Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = dough development time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3236 KB  
Article
Sustainable Protein-Enriched Biscuits: Effects of Mealworm Protein Powder on the Properties of Wheat Flour and Biscuit Quality
by Ao Yang, Hongrui Chen, Haixin Tian, Jianhui An, Longchen Shang, Yexing Tao and Lingli Deng
Foods 2025, 14(17), 3063; https://doi.org/10.3390/foods14173063 (registering DOI) - 30 Aug 2025
Abstract
Mealworm (Tenebrio molitor, LINNAEUS, 1758) is a protein-rich edible insect. In this study, low-gluten wheat flour was formulated with mealworm protein powder at various concentrations (0%, 5%, 10%, 15%, and 20%) to investigate its influence on the pasting, farinographic, and extensographic [...] Read more.
Mealworm (Tenebrio molitor, LINNAEUS, 1758) is a protein-rich edible insect. In this study, low-gluten wheat flour was formulated with mealworm protein powder at various concentrations (0%, 5%, 10%, 15%, and 20%) to investigate its influence on the pasting, farinographic, and extensographic properties of low-gluten wheat flour, as well as the changes in the overall quality of the resulting biscuits (soda crackers and cookies). The viscosity of the composite flour decreased with an increasing substitution level of mealworm protein powder, and the setback significantly decreased from 69.31 ± 0.16 RVU (M0) to 19.00 ± 0.71 RVU (M20), indicating enhanced resistance to starch retrogradation. Farinographic and extensographic analyses revealed that the addition of mealworm protein powder reduced dough water absorption, significantly prolonged dough development time and stability time, and enhanced overall dough stability. However, extensibility gradually decreased, with a further reduction observed as the proofing time increased. Concurrently, the baking expansion ratio and hardness of the biscuits decreased. Specifically, for soda crackers, the baking expansion ratio decreased from 198.96 ± 3.88% (M0) to 135.74 ± 1.28% (M20), and hardness dropped from 26.40 ± 1.53 N (M0) to 6.32 ± 0.08 N (M20). For cookies, the baking expansion ratio and hardness decreased from 93.77 ± 0.72% (M0) to 86.06 ± 1.08% (M20) and from 1.76 ± 0.06 N (M0) to 1.10 ± 0.16 N (M20), respectively. The impact of mealworm protein powder (5–20%) was relatively minor in cookies but more pronounced in soda crackers, likely due to differences in formulation and processing methods. Additionally, the crunchiness of soda crackers was 3.42 times greater than that of cookies, whereas resilience was only 0.15 times that of cookies under controlled conditions. Pearson correlation analysis and principal component analysis (PCA) further elucidated the relationships between the dough properties and final product quality. Furthermore, the substitution of mealworm protein powder affected the sensory properties of the product but significantly enhanced its nutritional value, confirming the feasibility of replacing low-gluten wheat flour with mealworm protein powder and offering a theoretical foundation for its development and application in diverse biscuit formulations. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

21 pages, 3755 KB  
Article
Thermal and Expansion Analysis of the Lebanese Flatbread Baking Process Using a High-Temperature Tunnel Oven
by Yves Mansour, Pierre Rahmé, Nemr El Hajj and Olivier Rouaud
Appl. Sci. 2025, 15(15), 8611; https://doi.org/10.3390/app15158611 - 4 Aug 2025
Viewed by 591
Abstract
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this [...] Read more.
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this work presents the first experimental investigation of the traditional Lebanese flatbread baking process under realistic industrial conditions, specifically using a high-temperature tunnel oven with direct flame heating, extremely short baking times (~10–12 s), and peak temperatures reaching ~650 °C, which are essential to achieving the characteristic pocket formation and texture of Lebanese bread. This experimental study characterizes the baking kinetics of traditional Lebanese flatbread, recording mass loss pre- and post-baking, thermal profiles, and dough expansion through real-time temperature measurements and video recordings, providing insights into the dough’s thermal response and expansion behavior under high-temperature conditions. A custom-designed instrumented oven with a steel conveyor and a direct flame burner was employed. The dough, prepared following a traditional recipe, was analyzed during the baking process using K-type thermocouples and visual monitoring. Results revealed that Lebanese bread undergoes significant water loss due to high baking temperatures (~650 °C), leading to rapid crust formation and pocket development. Empirical equations modeling the relationship between baking time, temperature, and expansion were developed with high predictive accuracy. Additionally, an energy analysis revealed that the total energy required to bake Lebanese bread is approximately 667 kJ/kg, with an overall thermal efficiency of only 21%, dropping to 16% when preheating is included. According to previous CFD (Computational Fluid Dynamics) simulations, most heat loss in similar tunnel ovens occurs via the chimney (50%) and oven walls (29%). These findings contribute to understanding the broader thermophysical principles that can be applied to the development of more efficient baking processes for various types of bread. The empirical models developed in this study can be applied to automating and refining the industrial production of Lebanese flatbread, ensuring consistent product quality across different baking environments. Future studies will extend this work to alternative oven designs and dough formulations. Full article
(This article belongs to the Special Issue Chemical and Physical Properties in Food Processing: Second Edition)
Show Figures

Figure 1

17 pages, 1511 KB  
Article
Impact of Selected Starter-Based Sourdough Types on Fermentation Performance and Bio-Preservation of Bread
by Khadija Atfaoui, Sara Lebrazi, Anas Raffak, Youssef Chafai, Karima El Kabous, Mouhcine Fadil and Mohammed Ouhssine
Fermentation 2025, 11(8), 449; https://doi.org/10.3390/fermentation11080449 - 1 Aug 2025
Viewed by 775
Abstract
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple [...] Read more.
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple parameters (pH, dough rising, ethanol release, and total titratable acidity) was monitored by a smart fermentation oven. The impact of the different treatments on the lactic acid, acetic acid, and ethanol content of the breads were quantified by high performance liquid chromatography analysis. In addition, the bio-preservation capacity of the breads contaminated with fungi was analyzed. The results show that liquid sourdough (D3: Type 2) and backslopped sourdough (D4: Type 3) increased significantly (p < 0.05) in dough rise, dough acidification (lower pH, higher titratable acidity), production of organic acids (lactic and acetic), and presented the optimal fermentation quotient. These findings were substantiated by chemometric analysis, which successfully clustered the starters based on performance and revealed a strong positive correlation between acetic acid production and dough-rise, highlighting the superior heterofermentative profile of D3 and D4. These types of sourdough also stood out for their antifungal capacity, preventing the visible growth of Aspergillus niger and Penicillium commune for up to 10 days after inoculation. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

19 pages, 5242 KB  
Article
Polydextrose Addition Improves the Chewiness and Extended Shelf-Life of Chinese Steamed Bread Through the Formation of a Sticky, Elastic Network Structure
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(7), 545; https://doi.org/10.3390/gels11070545 - 14 Jul 2025
Viewed by 463
Abstract
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. [...] Read more.
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. The results revealed that, compared with a control sample, 3–10% of polydextrose addition significantly increased the hardness, adhesiveness, gumminess, and chewiness of steamed bread, but other textural parameters like springiness, cohesiveness, and resilience remained basically the same. Further, in contrast to the control sample, 3–10% polydextrose addition significantly reduced the specific volume and width/height ratio of steamed bread but increased the brightness index, yellowish color, and color difference; improved the internal structure; and maintained the other sensory parameters and total score. Polydextrose addition decreased the peak, trough, final, breakdown, and setback viscosity of the pasting of wheat flour suspension solutions but increased the pasting temperature. Polydextrose additions significantly reduced the enthalpy of gelatinization and the aging rate of flour paste but increased the peak temperature of gelatinization. A Mixolab revealed that, with increases in the amount of added polydextrose, the dough’s development time and heating rate increased, but the proteins weakened, and the peak torque of gelatinization, starch breakdown, and starch setback torque all decreased. Polydextrose additions increased the crystalline regions of starch, the interaction between proteins and starch, and the β-sheet percentage of wheat dough without yeast and of steamed bread. The amorphous regions of starch were increased in dough through adding polydextrose, but they were decreased in steamed bread. Further, 3–10%of polydextrose addition decreased the random coils, α-helixes, and β-turns in dough, but the 3–7% polydextrose addition maintained or increased these conformations in steamed bread, while 10% polydextrose decreased them. In unfermented dough, as a hydrogel, the 5–7% polydextrose addition resulted in the formation of a continuous three-dimensional network structure with certain adhesiveness and elasticity, with increases in the porosity and gas-holding capacity of the product. Moreover, the 10% polydextrose addition further increased the viscosity, freshness, and looseness of the dough, with smaller and more numerous holes and indistinct boundaries between starch granules. These results indicate that the 3–10% polydextrose addition increases the chewiness and freshness of steamed bread by improving the gluten network structure. This study will promote the addition of polydextrose in steamed bread to improve shelf-life and dietary fiber contents. Full article
Show Figures

Figure 1

16 pages, 943 KB  
Article
Monitoring the Olfactory Evolution of Cold-Fermented Sourdough Using an Electronic Nose
by Elisabetta Poeta, Estefanía Núñez-Carmona, Veronica Sberveglieri, Jesús Lozano and Ramiro Sánchez
Chemosensors 2025, 13(5), 187; https://doi.org/10.3390/chemosensors13050187 - 17 May 2025
Cited by 1 | Viewed by 1303
Abstract
The quality of artisanal bread is strongly influenced by sourdough fermentation, where aroma development and microbial stability are key factors. This study evaluates the use of an electronic nose (E-nose) to monitor cold fermentation, integrating it with microbiological analysis and gas chromatography–mass spectrometry [...] Read more.
The quality of artisanal bread is strongly influenced by sourdough fermentation, where aroma development and microbial stability are key factors. This study evaluates the use of an electronic nose (E-nose) to monitor cold fermentation, integrating it with microbiological analysis and gas chromatography–mass spectrometry (SPME-GC-MS) to characterize the dough’s volatile profile. A clear correlation was observed between microbial dynamics, pH reduction (from 5.8 to 3.8), and the evolution of volatile compounds, with notable increases in acetic acid (up to 12.75%), ethanol (11.95%), and fruity esters such as isoamyl acetate (33.33%). Linear discriminant analysis (LDA) explained 96.31% of the total variance in a single component, successfully separating the fermentation stages. An artificial neural network discriminant analysis (ANNDA) model achieved 95% accuracy in the validation phase. These results confirm the E-nose’s ability to track biochemical transformations in real time and identify optimal fermentation points. This approach enhances quality control and sensory standardization in sourdough-based bakery products. Full article
Show Figures

Graphical abstract

13 pages, 2306 KB  
Article
Fortification of Chinese Steamed Bread Through Broken Ganoderma lucidum Spore Powder Incorporation: Effects on Physicochemical and Quality Properties
by Jia Chen, Deyu Cheng, Siyi Luo, Yilan Hu, Chun Liu, Xingfeng Guo, Xiuzhu Yu, Lingyan Zhang and Jihong Wu
Foods 2025, 14(8), 1433; https://doi.org/10.3390/foods14081433 - 21 Apr 2025
Viewed by 915
Abstract
Broken Ganoderma lucidum spore powder (BGLSP) is abundant in nutrients and bioactive compounds, rendering it a suitable functional raw material for food applications. This study examined the impact of incorporating BGLSP (ranging from 0.5% to 10%) on the physicochemical properties of flour blends, [...] Read more.
Broken Ganoderma lucidum spore powder (BGLSP) is abundant in nutrients and bioactive compounds, rendering it a suitable functional raw material for food applications. This study examined the impact of incorporating BGLSP (ranging from 0.5% to 10%) on the physicochemical properties of flour blends, dough, and the quality of Chinese steamed bread (CSB). The results indicated that with increasing BGLSP content, the a* value, onset temperature, peak temperature, water absorption, development time, and dough stability all exhibited an upward trend in the flour blends and dough, while the L* value and protein network weakening decreased. When compared to the control sample, the inclusion of 10% BGLSP resulted in a reduction in the spread ratio, specific volume, cohesiveness, and springiness of CSB, while simultaneously increasing its hardness, chewiness, and gumminess. The observed odor variations among samples were primarily ascribed to the proportions of aldehydes and ketones. Notably, sensory evaluation demonstrated that the flavor attributes of BGLSP-enhanced samples were superior to those of the control sample. In conclusion, the incorporation of BGLSP at concentrations ranging from 0.5% to 1% is deemed optimal for CSB, offering novel insights into the application of BGLSP within the food industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

20 pages, 8305 KB  
Article
Effect of Addition Amount on Rheological, Structural, and Sensory Properties of Whole-Grain Sweet Potato Noodles Using Extrusion
by Yan Zeng, Jie Wang, Mengxiao Bao, Yue Wu and Zhigang Chen
Foods 2025, 14(6), 1040; https://doi.org/10.3390/foods14061040 - 19 Mar 2025
Viewed by 891
Abstract
Whole grain foods have been recommended to preserve biologically active components and benefit human health. The effect of the addition amount of whole sweet potato flour (WSPF, 25%, 51%, and 75%) on the physicochemical and structural properties of extruded whole-grain noodles was evaluated. [...] Read more.
Whole grain foods have been recommended to preserve biologically active components and benefit human health. The effect of the addition amount of whole sweet potato flour (WSPF, 25%, 51%, and 75%) on the physicochemical and structural properties of extruded whole-grain noodles was evaluated. Compared with traditional wheat flour (WF), the increased content of WSPF led to an enhancement in the dough’s water retention capacity, resulting in the reduction of dough development time and stability time. The modulus of elasticity and the modulus of loss of the dough exhibited a positive correlation with the proportion of WSPF added, while the tangent value and maximum creep flexibility were negatively correlated. Confocal laser scanning microscopy (CLSM) observed that WSPF induced protein aggregation in the dough. Compared to conventional WF, the increased incorporation of WSPF resulted in improved textural characteristics of the extruded noodles. Sensory evaluation indicated that the addition of WSPF could enhance the quality of the noodles by imparting a sweet potato aroma, a distinctive color, and a satisfactory taste. These characteristics were correlated with their enhanced relative crystallinity, enthalpy, and short-range ordered structure. Additionally, 75% whole-grain sweet potato noodles exhibited the highest relative crystallinity (11.05%), enthalpy of pasting (ΔH, 22.6 J/g), and short-range ordered structure (0.78). SEM results indicated that the presence of holes in the cross-section of the sweet potato extruded noodles facilitated their rapid rehydration. Overall, the whole-grain sweet potato noodles have great potential in promoting the textural, sensory, and nutritional properties compared to traditional wheat noodles. Full article
Show Figures

Figure 1

22 pages, 3628 KB  
Article
Effect of Polydextrose on the Cooking and Gelatinization Properties and Microstructure of Chinese Early Indica Rice
by Mengya Wang, Chang Liu, Xiaohong Luo, Jianzhang Wu and Xingjun Li
Gels 2025, 11(3), 171; https://doi.org/10.3390/gels11030171 - 26 Feb 2025
Cited by 2 | Viewed by 858
Abstract
To reduce the hard texture of cooked early indica rice, two types of polydextrose (ST with 1% moisture content (MC) and XG with 4.7% MC) were added at 0%, 3%, 5%, 7%, and 10%, respectively, to the cooking milled rice polished from the [...] Read more.
To reduce the hard texture of cooked early indica rice, two types of polydextrose (ST with 1% moisture content (MC) and XG with 4.7% MC) were added at 0%, 3%, 5%, 7%, and 10%, respectively, to the cooking milled rice polished from the paddies of the 2.5-year-stored IP46 variety and the newly harvested Sharuan Nian (SRN) variety. Compared with early indica rice without polydextrose, the cooking time was significantly reduced and gruel solids loss was increased with the increase in polydextrose addition. Generalized linear model (GLM) analysis shows that both polydextrose equally reduced the hardness, adhesive force, adhesiveness, cohesiveness, gumminess, and chewiness of the cooked early indica rice, and maintained the resilience. They also significantly reduced the rapid viscosity analysis (RVA) parameters like the peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and setback viscosity of early indica rice, and significantly increased the peak time and pasting temperature. Both polydextrose significantly increased the gelatinization temperature of rice flour measured by a differential scanning calorimeter (DSC)and reduced the gelatinization enthalpy and aging. Compared with the sample without polydextrose, the addition of two types of polydextrose significantly increased the dough development time of rice flour measured by a Mixolab, but reduced the maximum gelatinization torque, starch breakdown and setback torque, and heating rate. XG had a higher capability in decreasing the rice cooking time and the aging of retrograded rice flour paste, and in increasing the score of the appearance structure and taste in cooked rice than ST; ST was better in decreasing the gelatinization enthalpy of rice flour paste and the setback torque of rice dough than XG, maybe due to the polymer molecular weight. Microstructure analysis showed that adding polydextrose promoted the entry of water molecules into the surface of the rice kernel and the dissolution of starch, and the honeycomb structure was gradually destroyed, resulting in larger pores. The cross-section of the cooked rice kernel formed cracks due to the entry of water, the cracks in the IP46 variety were larger and shallower than those in the SRN variety, and there were more filamentous aggregates in the IP46 variety. Polydextrose addition aggravated the swelling of starch granules, made the internal structure loose and produced an obvious depression in the central area of the cross-section, forming soft and evenly swollen rice kernels. These results suggest that polydextrose addition can significantly improve the hard texture of cooked early indica rice and shorten the cooking time. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products)
Show Figures

Figure 1

12 pages, 2342 KB  
Article
Effect of Stem Elongation Waterlogging on Wheat Grain Yield, Grain Traits, and Quality of Chinese Southern-Type Steamed Bread
by Fengcun Yu, Xiaojie Fan and Hongwei Yuan
Agriculture 2025, 15(5), 459; https://doi.org/10.3390/agriculture15050459 - 21 Feb 2025
Viewed by 531
Abstract
In this study, the effect of waterlogging stress at the stem elongation stage on the wheat grain yield, grain traits, and quality of Chinese southern-type steamed bread was investigated in a field experiment using three winter wheat varieties (Aikang 58, Yannong 19, and [...] Read more.
In this study, the effect of waterlogging stress at the stem elongation stage on the wheat grain yield, grain traits, and quality of Chinese southern-type steamed bread was investigated in a field experiment using three winter wheat varieties (Aikang 58, Yannong 19, and Huaimai 44). Waterlogging stress significantly (p < 0.001) decreased the grain yields of the three wheat varieties, and Aikang 58 was the most tolerant variety, achieving a 90.8% yield compared with that of the control (normal irrigation). A grain component analysis showed that waterlogging significantly (p < 0.05) decreased the ratios of glutenin to gliadin and amylopectin to amylose in wheat grain. A Mixolab analysis showed that waterlogging significantly (p < 0.05) decreased the dough development time; stability; and C2, C3, C4, and C5 values of the three wheat varieties. A steamed bread-making test showed that steamed bread made from Aikang 58 under waterlogging conditions showed a lighter color, a higher specific volume, and a lower hardness than that made from Yannong 19 and Huaimai 44 under waterlogging conditions. Overall, waterlogging showed different effects on the wheat grain and steamed bread qualities in the three wheat varieties, with Aikang 58 exerting the best performance under waterlogging conditions. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

25 pages, 2096 KB  
Article
Cucurbita maxima Plomo Peel as a Valuable Ingredient for Bread-Making
by Durim Alija, Remigiusz Olędzki, Daniela Nikolovska Nedelkoska, Ewa Pejcz, Agata Wojciechowicz-Budzisz, Viktorija Stamatovska and Joanna Harasym
Foods 2025, 14(4), 597; https://doi.org/10.3390/foods14040597 - 11 Feb 2025
Cited by 1 | Viewed by 2151
Abstract
The utilization of food industry by-products represents a significant opportunity for developing functional foods. This study investigated the incorporation of Cucurbita maxima Plomo peel powder (PS) into wheat bread formulations to assess its potential as a valuable ingredient for bread-making. PS was incorporated [...] Read more.
The utilization of food industry by-products represents a significant opportunity for developing functional foods. This study investigated the incorporation of Cucurbita maxima Plomo peel powder (PS) into wheat bread formulations to assess its potential as a valuable ingredient for bread-making. PS was incorporated into wheat flour at 1%, 10%, and 20% levels. The dough’s rheological properties were analyzed using Mixolab. Bread samples were evaluated for physical characteristics (volume, texture, colour), antioxidant properties (DPPH, ABTS, FRAP), and reducing sugar content. Analyses were performed on day 0 and after 7 days of storage. PS incorporation significantly modified dough rheology, with increased development time and enhanced protein stability. Bread volume decreased progressively with PS addition (from 195.5 cm3 to 109.8 cm3 at 20% PS). However, antioxidant activity increased substantially, particularly in the crust, with ABTS values rising from 2.37 to 10.08 TE μM/g DM in water extracts. Total phenolic content and reducing sugars showed significant increases across all PS concentrations. Storage studies revealed stable antioxidant properties but progressive textural changes, with hardness increasing from 6.83 N to 108.8 N at 20% PS after 7 days. While PS incorporation affects bread’s physical properties, the significant enhancement in antioxidant activity and phenolic content suggests its potential as a functional ingredient. The optimal incorporation level should balance technological properties with nutritional benefits. Full article
Show Figures

Figure 1

19 pages, 4525 KB  
Article
Enhancement of Dough Processing and Steamed Bread Quality with Modified Soybean Residue Dietary Fiber
by Jun Zhao, Wenlong Xie, Zhilong Chen, Yuqian Zheng and Sheng Li
Foods 2025, 14(3), 346; https://doi.org/10.3390/foods14030346 - 21 Jan 2025
Cited by 1 | Viewed by 1785
Abstract
The effects of different modified soybean residues’ dietary fiber on the physicochemical properties of wheat dough and the quality of steamed bread were systematically analyzed in this study. The physical and chemical parameters of dough, such as texture characteristics, water distribution, secondary structure, [...] Read more.
The effects of different modified soybean residues’ dietary fiber on the physicochemical properties of wheat dough and the quality of steamed bread were systematically analyzed in this study. The physical and chemical parameters of dough, such as texture characteristics, water distribution, secondary structure, and the specific volume, color, and sensory evaluation results of steamed bread products were analyzed in detail. The results showed that adding 6% modified soybean residue dietary fiber enhanced the gluten network, increasing the S–S bond content and improving gluten stability. Notably, the inclusion of 6% residue modified by the ultrasound combined with enzyme method (UEDF) led to a 2.55% increase in the β-fold content of gluten proteins and a 3.60% rise in disulfide bond content. These changes resulted in a reduction in dough relaxation time, promoting a more uniform and compact pore structure in the dough. Additionally, steamed bread made with 6% UEDF showed a 0.3 mL/g increase in specific volume, a 4.69 point rise in L* value, and improved sensory attributes such as taste, odor, and appearance. These research results provide valuable insights and guidance for the development of soybean residue dietary fiber foods. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 1195 KB  
Article
Effects of Acorn Flour Addition on Baking Characteristics of Wheat Flour
by Emilia Szabłowska and Małgorzata Tańska
Foods 2025, 14(2), 190; https://doi.org/10.3390/foods14020190 - 9 Jan 2025
Cited by 2 | Viewed by 1261
Abstract
This study aimed to evaluate the impact of incorporating acorn flour (at levels ranging from 5% to 50%) on the baking properties of wheat flour (type 750). The assessment focused on key baking parameters, including fermentation properties, pasting behavior, and dough rheological characteristics [...] Read more.
This study aimed to evaluate the impact of incorporating acorn flour (at levels ranging from 5% to 50%) on the baking properties of wheat flour (type 750). The assessment focused on key baking parameters, including fermentation properties, pasting behavior, and dough rheological characteristics such as farinographic and extensographic properties. A laboratory baking test was conducted to compare the technological properties of wheat and wheat–acorn breads, assessing dough and bread yields, oven and total losses, bread volume, and crumb hardness. Additionally, the nutritional value of selected bread variants was established. The results indicated that flour mixtures with acorn flour exhibited a significantly reduced capacity to retain gases produced during fermentation (by up to 92%) and increased resistance to gelatinization, as evidenced by lower gel viscosity (by up to 14%) and higher endpoint temperatures during pasting (by 2–4%). The inclusion of acorn flour in wheat dough notably affected its rheological properties, particularly by reducing dough extensibility (by up to 56%). However, farinographic parameters such as dough development time and stability time were extended (by 23–378% and 29–291%, respectively). High levels of acorn flour addition (>30%) resulted in bread with a dense, gummy, and less spongy crumb structure, accompanied by a reduction in loaf volume (by 40–52%). The maximal acceptable addition of acorn flour (30%) resulted in a two-fold increase in ash and fiber contents, along with decreases in carbohydrate and protein contents by 12% and 27%, respectively. These findings emphasize the need for careful formulation adjustments when incorporating acorn flour into wheat-based baked goods to balance technological efficiency and improved nutritional value. Full article
Show Figures

Figure 1

15 pages, 6308 KB  
Article
Microwave and Steam Processing: A Novel Approach to Modifying the Characteristics of Reconstituted Whole Wheat Flour and Dough
by Xuhua Liu, Qiangqiang Sun, Rong Yan, Yaqing Wang, Junying Wang, Liping Yang and Ligong Zhai
Molecules 2025, 30(2), 203; https://doi.org/10.3390/molecules30020203 - 7 Jan 2025
Cited by 2 | Viewed by 1245
Abstract
To reduce the adverse effects of bran on whole wheat flour products. In this study, seven reconstituted whole wheat flours were prepared and used to determine the effects of microwave and steam treatment on bran. We aimed to understand the effect of modification [...] Read more.
To reduce the adverse effects of bran on whole wheat flour products. In this study, seven reconstituted whole wheat flours were prepared and used to determine the effects of microwave and steam treatment on bran. We aimed to understand the effect of modification treatment on the properties of reconstituted whole wheat flour and dough. Treatment with whole wheat flour had a significant impact on the color, solubility, and swelling. As the cooking time increased, the initial temperature (To), peak temperature (Tp), and final temperature (Tc) of pasting and enthalpy (Hp) decreased. The combination of microwave and steam modification increased water absorption and stabilization time, leading to improved fermentation performance and cooking stability of the dough. The modified whole wheat flour and dough exhibited a significant decrease in crystallinity, possibly due to the degradation of the crystalline and amorphous regions of the starch granules during heat treatment. Upon modification treatment, the spiral β-turn structure was transformed into an irregular curled and β-sheet structure, and the β-sheet ratio increased significantly (p < 0.05). The modification of bran through microwave treatment (700 W for 30 s) followed by steam treatment (10 min) enhanced the processing performance of reconstituted whole wheat flour, offering substantial potential for the development of novel products and the optimization of industrial production efficiency. Full article
Show Figures

Graphical abstract

20 pages, 3665 KB  
Article
Development of Functional Bread: Exploring the Nutritional, Bioactive and Microbial Potential of Carob (Ceratonia siliqua L.) Pulp Powder
by Jana Zahorec, Dragana Šoronja-Simović, Jovana Petrović, Zita Šereš, Branimir Pavlić, Danica Božović, Lidija Perović, Nikola Martić, Sandra Bulut and Sunčica Kocić-Tanackov
Processes 2024, 12(12), 2882; https://doi.org/10.3390/pr12122882 - 16 Dec 2024
Cited by 2 | Viewed by 1287
Abstract
For the development of a high-quality functional bread, it is of crucial importance to find a compromise between improving the functional value of the product and impairing its quality. Therefore, the primary aim of this work was to define the effects of carob [...] Read more.
For the development of a high-quality functional bread, it is of crucial importance to find a compromise between improving the functional value of the product and impairing its quality. Therefore, the primary aim of this work was to define the effects of carob pulp powder (CP; 10–20% on flour basis) on the rheological behavior of dough and quality parameters of bread. The introduction of CP caused a major increase in dough resistance to extension while significantly decreasing dough extensibility, resulting in a lower volume with a denser crumb structure of the obtained bread samples. The negative effects of the CP on the dough and bread characteristics were partially compensated by the addition of dry sourdough (DS) as an improver at the level of 5–10% (flour basis). It was determined that by combining 15% CP and 10% DS, bread of very good sensory quality can be produced. The content of total dietary fiber (6.48 g), Mn (0.76 mg) and Cu (0.21 mg) per 100 g of the mentioned bread was sufficient for the nutritional claims “high in fiber”, “high in manganese” and “source of copper”. The obtained bread had a content of total phenols 10 times higher than the control and 5.5, 12 and 26 times higher antioxidant activity determined by FRAP, DPPH and ABTS tests, respectively. Moreover, microbiological tests confirmed the durability of the bread with 15% CP and 10% DS of up to seven days. Therefore, carob pulp powder can be successfully applied in the production of bread whose characteristics are adapted to modern trends in nutrition. Full article
Show Figures

Figure 1

20 pages, 2518 KB  
Article
Impact of Hemp (Cannabis sativa L.) Protein Addition on the Rheological Properties of Wheat Flour Dough and Bread Quality
by Anna Marinopoulou, Nikoleta Sevastopoulou, Kyriaki Farmouzi, Evdokia Konstantinidou, Afroditi Alexandri and Maria Papageorgiou
Appl. Sci. 2024, 14(24), 11633; https://doi.org/10.3390/app142411633 - 12 Dec 2024
Cited by 2 | Viewed by 1543
Abstract
Hemp protein (Cannabis sativa L.) was incorporated into wheat flour at concentrations of 5%, 10%, and 15% and its effects on the rheological properties of the dough and the quality characteristics of the resulted breads were investigated. Rheological analysis revealed that hemp [...] Read more.
Hemp protein (Cannabis sativa L.) was incorporated into wheat flour at concentrations of 5%, 10%, and 15% and its effects on the rheological properties of the dough and the quality characteristics of the resulted breads were investigated. Rheological analysis revealed that hemp protein-enriched doughs exhibited significantly higher Young’s modulus of elasticity and elongational viscosity values compared to the wheat flour dough, indicating that the incorporation of hemp protein affected the firmness of the doughs. Farinograph analysis showed that replacing wheat flour with hemp protein increased water absorption, dough development time, and stability, while extensiograph analysis showed increased dough resistance and decreased extensibility and energy with hemp protein addition. Statistical analysis revealed that hemp protein significantly affected the moisture content, specific volume and crumb color of breads. Bread fortified with hemp protein had a darker color compared to the control bread. The addition of hemp protein affected the texture of the breads. It is recommended that hemp protein could be utilized as an alternative protein source, potentially enhancing dough characteristics, texture, quality, and the nutritional value of protein-rich breads, biscuits, snacks, and other bakery products. Full article
Show Figures

Figure 1

Back to TopTop