transfer mechanisms are pivotal for elucidating reaction pathways and enabling precise control over CE-Chemical processes. As the foundation of CE-Chemistry, charge transfer underpins the development of energy-efficient and environmentally sustainable methodologies, holding transformative potential for advancing green innovation. This review consolidates recent advancements, systematically classifying progress based on interfacial configurations in S–S and S–L systems and the underlying charge transfer dynamics. To unlock the full potential of CE-Chemistry, future research should prioritize the strategic tuning of material electronegativity, the engineering of sophisticated surface architectures, and the enhancement of charge transport mechanisms, paving the way for sustainable chemical innovations. Full article
Show Figures

Figure 1

30 pages, 712 KB  
Review
IL-18 and IL-18BP: A Unique Dyad in Health and Disease
by Daniela Novick
Int. J. Mol. Sci. 2024, 25(24), 13505; https://doi.org/10.3390/ijms252413505 - 17 Dec 2024
Cited by 11 | Viewed by 5970
Abstract
Interleukin-18 (IL-18) serves a dual function in the immune system, acting as a “double-edged sword” cytokine. Depending on the microenvironment and timing, IL-18 can either drive harmful inflammation or restore immune homeostasis. Pathologies characterized by elevated IL-18, recently proposed to be termed IL-18opathies, [...] Read more.
Interleukin-18 (IL-18) serves a dual function in the immune system, acting as a “double-edged sword” cytokine. Depending on the microenvironment and timing, IL-18 can either drive harmful inflammation or restore immune homeostasis. Pathologies characterized by elevated IL-18, recently proposed to be termed IL-18opathies, highlight the therapeutic potential for IL-18 blockade. IL-18 Binding Protein (IL-18BP) is one of only four natural cytokine antagonists encoded by a separate gene, distinguishing it from canonical soluble receptors. IL-18BP’s exceptionally high affinity and slow dissociation rate make it an effective regulator of IL-18, essential for maintaining immune balance and influencing disease outcomes, and positions IL-18BP as a promising alternative to more aggressive treatments that carry risks of severe infections and other complications. Tadekinig alfa, the drug form of IL-18BP, represents a targeted therapy that modulates the IL-18/IL-18BP axis, offering a safe adverse-effect-free option. With orphan drug designation, Phase III clinical trial completion, and seven years of compassionate use, Tadekinig alfa holds promise in treating autoimmune and inflammatory diseases, cancer, and genetically linked disorders. Levels of IL-18, free IL-18 and IL-18BP, may serve as biomarkers for disease severity and therapeutic response. Given its pivotal role in immune balance, the IL-18/IL-18BP dyad has attracted interest from over ten pharmaceutical companies and startups, which are currently developing innovative strategies to either inhibit or enhance IL-18 activity depending on the therapeutic need. The review focuses on the features of the dyad members and screens the therapeutic approaches. Full article
(This article belongs to the Special Issue Immunomodulatory Molecules in Cancer)
Show Figures

Figure 1

15 pages, 2547 KB  
Article
Availability Evaluation and Application of MNP (Multiple Nucleotide Polymorphism) Markers in Variety Identification of Chrysanthemum
by Yanfang Liu, Qin Zhao, Tiantian Li, Cailing Teng, Hai Peng, Zongze Yao, Zhiwei Fang, Junfei Zhou, Xiaohong Yang, Juxiang Qiao, Jin Mao, Zhiyong Guan and Qiang Hu
Horticulturae 2024, 10(8), 845; https://doi.org/10.3390/horticulturae10080845 - 9 Aug 2024
Cited by 1 | Viewed by 1649
Abstract
In China, PBR (Plant Breeder’s Right) applications of chrysanthemum rank first among all of the applications of ornamental crops in China due to the plant’s significant ornamental, edible, and medicinal values. However, issues of variety infringement and disputes have become increasingly prominent, and [...] Read more.
In China, PBR (Plant Breeder’s Right) applications of chrysanthemum rank first among all of the applications of ornamental crops in China due to the plant’s significant ornamental, edible, and medicinal values. However, issues of variety infringement and disputes have become increasingly prominent, and traditional molecular markers are difficult to use due to the high heterozygosity and complex ploidy of chrysanthemum. Our study explored the availability of MNP (Multiple Nucleotide Polymorphism) markers in this regard. In total, 30 representative varieties of five types were selected for the screening of MNPs, and another 136 varieties were selected for validation of the screened MNPs. Based on ddRAD-seq (Double Digest Restriction site-associated DNA sequencing) of the 30 varieties, 26,147 SNPs were screened for genetic analysis,and 487 MNPs were screened with a length from 139 to 274 bp, an average of 6.6 SNPs individually, and a repeatability rate of 99.73%. Among the 487 MNPs, 473 MNP markers were found to cover all 27 chromosomes of chrysanthemum. Performance of our MNPs in the 136 varieties was similar to those in the 30 varieties, where the average Ho (observed heterozygosity) was 71.48%, and the average DP (discriminative power) was 82.77%, preliminarily indicating the stability of the 487 MNPs. On the other hand, clustering results based on the 487 MNPs were also generally consistent with those based on the 26,147 SNPs, as well as those based on phenotypic traits, and initial grouping, likewise, further indicating the robust capability of our MNPs in variety discrimination, which is similar to their correspondence with numerous SNPs. Therefore, our MNP markers have great potential in the accurate and rapid identification of chrysanthemum varieties, and, accordingly, in fostering breeding innovation and promoting chrysanthemum marketing. Full article
(This article belongs to the Special Issue New Advances in Molecular Biology of Horticultural Plants)
Show Figures

Figure 1

18 pages, 8957 KB  
Article
Formation of Stable Vascular Networks by 3D Coaxial Printing and Schiff-Based Reaction
by Jingxin Shan, Zhiyuan Kong and Xiaohong Wang
Gels 2024, 10(6), 366; https://doi.org/10.3390/gels10060366 - 25 May 2024
Cited by 6 | Viewed by 2583
Abstract
Vascularized organs hold potential for various applications, such as organ transplantation, drug screening, and pathological model establishment. Nevertheless, the in vitro construction of such organs encounters many challenges, including the incorporation of intricate vascular networks, the regulation of blood vessel connectivity, and the [...] Read more.
Vascularized organs hold potential for various applications, such as organ transplantation, drug screening, and pathological model establishment. Nevertheless, the in vitro construction of such organs encounters many challenges, including the incorporation of intricate vascular networks, the regulation of blood vessel connectivity, and the degree of endothelialization within the inner cavities. Natural polymeric hydrogels, such as gelatin and alginate, have been widely used in three-dimensional (3D) bioprinting since 2005. However, a significant disparity exists between the mechanical properties of the hydrogel materials and those of human soft tissues, necessitating the enhancement of their mechanical properties through modifications or crosslinking. In this study, we aim to enhance the structural stability of gelatin–alginate hydrogels by crosslinking gelatin molecules with oxidized pullulan (i.e., a polysaccharide) and alginate molecules with calcium chloride (CaCl2). A continuous small-diameter vascular network with an average outer diameter of 1 mm and an endothelialized inner surface is constructed by printing the cell-laden hydrogels as bioinks using a coaxial 3D bioprinter. The findings demonstrate that the single oxidized pullulan crosslinked gelatin and oxidized pullulan/CaCl2 double-crosslinked gelatin–alginate hydrogels both exhibit a superior structural stability compared to their origins and CaCl2 solely crosslinked gelatin–alginate hydrogels. Moreover, the innovative gelatin and gelatin–alginate hydrogels, which have excellent biocompatibilities and very low prices compared with other hydrogels, can be used directly for tissue/organ construction, tissue/organ repairment, and cell/drug transportation. Full article
(This article belongs to the Special Issue Advances in Biomedical Hydrogels (2nd Edition))
Show Figures

Graphical abstract

20 pages, 2199 KB  
Article
Organ-on-a-Chip: Ubi sumus? Fundamentals and Design Aspects
by Ana Sofia Morais, Maria Mendes, Marta Agostinho Cordeiro, João J. Sousa, Alberto Canelas Pais, Silvia M. Mihăilă and Carla Vitorino
Pharmaceutics 2024, 16(5), 615; https://doi.org/10.3390/pharmaceutics16050615 - 2 May 2024
Cited by 8 | Viewed by 2884
Abstract
This review outlines the evolutionary journey from traditional two-dimensional (2D) cell culture to the revolutionary field of organ-on-a-chip technology. Organ-on-a-chip technology integrates microfluidic systems to mimic the complex physiological environments of human organs, surpassing the limitations of conventional 2D cultures. This evolution has [...] Read more.
This review outlines the evolutionary journey from traditional two-dimensional (2D) cell culture to the revolutionary field of organ-on-a-chip technology. Organ-on-a-chip technology integrates microfluidic systems to mimic the complex physiological environments of human organs, surpassing the limitations of conventional 2D cultures. This evolution has opened new possibilities for understanding cell–cell interactions, cellular responses, drug screening, and disease modeling. However, the design and manufacture of microchips significantly influence their functionality, reliability, and applicability to different biomedical applications. Therefore, it is important to carefully consider design parameters, including the number of channels (single, double, or multi-channels), the channel shape, and the biological context. Simultaneously, the selection of appropriate materials compatible with the cells and fabrication methods optimize the chips’ capabilities for specific applications, mitigating some disadvantages associated with these systems. Furthermore, the success of organ-on-a-chip platforms greatly depends on the careful selection and utilization of cell resources. Advances in stem cell technology and tissue engineering have contributed to the availability of diverse cell sources, facilitating the development of more accurate and reliable organ-on-a-chip models. In conclusion, a holistic perspective of in vitro cellular modeling is provided, highlighting the integration of microfluidic technology and meticulous chip design, which play a pivotal role in replicating organ-specific microenvironments. At the same time, the sensible use of cell resources ensures the fidelity and applicability of these innovative platforms in several biomedical applications. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

14 pages, 908 KB  
Article
Enhancing Cervical Cancer Prevention in South African Women: Primary HPV mRNA Screening with Different Genotype Combinations
by Sveinung Wergeland Sørbye, Bente Marie Falang, Matthys H. Botha, Leon Cornelius Snyman, Haynes van der Merwe, Cathy Visser, Karin Richter and Greta Dreyer
Cancers 2023, 15(22), 5453; https://doi.org/10.3390/cancers15225453 - 17 Nov 2023
Cited by 4 | Viewed by 2596
Abstract
Background: Cervical cancer prevention in regions with limited access to screening and HPV vaccination necessitates innovative approaches. This study explored the potential of a test-and-treat strategy using mRNA HPV tests to impact cervical cancer prevention in a high-prevalence HIV population. Methods: A cervical [...] Read more.
Background: Cervical cancer prevention in regions with limited access to screening and HPV vaccination necessitates innovative approaches. This study explored the potential of a test-and-treat strategy using mRNA HPV tests to impact cervical cancer prevention in a high-prevalence HIV population. Methods: A cervical screening study was conducted at three South African hospitals involving 710 under-screened, non-pregnant women (25 to 65 years) without known cervical diseases. Cytology, HPV testing, colposcopy, and biopsies were performed concurrently. Histopathologists determined final histological diagnoses based on biopsy and LLETZ histology. mRNA-HPV-genotyping for 3 (16, 18, 45) to 8 (16, 18, 31, 33, 35, 45, 52, 58) high-risk types was performed on leftover liquid-based cytology material. The preventive potential of the test-and-treat approach was estimated based on published data, reporting the causative HPV types in cervical cancer tissue from South African women. Treatment was provided as needed. Results: The HPV positivity rate more than doubled from 3-type (15.2%; 95% CI: 12.6–17.8) to 8-type mRNA (31.5%; 95% CI: 28.8–34.9) combinations, significantly higher among HIV-positive women. CIN3+ prevalence among HIV-positive women (26.4%) was double that of HIV-negative women (12.9%) (p < 0.01). The 6-type combination showed the best balance of sensitivity, specificity and treatment group size, and effectiveness to prevent cervical cancer. A 4-type combination (16, 18, 35, 45) could potentially prevent 77.6% (95% CI: 71.2–84.0) of cervical cancer burden by treating 20% and detecting 41.1% of CIN3 cases in the study group. Similarly, a 6-type combination (16, 18, 31, 33, 35, 45), treating 25% and including 62% of CIN3 cases, might prevent 85% of cervical cancer cases (95% CI: 79.6–90.6) among HIV-positive and negative women. Conclusion: Employing mRNA HPV tests within a test-and-treat approach holds huge promise for targeted cervical cancer prevention in under-screened populations. Testing for mRNA of the 6 highest-risk HPV types in this population and treating them all is projected to effectively prevent progression from CIN3 to invasive cervical cancer while reducing overtreatment in resource-constrained settings. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

15 pages, 1960 KB  
Article
A Novel Urine Test Biosensor Platform for Early Lung Cancer Detection
by Ory Wiesel, Sook-Whan Sung, Amit Katz, Raya Leibowitz, Jair Bar, Iris Kamer, Itay Berger, Inbal Nir-Ziv and Michal Mark Danieli
Biosensors 2023, 13(6), 627; https://doi.org/10.3390/bios13060627 - 6 Jun 2023
Cited by 8 | Viewed by 3598
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Early detection is essential to achieving a better outcome and prognosis. Volatile organic compounds (VOCs) reflect alterations in the pathophysiology and body metabolism processes, as shown in various types of cancers. The biosensor [...] Read more.
Lung cancer is the leading cause of cancer-related mortality worldwide. Early detection is essential to achieving a better outcome and prognosis. Volatile organic compounds (VOCs) reflect alterations in the pathophysiology and body metabolism processes, as shown in various types of cancers. The biosensor platform (BSP) urine test uses animals’ unique, proficient, and accurate ability to scent lung cancer VOCs. The BSP is a testing platform for the binary (negative/positive) recognition of the signature VOCs of lung cancer by trained and qualified Long–Evans rats as biosensors (BSs). The results of the current double-blind study show high accuracy in lung cancer VOC recognition, with 93% sensitivity and 91% specificity. The BSP test is safe, rapid, objective and can be performed repetitively, enabling periodic cancer monitoring as well as an aid to existing diagnostic methods. The future implementation of such urine tests as routine screening and monitoring tools has the potential to significantly increase detection rate as well as curability rates with lower healthcare expenditure. This paper offers a first instructive clinical platform utilizing VOC’s in urine for detection of lung cancer using the innovative BSP to deal with the pressing need for an early lung cancer detection test tool. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

11 pages, 1165 KB  
Article
Effect of Alpha-Lipoic Acid Supplementation on Low-Grade Squamous Intraepithelial Lesions—Double-Blind, Randomized, Placebo-Controlled Trial
by Anja Divković, Kristina Radić, Damir Sabitović, Nikolina Golub, Marija Grdić Rajković, Ivana Rumora Samarin, Zinaida Karasalihović, Adnan Šerak, Emir Trnačević, Petra Turčić, Dražan Butorac and Dubravka Vitali Čepo
Healthcare 2022, 10(12), 2434; https://doi.org/10.3390/healthcare10122434 - 2 Dec 2022
Cited by 3 | Viewed by 2615
Abstract
Low-grade squamous intraepithelial lesion (SIL) is a cytologic diagnosis etiologically related to human papilloma virus (HPV) infection that leads to the release of inflammation mediators, the formation of reactive oxygen species (ROS) and decreased levels of antioxidants in tissues, which is why antioxidants [...] Read more.
Low-grade squamous intraepithelial lesion (SIL) is a cytologic diagnosis etiologically related to human papilloma virus (HPV) infection that leads to the release of inflammation mediators, the formation of reactive oxygen species (ROS) and decreased levels of antioxidants in tissues, which is why antioxidants might be considered effective against SIL progression. This randomized double-blind placebo-controlled study aimed to investigate the effectiveness of alpha-lipoic acid (ALA) supplementation (600 mg/day) on the regression of low-grade SIL in 100 patients. Low-grade SIL was determined after the cytological screening, colposcopic examination and targeted biopsy and histological confirmation of cytological–colposcopic diagnosis. Inflammation parameters and the presence of HPV were determined by standard laboratory methods. Dietary and lifestyle habits were investigated using a standardized and validated semi-quantitative food questionnaire (FFQ). ALA supplementation significantly reduced the proportion of patients with low-grade cytological abnormalities, in comparison to placebo. Given the obtained level of significance (p < 0.001), the presented results indicate that short-term ALA supplementation shows a clinically significant effect on cervical cytology. Future studies should focus on the use of innovative formulations of ALA that might induce bioavailability and therapeutic efficiency against HPV infection and the investigation of synergistic effects of concurrent dietary/lifestyle modification and ALA supplementation in both low-grade and high-grade SIL. Full article
(This article belongs to the Section Women’s and Children’s Health)
Show Figures

Figure 1

17 pages, 3453 KB  
Article
Methodological Development of a Multi-Readout Assay for the Assessment of Antiviral Drugs against SARS-CoV-2
by Friedrich Hahn, Sigrun Häge, Alexandra Herrmann, Christina Wangen, Jintawee Kicuntod, Doris Jungnickl, Julia Tillmanns, Regina Müller, Kirsten Fraedrich, Klaus Überla, Hella Kohlhof, Armin Ensser and Manfred Marschall
Pathogens 2021, 10(9), 1076; https://doi.org/10.3390/pathogens10091076 - 25 Aug 2021
Cited by 11 | Viewed by 3999
Abstract
Currently, human infections with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are accelerating the ongoing spread of the pandemic. Several innovative types of vaccines have already been developed, whereas effective options of antiviral treatments still await a scientific implementation. The development [...] Read more.
Currently, human infections with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are accelerating the ongoing spread of the pandemic. Several innovative types of vaccines have already been developed, whereas effective options of antiviral treatments still await a scientific implementation. The development of novel anti-SARS-CoV-2 drug candidates demands skillful strategies and analysis systems. Promising results have been achieved with first generation direct-acting antivirals targeting the viral polymerase RdRp or the protease 3CLpro. Such recently approved or investigational drugs like remdesivir and GC376 represent a basis for further development and optimization. Here, we establish a multi-readout assay (MRA) system that enables the antiviral assessment and mechanistic characterization of novel test compounds, drug repurposing and combination treatments. Our SARS-CoV-2-specific MRA combines the quantitative measurement of several parameters of virus infection, such as the intracellular production of proteins and genomes, enzymatic activities and virion release, as well as the use of reporter systems. In this regard, the antiviral efficacy of remdesivir and GC376 has been investigated in human Caco-2 cells. The readouts included the use of spike- and double-strand RNA-specific monoclonal antibodies for in-cell fluorescence imaging, a newly generated recombinant SARS-CoV-2 reporter virus d6YFP, the novel 3CLpro-based FRET CFP::YFP and the previously reported FlipGFP reporter assays, as well as viral genome-specific RT-qPCR. The data produced by our MRA confirm the high antiviral potency of these two drugs in vitro. Combined, this MRA approach may be applied for broader analyses of SARS-CoV-2-specific antivirals, including compound screenings and the characterization of selected drug candidates. Full article
(This article belongs to the Collection SARS-CoV Infections)
Show Figures

Figure 1

13 pages, 7052 KB  
Article
Cranberry Proanthocyanidins-PANI Nanocomposite for the Detection of Bacteria Associated with Urinary Tract Infections
by Hilary Urena-Saborio, Anu Prathap M. Udayan, Emilia Alfaro-Viquez, Sergio Madrigal-Carballo, Jess D. Reed and Sundaram Gunasekaran
Biosensors 2021, 11(6), 199; https://doi.org/10.3390/bios11060199 - 19 Jun 2021
Cited by 9 | Viewed by 4332
Abstract
Consumption of cranberries is associated with the putative effects of preventing urinary tract infections (UTIs). Cranberry proanthocyanidins (PAC) contain unusual double A-type linkages, which are associated with strong interactions with surface virulence factors found on UTI-causing bacteria such as extra-intestinal pathogenic Escherichia coli [...] Read more.
Consumption of cranberries is associated with the putative effects of preventing urinary tract infections (UTIs). Cranberry proanthocyanidins (PAC) contain unusual double A-type linkages, which are associated with strong interactions with surface virulence factors found on UTI-causing bacteria such as extra-intestinal pathogenic Escherichia coli (ExPEC), depicting in bacterial agglutination processes. In this work, we demonstrated the efficacy of cranberry PAC (200 μg/mL) to agglutinate ExPEC (5.0 × 108 CFU/mL) in vitro as a selective interaction for the design of functionalized biosensors for potential detection of UTIs. We fabricated functionalized screen-printed electrodes (SPEs) by modifying with PAC-polyaniline (PANI) nanocomposites and tested the effectiveness of the PAC-PANI/SPE biosensor for detecting the presence of ExPEC in aqueous suspensions. Results indicated that the PAC-PANI/SPE was highly sensitive (limit of quantification of 1 CFU/mL of ExPEC), and its response was linear over the concentration range of 1–70,000 CFU/mL, suggesting cranberry PAC-functionalized biosensors are an innovative alternative for the detection and diagnosis of ExPEC-associated UTIs. The biosensor was also highly selective, reproducible, and stable. Full article
(This article belongs to the Special Issue Biosensors for Food and Agricultural Research)
Show Figures

Figure 1

Back to TopTop