Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = dual-function radar communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 916 KB  
Article
Hybrid ISAC-LSTM Architecture for Enhanced Target Tracking in Integrated Sensing and Communication Systems: A Symmetric Dual-Function Framework
by Sümeye Nur Karahan
Symmetry 2025, 17(10), 1725; https://doi.org/10.3390/sym17101725 - 14 Oct 2025
Viewed by 302
Abstract
Target tracking in integrated sensing and communication (ISAC) systems faces critical challenges due to complex interference patterns and dynamic resource allocation between radar sensing and wireless communication functions. Classical tracking algorithms struggle with the non-Gaussian noise characteristics inherent in ISAC environments. This paper [...] Read more.
Target tracking in integrated sensing and communication (ISAC) systems faces critical challenges due to complex interference patterns and dynamic resource allocation between radar sensing and wireless communication functions. Classical tracking algorithms struggle with the non-Gaussian noise characteristics inherent in ISAC environments. This paper addresses these limitations through a novel hybrid ISAC-LSTM architecture that enhances Extended Kalman Filter performance using intelligent machine learning corrections. The approach processes comprehensive feature vectors including baseline EKF states, ISAC-specific interference indicators, and innovation-based statistical occlusion detection. ISAC systems exhibit fundamental symmetry through dual sensing–communication operations sharing identical spectral and hardware resources, requiring balanced resource allocation, where αsensing+αcomm=1. The proposed hybrid architecture preserves this functional symmetry while achieving balanced performance across symmetric dual evaluation scenarios (normal and extreme conditions). Comprehensive evaluation across three realistic deployment scenarios demonstrates substantial performance improvements, achieving 21–24% RMSE reductions over classical methods (3.5–3.6 m vs. 4.6 m) with statistical significance confirmed through paired t-tests and cross-validation. The hybrid system incorporates fail-safe mechanisms ensuring reliable operation when machine learning components encounter errors, addressing critical deployment concerns for practical ISAC applications. Full article
(This article belongs to the Special Issue Symmetry and Wireless Communication Technologies)
Show Figures

Figure 1

25 pages, 2103 KB  
Article
A Phase-Coded FMCW-Based Integrated Sensing and Communication System Design for Maritime Search and Rescue
by Delong Xing, Chi Zhang and Yongwei Zhang
Sensors 2025, 25(17), 5403; https://doi.org/10.3390/s25175403 - 1 Sep 2025
Viewed by 619
Abstract
Maritime search and rescue (SAR) demands reliable sensing and communication under sea clutter. Emerging integrated sensing and communication (ISAC) technology provides new opportunities for the development and modernization of maritime radio communication, particularly in relation to search and rescue. This study investigated the [...] Read more.
Maritime search and rescue (SAR) demands reliable sensing and communication under sea clutter. Emerging integrated sensing and communication (ISAC) technology provides new opportunities for the development and modernization of maritime radio communication, particularly in relation to search and rescue. This study investigated the dual-function capability of a phase-coded frequency modulated continuous wave (FMCW) system for search and rescue at sea, in particular for life signs detection in the presence of sea clutter. The detection capability of the FMCW system was enhanced by applying phase-modulated codes on chirps, and radar-centric communication function is supported simultaneously. Various phase-coding schemes including Barker, Frank, Zadoff-Chu (ZC), and Costas were assessed by adopting the peak sidelobe level and integrated sidelobe level of the ambiguity function of the established signals. The interplay of sea waves was represented by a compound K-distribution model. A multiple-input multiple-output (MIMO) architecture with the ZC code was adopted to detect multiple objects with a high resolution for micro-Doppler determination by taking advantage of spatial coherence with beamforming. The effectiveness of the proposed method was validated on the 4-transmit, 4-receive (4 × 4) MIMO system with ZC coded FMCW signals. Monte Carlo simulations were carried out incorporating different combinations of targets and user configurations with a wide range of signal-to-noise ratio (SNR) settings. Extensive simulations demonstrated that the mean squared error (MSE) of range estimation remained low across the evaluated SNR setting, while communication performance was comparable to that of a baseline orthogonal frequency-division multiplexing (OFDM)-based system. The high performance demonstrated by the proposed method makes it a suitable maritime search and rescue solution, in particular for vision-restricted situations. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

24 pages, 3172 KB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 - 1 Aug 2025
Viewed by 935
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

20 pages, 4062 KB  
Article
Design and Experimental Demonstration of an Integrated Sensing and Communication System for Vital Sign Detection
by Chi Zhang, Jinyuan Duan, Shuai Lu, Duojun Zhang, Murat Temiz, Yongwei Zhang and Zhaozong Meng
Sensors 2025, 25(12), 3766; https://doi.org/10.3390/s25123766 - 16 Jun 2025
Cited by 2 | Viewed by 949
Abstract
The identification of vital signs is becoming increasingly important in various applications, including healthcare monitoring, security, smart homes, and locating entrapped persons after disastrous events, most of which are achieved using continuous-wave radars and ultra-wideband systems. Operating frequency and transmission power are important [...] Read more.
The identification of vital signs is becoming increasingly important in various applications, including healthcare monitoring, security, smart homes, and locating entrapped persons after disastrous events, most of which are achieved using continuous-wave radars and ultra-wideband systems. Operating frequency and transmission power are important factors to consider when conducting earthquake search and rescue (SAR) operations in urban regions. Poor communication infrastructure can also impede SAR operations. This study proposes a method for vital sign detection using an integrated sensing and communication (ISAC) system where a unified orthogonal frequency division multiplexing (OFDM) signal was adopted, and it is capable of sensing life signs and carrying out communication simultaneously. An ISAC demonstration system based on software-defined radios (SDRs) was initiated to detect respiratory and heartbeat rates while maintaining communication capability in a typical office environment. The specially designed OFDM signals were transmitted, reflected from a human subject, received, and processed to estimate the micro-Doppler effect induced by the breathing and heartbeat of the human in the environment. According to the results, vital signs, including respiration and heartbeat rates, have been accurately detected by post-processing the reflected OFDM signals with a 1 MHz bandwidth, confirmed with conventional contact-based detection approaches. The potential of dual-function capability of OFDM signals for sensing purposes has been verified. The principle and method developed can be applied in wider ISAC systems for search and rescue purposes while maintaining communication links. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

23 pages, 25882 KB  
Article
Robust Low-Sidelobe MIMO Dual-Function Radar–Communication Waveform Design
by Xuchen Liu, Yongjun Liu, Guisheng Liao, Hao Tang, Heming Wang and Xiaoyang Dong
Remote Sens. 2025, 17(7), 1242; https://doi.org/10.3390/rs17071242 - 31 Mar 2025
Viewed by 824
Abstract
In multi-input–multi-output (MIMO) dual-function radar–communication (DFRC) systems, the inevitable amplitude–phase errors increase the sidelobe of transmit beampattern and distort the synthesized waveforms, which degrades both radar and communication performance. Due to this, a robust low-sidelobe MIMO DFRC waveform design method is proposed. Firstly, [...] Read more.
In multi-input–multi-output (MIMO) dual-function radar–communication (DFRC) systems, the inevitable amplitude–phase errors increase the sidelobe of transmit beampattern and distort the synthesized waveforms, which degrades both radar and communication performance. Due to this, a robust low-sidelobe MIMO DFRC waveform design method is proposed. Firstly, a DFRC transmit signal model based on the uncertainty sets of amplitude–phase errors is established. The robust low-sidelobe MIMO DFRC waveform design problem is then formulated. In this problem, the sidelobe of transmit beampattern is minimized with the constraints on the mutual interference and the desired waveforms. To decrease the computational complexity, an alternating direction method of multipliers (ADMM)-based waveform design method is proposed, and the convergence is proved. Finally, some simulation results are presented to validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

28 pages, 1189 KB  
Article
Spectrum Sharing Design for Integrated Aeronautical Communication and Radar System
by Lanchenhui Yu, Jingjing Zhao, Quan Zhou, Yanbo Zhu and Kaiquan Cai
Remote Sens. 2025, 17(7), 1208; https://doi.org/10.3390/rs17071208 - 28 Mar 2025
Viewed by 762
Abstract
The novel framework of an integrated aeronautical communication and radar system (IACRS) to realize spectrum sharing is investigated. A non-orthogonal multiple access (NOMA)-motivated multi-input–multi-output (MIMO) scheme is proposed for the dual-function system, which is able to detect multiple aircraft while simultaneously transmitting dedicated [...] Read more.
The novel framework of an integrated aeronautical communication and radar system (IACRS) to realize spectrum sharing is investigated. A non-orthogonal multiple access (NOMA)-motivated multi-input–multi-output (MIMO) scheme is proposed for the dual-function system, which is able to detect multiple aircraft while simultaneously transmitting dedicated messages. Specifically, NOMA-inspired technology is utilized to enable dual-spectrum sharing. The superposition of communication and radar signals is facilitated in the power domain. Successive interference cancellation (SIC) is employed at the receiver to effectively mitigate inter-function interference. Subsequently, the regularity of the three-dimensional flight track and attitude is exploited to model the air-to-ground (A2G) MIMO channel. Based on this framework, a joint optimization problem is formulated to maximize the weighted achievable sum rate and the sensing signal–clutter–noise ratio (SCNR) while satisfying the rate requirements for message transmission and ensuring the radar detection threshold. An alternative optimization (AO) algorithm is proposed to solve the non-convex problem with highly coupled variables. The original problem is decoupled into two manageable subproblems: transmit beamforming of the ground base station combined with power allocation and receiver beamforming at the aircraft. The penalty-based approach and the successive rank-one constraint relaxation (SROCR) method are developed for iteratively handling the non-convex rank-one constraints in subproblems. Numerical simulations demonstrate that the proposed IACRS framework significantly outperforms benchmark schemes. Full article
Show Figures

Figure 1

22 pages, 2652 KB  
Article
Millimeter-Wave OFDM-FMCW Radar-Communication Integration System Design
by Jiangtao Liu, Wenyuan Feng, Tao Su, Jianzhong Chen and Shaohong Xue
Remote Sens. 2025, 17(6), 1062; https://doi.org/10.3390/rs17061062 - 18 Mar 2025
Cited by 1 | Viewed by 2713
Abstract
Frequency-modulated continuous wave (FMCW) and orthogonal frequency-division multiplexing (OFDM) technologies play significant roles in millimeter-wave radar and communication. Their combinations, however, are understudied in the literature. This paper introduces a novel OFDM-FMCW dual-functional radar-communications (DFRC) system that takes advantage of the merits of [...] Read more.
Frequency-modulated continuous wave (FMCW) and orthogonal frequency-division multiplexing (OFDM) technologies play significant roles in millimeter-wave radar and communication. Their combinations, however, are understudied in the literature. This paper introduces a novel OFDM-FMCW dual-functional radar-communications (DFRC) system that takes advantage of the merits of both technologies. Specifically, we introduce a baseband modulation to the traditional FMCW radar system architecture. This integration combines the advantages of both waveforms, enhancing the diversity of radar transmission waveforms without compromising high-resolution distance detection and enjoying the communication capabilities of OFDM in the meantime. We establish the system and signal models for the proposed DFRC and develop holistic methods for both sensing and communications to accommodate the integration. For radar, we develop an efficient radar sensing scheme, with the impacts of adding OFDM also being analyzed. A communication scheme is also proposed, utilizing the undersampling theory to recover the OFDM baseband signals modulated by FMCW. The theoretical model of the communication receive signal is analyzed, and a coarse estimation combined with a fine estimation method for Carrier Frequency Offset (CFO) estimation is proposed. System simulations validate the feasibility of radar detection and communication demodulation. Full article
Show Figures

Graphical abstract

25 pages, 4128 KB  
Article
Enhancing the Communication Bandwidth of FH-MIMO DFRC Systems Through Constellation Rotation Modulation
by Jiangtao Liu, Weibin Jiang, Wentie Yang, Tao Su and Jianzhong Chen
Remote Sens. 2025, 17(6), 1058; https://doi.org/10.3390/rs17061058 - 17 Mar 2025
Viewed by 787
Abstract
This paper presents a technique based on Constellation Rotation Modulation (CRM) to enhance the communication bandwidth of Frequency-Hopping Multiple-Input Multiple-Output Dual-Function Radar and Communication (FH-MIMO DFRC) systems. The technique introduces the dimension of constellation diagram rotation without increasing the system bandwidth or power [...] Read more.
This paper presents a technique based on Constellation Rotation Modulation (CRM) to enhance the communication bandwidth of Frequency-Hopping Multiple-Input Multiple-Output Dual-Function Radar and Communication (FH-MIMO DFRC) systems. The technique introduces the dimension of constellation diagram rotation without increasing the system bandwidth or power consumption, significantly improving communication efficiency. Specifically, CRM, by rotating the constellation diagram, combines with traditional Frequency-Hopping Code Selection (FHCS) and Quadrature Amplitude Modulation (QAM) to achieve higher data transmission rates. Through theoretical analysis and experimental verification, we demonstrate the specific modulation and demodulation principles of CRM, and we compare the differences between the minimum Euclidean distance-based and constellation diagram folding projection fast demodulation methods. The impact of the proposed modulation on radar detection range and detection performance was analyzed in conjunction with radar equations and ambiguity functions. Finally, achieved through simulation analysis of radar and communication systems, as well as actual system testing on an SDR platform, the simulation and experimental results indicate that CRM modulation can significantly enhance communication bandwidth while maintaining radar detection performance, thereby validating the accuracy and reliability of the theory. Full article
Show Figures

Figure 1

19 pages, 558 KB  
Article
Optimization of Robust and Secure Transmit Beamforming for Dual-Functional MIMO Radar and Communication Systems
by Zhuochen Chen, Ximin Li and Shengqi Zhu
Remote Sens. 2025, 17(5), 816; https://doi.org/10.3390/rs17050816 - 26 Feb 2025
Cited by 1 | Viewed by 1113
Abstract
This paper investigates a multi-antenna, multi-input multi-output (MIMO) dual-functional radar and communication (DFRC) system platform. The system simultaneously detects radar targets and communicates with downlink cellular users. However, the modulated information within the transmitted waveforms may be susceptible to eavesdropping. To ensure the [...] Read more.
This paper investigates a multi-antenna, multi-input multi-output (MIMO) dual-functional radar and communication (DFRC) system platform. The system simultaneously detects radar targets and communicates with downlink cellular users. However, the modulated information within the transmitted waveforms may be susceptible to eavesdropping. To ensure the security of information transmission, we introduce non-orthogonal multiple access (NOMA) technology to enhance the security performance of the MIMO-DFRC platform. Initially, we consider a scenario where the channel state information (CSI) of the radar target (eavesdropper) is perfectly known. Using fractional programming (FP) and semidefinite relaxation (SDR) techniques, we maximize the system’s total secrecy rate under the requirements for radar detection performance, communication rate, and system energy, thereby ensuring the security of the system. In the case where the CSI of the radar target (eavesdropper) is unavailable, we propose a robust secure beamforming optimization model. The channel model is represented as a bounded uncertainty set, and by jointly applying first-order Taylor expansion and the S-procedure, we transform the original problem into a tractable one characterized by linear matrix inequalities (LMIs). Numerical results validate the effectiveness and robustness of the proposed approach. Full article
Show Figures

Figure 1

19 pages, 4243 KB  
Article
Dual Function Radar and Communication Signal Design with Combined Waveform Selection and Pulse Repetition Interval Agility
by Yu Liu, Xiheng Li, Xing Zou and Zhihang Yang
Symmetry 2025, 17(2), 195; https://doi.org/10.3390/sym17020195 - 27 Jan 2025
Viewed by 1070
Abstract
The traditional probe–pass integration system embeds communication information into a radar waveform, which leads to a high level of waveform autocorrelation sidelobes and a poor false symbol rate at low signal-to-noise ratios. This article proposes a three-dimensional indexed modulation-based design method for probe–pass [...] Read more.
The traditional probe–pass integration system embeds communication information into a radar waveform, which leads to a high level of waveform autocorrelation sidelobes and a poor false symbol rate at low signal-to-noise ratios. This article proposes a three-dimensional indexed modulation-based design method for probe–pass integration waveforms. This method realises communication information modulation and demodulation by simultaneously indexing orthogonal waveform selection, transmitting pulse PRI changes and carrier frequency changes in three dimensions, and applying compressed perception technology to solve the problems of PRI shortcuts and carrier frequency, resulting in a velocity term in the received waveform that cannot be accumulated by phase reference to realise velocity super-resolution. Finally, the radar detection performance and communication performance are simulated and analysed, and the simulation results reveal that the method proposed in this paper can not only satisfy the radar detection performance requirements but also achieve a lower unsigned rate on the basis of an improved communication rate. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 454 KB  
Article
Dual-Function Radar Communications: A Secure Optimization Approach Using Partial Group Successive Interference Cancellation
by Mengqiu Chai, Shengjie Zhao and Yuan Liu
Remote Sens. 2025, 17(3), 364; https://doi.org/10.3390/rs17030364 - 22 Jan 2025
Viewed by 1616
Abstract
As one of the promising technologies of 6G, dual-function radar communication (DFRC) integrates communication and radar sensing networks. However, with the application and deployment of DFRC, its security problem has become a significantly important issue. In this paper, we consider the physical layer [...] Read more.
As one of the promising technologies of 6G, dual-function radar communication (DFRC) integrates communication and radar sensing networks. However, with the application and deployment of DFRC, its security problem has become a significantly important issue. In this paper, we consider the physical layer security of a DFRC system where the base station communicates with multiple legitimate users and simultaneously detects the sensing target of interest. The sensing target is also a potential eavesdropper wiretapping the secure transmission. To this end, we proposed a secure design based on partial group successive interference cancellation through fully leveraging the split messages and partially decoding to improve the rate increment of legitimate users. In order to maximize the radar echo signal-to-noise ratio (SNR), we formulate an optimization problem of beamforming and consider introducing new variables and relaxing the problem to solve the non-convexity of the problem. Then, we propose a joint secure beamforming and rate optimization algorithm to solve the problem. Simulation results demonstrate the effectiveness of our design in improving the sensing and secrecy performance of the considered DFRC system. Full article
Show Figures

Figure 1

20 pages, 581 KB  
Article
Low-Resolution Quantized Precoding for Multiple-Input Multiple-Output Dual-Functional Radar–Communication Systems Used for Target Sensing
by Xiang Feng, Zhongqing Zhao, Jiongshi Wang, Jian Wang, Zhanfeng Zhao and Zhiquan Zhou
Remote Sens. 2025, 17(2), 198; https://doi.org/10.3390/rs17020198 - 8 Jan 2025
Cited by 1 | Viewed by 913
Abstract
Dual-functional radar–communication systems are extensively employed for the detection and control of unmanned aerial vehicle groups and play crucial roles in scenario monitoring. In this study, we address the downlink precoding problem in large-scale multi-user multiple-input multiple-output dual-function radar–communication systems equipped with low-resolution [...] Read more.
Dual-functional radar–communication systems are extensively employed for the detection and control of unmanned aerial vehicle groups and play crucial roles in scenario monitoring. In this study, we address the downlink precoding problem in large-scale multi-user multiple-input multiple-output dual-function radar–communication systems equipped with low-resolution quantized digital-to-analog converters. To tackle this issue, we develop a weighted optimization framework that minimizes the mean squared error between the transmitted symbols and their estimates while satisfying specific radar performance requirements. Due to the complexity introduced by discrete constraints, we decompose the original problem into three sub-problems to reduce computational burden. Furthermore, we propose a dynamic projection refinement algorithm within the alternating direction method of multiplier framework to efficiently solve these sub-problems. Numerical experiments demonstrate that our proposed method outperforms existing state-of-the-art techniques, particularly in terms of bit error rate in low signal-to-noise ratio scenarios. Full article
Show Figures

Figure 1

20 pages, 1508 KB  
Article
Secure Unmanned Aerial Vehicle Communication in Dual-Function Radar Communication System by Exploiting Constructive Interference
by Qian Xu, Jia Yi, Xianyu Wang, Ming-bo Niu, Md. Sipon Miah and Ling Wang
Drones 2024, 8(10), 581; https://doi.org/10.3390/drones8100581 - 15 Oct 2024
Cited by 2 | Viewed by 1713
Abstract
In contrast from traditional unmanned aerial vehicle communication via unlicensed spectrum, connecting unmanned aerial vehicles with cellular networks can extend their communication coverage and improve the quality of their service. In addition, the emerging dual-functional radar communication paradigm in cellular systems can better [...] Read more.
In contrast from traditional unmanned aerial vehicle communication via unlicensed spectrum, connecting unmanned aerial vehicles with cellular networks can extend their communication coverage and improve the quality of their service. In addition, the emerging dual-functional radar communication paradigm in cellular systems can better meet the requirements of location-sensitive tasks such as reconnaissance and cargo delivery. Based on the above considerations, in this paper, we study the simultaneous communication and target sensing issue in cellular-connected unmanned aerial vehicle systems. Specifically, we consider a two-cell coordinated system with two base stations, cellular unmanned aerial vehicles, and potential aerial targets. In such systems, the communication security issue of cellular unmanned aerial vehicles regarding eavesdropping on their target is inevitable since the main beam of the transmit waveform needs to point to the direction of the target for achieving a sufficient detection performance. Aiming at protecting the privacy of cellular transmission as well as performing target sensing, we exploit the physical layer security technique with the aid of constructive interference-based precoding. A transmit power minimization problem is formulated with constraints on secure and reliable cellular transmission and a sufficient radar signal-to-interference-plus-noise ratio. By specially designing the transmit beamforming vectors at the base stations, the received signals at the cellular users are located in the decision regions of the transmitted symbols while the targets can only receive wrong symbols. We also compare the performance of the proposed scheme with that of the traditional one without constructive interference. The simulation results show that the proposed constructive interference-based strategy can meet the requirements of simultaneous target sensing and secure communication, and also save transmit power compared with the traditional scheme. Full article
(This article belongs to the Special Issue Physical-Layer Security in Drone Communications)
Show Figures

Figure 1

16 pages, 21081 KB  
Article
Optimized Design of Direct Digital Frequency Synthesizer Based on Hermite Interpolation
by Kunpeng Zhou, Qiaoyu Xu and Tianle Zhang
Sensors 2024, 24(19), 6285; https://doi.org/10.3390/s24196285 - 28 Sep 2024
Cited by 5 | Viewed by 1584
Abstract
To address the issue of suboptimal spectral purity in Direct Digital Frequency Synthesis (DDFS) within resource-constrained environments, this paper proposes an optimized DDFS technique based on cubic Hermite interpolation. Initially, a DDFS hardware architecture is implemented on a Field-Programmable Gate Array (FPGA); subsequently, [...] Read more.
To address the issue of suboptimal spectral purity in Direct Digital Frequency Synthesis (DDFS) within resource-constrained environments, this paper proposes an optimized DDFS technique based on cubic Hermite interpolation. Initially, a DDFS hardware architecture is implemented on a Field-Programmable Gate Array (FPGA); subsequently, essential interpolation parameters are extracted by combining the derivative relations of sine and cosine functions with a dual-port Read-Only Memory (ROM) structure using the cubic Hermite interpolation method to reconstruct high-fidelity target waveforms. This approach effectively mitigates spurious issues caused by amplitude quantization during the DDFS digitalization process while reducing data node storage units. Moreover, this paper introduces single-quadrant ROM compression technology to further diminish the required storage space. Experimental results indicate that, compared to traditional DDFS methods, the optimization scheme proposed in this work achieves a ROM resource compression ratio of 1792:1 and a 14-bit output Spurious-Free Dynamic Range (SFDR) of −88.134 dBc, effectively enhancing amplitude quantization precision and significantly lowering spurious levels. This significantly improves amplitude quantization precision and reduces spurious levels. The proposed scheme demonstrates notable advantages in both spectral performance and resource utilization efficiency, making it highly suitable for resource-constrained embedded systems and high-performance applications such as radar and communication systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 21647 KB  
Article
Modified Hybrid Integration Algorithm for Moving Weak Target in Dual-Function Radar and Communication System
by Wenshuai Ji, Tao Liu, Yuxiao Song, Haoran Yin, Biao Tian and Nannan Zhu
Remote Sens. 2024, 16(19), 3601; https://doi.org/10.3390/rs16193601 - 27 Sep 2024
Cited by 3 | Viewed by 1408
Abstract
To detect moving weak targets in the dual function radar communication (DFRC) system of an orthogonal frequency division multiplexing (OFDM) waveform, a modified hybrid integration method is addressed in this paper. A high-speed aircraft can cause range walk (RW) and Doppler walk (DW), [...] Read more.
To detect moving weak targets in the dual function radar communication (DFRC) system of an orthogonal frequency division multiplexing (OFDM) waveform, a modified hybrid integration method is addressed in this paper. A high-speed aircraft can cause range walk (RW) and Doppler walk (DW), rendering traditional detection methods ineffective. To overcome RW and DW, this paper proposes an integration approach combining DFRC and OFDM. The proposed approach consists of two primary components: intra-frame coherent integration and hybrid multi-inter-frame integration. After the echo signal is re-fragmented into multiple subfragments, the first step involves integrating energy across fixed situations within intra-frames for each subcarrier. Subsequently, coherent integration is performed across the subfragments, followed by the application of a Radon transform (RT) to generate frames based on the properties derived from the coherent integration output. This paper provides detailed expressions and analyses for various performance metrics of our proposed method, including the communication bit error ratio (BER), responses of coherent and non-coherent outputs, and probability of detection. Simulation results demonstrate the effectiveness of our strategy. Full article
Show Figures

Figure 1

Back to TopTop