Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = electric quadrupole transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3595 KB  
Article
EM Characterization of a Compact RFQ Cold Model Prototype Employing a New Power Injection Scheme
by Marco A. López, Joaquín Portilla, Victor Etxebarria, Iñigo Arredondo and Jorge Feuchtwanger
Particles 2025, 8(3), 67; https://doi.org/10.3390/particles8030067 - 1 Jul 2025
Viewed by 531
Abstract
The experimental and computational characterization of a cold model prototype designed to test the electromagnetic properties of a new RFQ (Radio-Frequency Quadrupole) cavity is reported. This cavity is intended to be an essential part of a compact, high-gradient proton accelerator for medical purposes. [...] Read more.
The experimental and computational characterization of a cold model prototype designed to test the electromagnetic properties of a new RFQ (Radio-Frequency Quadrupole) cavity is reported. This cavity is intended to be an essential part of a compact, high-gradient proton accelerator for medical purposes. The RFQ’s design employs a novel RF power-coupler injection solution. One common way to couple the RF power in proton RFQs has been the use of loop-couplers inserted into the mid-section of the RFQ’s lobe sections. This technique has been demonstrated to be reliable and effective but introduces a significant perturbation into the lobe that can be more noticeable when dealing with compact structures. We propose a RF injection scheme that uses direct transition from a coaxial cable to the RFQ by connecting the inner coaxial conductor to the RFQ vane body. As a consequence, the lobe geometry is not perturbed, and the transversal electrical fields are directly excited through the vanes. Moreover, by using a pair of such couplers connected to opposite vanes at a given transversal plane of the RFQ, it is also possible to excite the desired quadrupolar TE210 modes while avoiding the excitation of dipolar TE110 modes. The resonances corresponding to different RFQ modes have been characterized, and the dependence of the amplitude of the modes on the relative phase of the field injected through the RF power ports has been demonstrated both by measurements and simulations. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

15 pages, 875 KB  
Article
Multi-Configuration Dirac–Hartree–Fock Calculations of Pr9+ and Nd10+: Configuration Resolution and Probing Fine-Structure Constant Variation
by Songya Zhang, Cunqiang Wu, Chenzhong Dong and Xiaobin Ding
Atoms 2025, 13(6), 54; https://doi.org/10.3390/atoms13060054 - 16 Jun 2025
Viewed by 770
Abstract
We present high-precision multi-configuration Dirac–Hartree–Fock (MCDHF) calculations for the metastable states of Pr9+ and Nd10+ ions, systematically investigating their energy levels, transition properties, Landé gJ factors, and hyperfine interaction constants. Our results show excellent agreement with available experimental [...] Read more.
We present high-precision multi-configuration Dirac–Hartree–Fock (MCDHF) calculations for the metastable states of Pr9+ and Nd10+ ions, systematically investigating their energy levels, transition properties, Landé gJ factors, and hyperfine interaction constants. Our results show excellent agreement with available experimental data and theoretical benchmarks, while resolving critical configuration assignment discrepancies through detailed angular momentum coupling analysis. The calculations highlight the significant role of Breit interaction and provide the first theoretical predictions of electric quadrupole hyperfine constants (Bhfs). These findings deliver essential atomic data for the development of next-generation optical clocks and establish lanthanide highly charged ions as exceptional candidates for precision tests of fundamental physics. Full article
(This article belongs to the Special Issue Atomic and Molecular Data and Their Applications: ICAMDATA 2024)
Show Figures

Figure 1

15 pages, 3405 KB  
Article
A Pure Rotational Spectroscopic Study of Two Nearly-Equivalent Structures of Hexafluoroacetone Imine, (CF3)2C=NH
by Daniel A. Obenchain, Beppo Hartwig, Daniel J. Frohman, G. S. Grubbs, B. E. Long, Wallace C. Pringle, Stewart E. Novick and S. A. Cooke
Molecules 2025, 30(9), 2051; https://doi.org/10.3390/molecules30092051 - 5 May 2025
Viewed by 611
Abstract
Rotational spectra for hexafluoroacetone imine, the singly substituted 13C isotopologues, and the 15N isotopologue, have been recorded using both cavity and chirped pulse Fourier transform microwave spectrometers. The spectra observed present as being doubled with separations between each pair of transitions [...] Read more.
Rotational spectra for hexafluoroacetone imine, the singly substituted 13C isotopologues, and the 15N isotopologue, have been recorded using both cavity and chirped pulse Fourier transform microwave spectrometers. The spectra observed present as being doubled with separations between each pair of transitions being on the order of a few tens of kilohertz which is consistent with a large amplitude motion producing two torsional substates. The observed splitting is most likely due to the combined motions of the CF3 groups, for which the calculated barrier is small. However, no transitions between states could be observed and, similarly, no Coriolis coupling parameters were required to achieve a satisfactory fit for the transition frequencies. Hence, and somewhat curiously, the two states have been fit independently of each other such that the two states may simply be considered near-equivalent conformers. The structural properties of hexafluoroacetone imine are compared with two isoelectronic molecules hexafluoroisobutene and hexafluoroacetone. Rotational constants, quartic centrifugal distortion constants, and the 14N nuclear electric quadrupole coupling tensor have been determined and are presented together with supporting quantum chemical calculations. Full article
Show Figures

Figure 1

10 pages, 4991 KB  
Article
Interaction Between Atoms and Structured Light Fields
by Shreyas Ramakrishna and Stephan Fritzsche
Atoms 2025, 13(2), 20; https://doi.org/10.3390/atoms13020020 - 13 Feb 2025
Viewed by 818
Abstract
Structured light encompasses a vast variety of light fields. It has unique properties such as non-uniform transverse intensity and a polarization pattern across their beam cross-sections. In this contribution, we discuss the photoexcitation of a single ionic target system driven by different sets [...] Read more.
Structured light encompasses a vast variety of light fields. It has unique properties such as non-uniform transverse intensity and a polarization pattern across their beam cross-sections. In this contribution, we discuss the photoexcitation of a single ionic target system driven by different sets of structured light modes. Specifically, we provide a compilation of transition amplitudes for various structured light modes interacting with atomic systems based on the first-order perturbation theory. To illustrate this, we will choose an electric quadrupole transition (4sS1/223dD5/22) in the target Ca+ ion driven by a structured light field. For this particular interaction, we examine how the beam parameters affect the population of magnetic sub-levels in the atomic excited state. Full article
(This article belongs to the Special Issue 21st International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

15 pages, 6416 KB  
Article
Surface Vibrations of Bubble-like Superheavy Nuclei
by Şerban Mişicu
Particles 2024, 7(1), 214-228; https://doi.org/10.3390/particles7010012 - 5 Mar 2024
Viewed by 1661
Abstract
The shape vibrations of a superheavy nucleus with a complete (bubble) or a partially (semi-bubble) depleted density in its central region and sharp-edge inner and outer surfaces are investigated in the frame of the Liquid-Drop Model. The quadrupole oscillations of the two existing [...] Read more.
The shape vibrations of a superheavy nucleus with a complete (bubble) or a partially (semi-bubble) depleted density in its central region and sharp-edge inner and outer surfaces are investigated in the frame of the Liquid-Drop Model. The quadrupole oscillations of the two existing surfaces are coupled in both velocity and coordinate and, upon decoupling, a low-energy and a high-energy component are predicted. The electric transition probabilities are estimated for the decay of the low-lying mode first 2+ state to the ground state for the entire range of the radius and density of the depleted core. Full article
(This article belongs to the Special Issue Feature Papers for Particles 2023)
Show Figures

Figure 1

24 pages, 7441 KB  
Article
Understanding Complex Interplay among Different Instabilities in Multiferroic BiMn7O12 Using 57Fe Probe Mössbauer Spectroscopy
by Iana S. Soboleva, Vladimir I. Nitsenko, Alexey V. Sobolev, Maria N. Smirnova, Alexei A. Belik and Igor A. Presniakov
Int. J. Mol. Sci. 2024, 25(3), 1437; https://doi.org/10.3390/ijms25031437 - 24 Jan 2024
Cited by 1 | Viewed by 1661
Abstract
Here, we report the results of a Mössbauer study on hyperfine electrical and magnetic interactions in quadruple perovskite BiMn7O12 doped with 57Fe probes. Measurements were performed in the temperature range of 10 K < T < 670 K, wherein [...] Read more.
Here, we report the results of a Mössbauer study on hyperfine electrical and magnetic interactions in quadruple perovskite BiMn7O12 doped with 57Fe probes. Measurements were performed in the temperature range of 10 K < T < 670 K, wherein BiMn6.9657Fe0.04O12 undergoes a cascade of structural (T1 ≈ 590 K, T2 ≈ 442 K, and T3 ≈ 240 K) and magnetic (TN1 ≈ 57 K, TN2 ≈ 50 K, and TN3 ≈ 24 K) phase transitions. The analysis of the electric field gradient (EFG) parameters, including the dipole contribution from Bi3+ ions, confirmed the presence of the local dipole moments pBi, which are randomly oriented in the paraelectric cubic phase (T > T1). The unusual behavior of the parameters of hyperfine interactions between T1 and T2 was attributed to the dynamic Jahn–Teller effect that leads to the softening of the orbital mode of Mn3+ ions. The parameters of the hyperfine interactions of 57Fe in the phases with non-zero spontaneous electrical polarization (Ps), including the P1 ↔ Im transition at T3, were analyzed. On the basis of the structural data and the quadrupole splitting Δ(T) derived from the 57Fe Mössbauer spectra, the algorithm, based on the Born effective charge model, is proposed to describe Ps(T) dependence. The Ps(T) dependence around the ImI2/m phase transition at T2 is analyzed using the effective field approach. Possible reasons for the complex relaxation behavior of the spectra in the magnetically ordered states (T < TN1) are also discussed. Full article
(This article belongs to the Special Issue Physical Inorganic Chemistry in 2024)
Show Figures

Figure 1

17 pages, 871 KB  
Review
The 5P3/2→6PJ(J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium
by Francisco Ponciano-Ojeda, Cristian Mojica-Casique, Santiago Hernández-Gómez, Alberto Del Angel, Lina M. Hoyos-Campo, Jesús Flores-Mijangos, Fernando Ramírez-Martínez, Daniel Sahagún Sánchez, Rocío Jáuregui and José Jiménez-Mier
Photonics 2023, 10(12), 1335; https://doi.org/10.3390/photonics10121335 - 1 Dec 2023
Viewed by 2372
Abstract
This paper presents a general review of the results of the experimental and theoretical work carried out by our research group to study the 5P3/26PJ electric quadrupole transition in atomic rubidium. The experiments were carried [...] Read more.
This paper presents a general review of the results of the experimental and theoretical work carried out by our research group to study the 5P3/26PJ electric quadrupole transition in atomic rubidium. The experiments were carried out with room-temperature atoms in an absorption cell. A steady-state population of atoms in the 5P3/2 excited state is produced by a a narrow-bandwidth preparation laser locked to the D2 transition. A second CW laser is used to produce the forbidden transition with resolution of the 6PJ hyperfine states of both rubidium isotopes. The process is detected by recording the 420(422) nm fluorescence that occurs when the atoms in the 6PJ state decay directly into the 5S ground state. The fluorescence spectra show a strong dependence on the relative polarization directions of the preparation laser and the beam producing the forbidden transition. This dependence is directly related to a strong anisotropy in the populations of the 5P3/2 intermediate magnetic substates, and also to the electric quadrupole selection rules over magnetic quantum numbers. A calculation based on the rate equations that includes velocity and detuning dependent transition rates is adequate to reproduce these results. The forbidden transition is also shown to be an ideal probe to measure the Autler–Townes splitting generated in the preparation of the 5P3/2 state. Examples of spectra obtained with cold atoms in a magneto-optical trap (MOT) are also presented. These spectra show the expected Autler–Townes doublet structure with asymmetric line profiles that result as a consequence of the red-detuning of the trapping laser in the MOT. Full article
(This article belongs to the Special Issue Precision Atomic Spectroscopy)
Show Figures

Figure 1

13 pages, 5848 KB  
Article
Quadrupole Effects in the Photoionisation of Sodium 3s in the Vicinity of the Dipole Cooper Minimum
by Nishita M. Hosea, Jobin Jose, Hari R. Varma, Pranawa C. Deshmukh and Steven T. Manson
Atoms 2023, 11(10), 125; https://doi.org/10.3390/atoms11100125 - 28 Sep 2023
Viewed by 1925
Abstract
A procedure to obtain relativistic expressions for photoionisation angular distribution parameters using the helicity formulation is discussed for open-shell atoms. Electric dipole and quadrupole transition matrix elements were considered in the present work, to study the photoionisation dynamics of the 3s electron of [...] Read more.
A procedure to obtain relativistic expressions for photoionisation angular distribution parameters using the helicity formulation is discussed for open-shell atoms. Electric dipole and quadrupole transition matrix elements were considered in the present work, to study the photoionisation dynamics of the 3s electron of the sodium atom in the vicinity of the dipole Cooper minimum. We studied dipole–quadrupole interference effects on the photoelectron angular distribution in the region of the dipole Cooper minimum. Interference with quadrupole transitions was found to alter the photoelectron angular distribution, even at rather low photon energies. The initial ground and final ionised state discrete wavefunctions of the atom were obtained in the present work using GRASP, and we employed RATIP with discrete wavefunctions, to construct continuum wavefunctions and to calculate transition amplitudes, total cross-sections and angular distribution asymmetry parameters. Full article
Show Figures

Figure 1

12 pages, 783 KB  
Article
Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength
by Changfeng Jiao, Cenxi Yuan and Jiangming Yao
Symmetry 2023, 15(2), 552; https://doi.org/10.3390/sym15020552 - 19 Feb 2023
Cited by 2 | Viewed by 1986
Abstract
We explore the correlation of the neutrinoless double-β decay nuclear matrix element (NME) with electric quadrupole (E2) strength in the framework of the Hamiltonian-based generator-coordinate method, which is a configuration-mixing calculation of symmetry-restored intrinsic basis states. The restoration of symmetries [...] Read more.
We explore the correlation of the neutrinoless double-β decay nuclear matrix element (NME) with electric quadrupole (E2) strength in the framework of the Hamiltonian-based generator-coordinate method, which is a configuration-mixing calculation of symmetry-restored intrinsic basis states. The restoration of symmetries that are simultaneously broken in the mean-field states allows us to compute the structural and decay properties associated with wave functions characterized by good quantum numbers. Our calculations show a clear anti-correlation between the neutrinoless double-β decay NME and the transition rate of the collective quadrupole excitation from the ground state in response to artificial changes of the quadrupole–quadrupole interaction. The anti-correlation is more remarkable in the decay from a weakly deformed parent nucleus to a more deformed grand-daughter nucleus. This interrelation may provide a way to reduce the uncertainty of the nuclear matrix element. Full article
Show Figures

Figure 1

17 pages, 825 KB  
Article
Shape Phase Transitions in Even–Even 176–198Pt: Higher-Order Interactions in the Interacting Boson Model
by Dongkang Li, Tao Wang and Feng Pan
Symmetry 2022, 14(12), 2610; https://doi.org/10.3390/sym14122610 - 9 Dec 2022
Cited by 5 | Viewed by 2126
Abstract
Dynamical symmetry plays a dominant role in the interacting boson model in elucidating nuclear structure, for which group theoretical or algebraic techniques are powerful. In this work, the higher-order interactions required in describing triaxial deformation in the interacting boson model are introduced to [...] Read more.
Dynamical symmetry plays a dominant role in the interacting boson model in elucidating nuclear structure, for which group theoretical or algebraic techniques are powerful. In this work, the higher-order interactions required in describing triaxial deformation in the interacting boson model are introduced to improve the fitting results to low-lying level energies, B(E2) values and electric quadrupole moments of even–even nuclei. As an example of the model application, the low-lying excitation spectra and the electromagnetic transitional properties of even–even 176−198Pt are fitted and compared to the experimental data and the results of the consistent-Q formalism. It is shown that the results obtained from the model are better than those of the original consistent-Q formalism, indicating the importance of the higher-order interactions in describing the structure and the shape phase evolution of these nuclei. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

11 pages, 342 KB  
Article
The Particle-Rotor-Quadrupole-Coupling Model for Transitional Odd-A Nuclei
by Aoxue Li, Yingxin Wu, Yu Zhang, Ziwei Feng, Feng Pan and Lianrong Dai
Symmetry 2022, 14(12), 2578; https://doi.org/10.3390/sym14122578 - 6 Dec 2022
Viewed by 1784
Abstract
The particle-rotor-quadrupole-coupling model, in which the quadrupole–quadrupole interaction of the even-even core is described by a triaxial rotor with a single-j particle, is adopted to describe low-lying spectra of odd-A nuclei within the vibrational to triaxial transition region. In contrast to the [...] Read more.
The particle-rotor-quadrupole-coupling model, in which the quadrupole–quadrupole interaction of the even-even core is described by a triaxial rotor with a single-j particle, is adopted to describe low-lying spectra of odd-A nuclei within the vibrational to triaxial transition region. In contrast to the particle-plus-rotor-model, the quadrupole–quadrupole interaction introduced in the particle-rotor-quadrupole-coupling model keeps the rotational symmetry in the collective model framework without approximation. To demonstrate the usability, low-lying level energies, reduced E2 transition probabilities, and ground-state quadrupole moments of 135Ba and 131Xe are fit by the model, of which the results are compared with the experimental data and those of other models. It is shown that the fitting results of the particle-rotor-quadrupole-coupling model to the low-lying level energies, reduced E2 transition probabilities, and ground-state electric quadrupole moments of 135Ba and 131Xe are the best, of which the model parameters of the even-even core are determined by the triaxial rotor model in fitting the low-lying spectra of 134Ba and 130Xe. In comparison with the E(5/4) model results of 135Ba, it is also shown that the quadrupole–quadrupole interaction of the even-even core with the single particle adopted can indeed reproduce the E(5/4) critical point behavior. The fitting quality of the reduced E2 transition probabilities among low-lying states by the particle-rotor-quadrupole-coupling model is also noticeably improved. Thus, it can be concluded that the particle-rotor-quadrupole-coupling model is suitable to describe low-lying properties of odd-A nuclei within the transitional region. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

15 pages, 959 KB  
Article
Ab-Initio Study of Calcium Fluoride Doped with Heavy Isotopes
by Martin Pimon, Andreas Grüneis, Peter Mohn and Thorsten Schumm
Crystals 2022, 12(8), 1128; https://doi.org/10.3390/cryst12081128 - 11 Aug 2022
Cited by 5 | Viewed by 2758
Abstract
Precision laser spectroscopy of the 229-thorium nuclear isomer transition in a solid-state environment would represent a significant milestone in the field of metrology, opening the door to the realization of a nuclear clock. Working toward this goal, experimental methods require knowledge of various [...] Read more.
Precision laser spectroscopy of the 229-thorium nuclear isomer transition in a solid-state environment would represent a significant milestone in the field of metrology, opening the door to the realization of a nuclear clock. Working toward this goal, experimental methods require knowledge of various properties of a large band-gap material, such as calcium fluoride doped with specific isotopes of the heavy elements thorium, actinium, cerium, neptunium, and uranium. By accurately determining the atomic structure of potential charge compensation schemes by using a generalized gradient approximation within the ab-initio framework of density functional theory, calculations of electric field gradients on the dopants become accessible, which cause a quadrupole splitting of the nuclear-level structure that can be probed experimentally. Band gaps and absorption coefficients in the range of the 229-thorium nuclear transition are estimated by using the G0W0 method and by solving the Bethe–Salpeter equation. Full article
(This article belongs to the Special Issue Defects in Crystals)
Show Figures

Figure 1

10 pages, 456 KB  
Communication
The Radiative Δ(1600) → γN Decay in the Light-Cone QCD Sum Rules
by Haifa I. Alrebdi and Thabit Barakat
Universe 2021, 7(8), 255; https://doi.org/10.3390/universe7080255 - 21 Jul 2021
Cited by 1 | Viewed by 1702
Abstract
Within the framework of the light-cone QCD sum rules method (LCSR’s), the radiative Δ(1600)γN decay is studied. In particular, the magnetic dipole moment GM1(0) and the electric quadrupole moment [...] Read more.
Within the framework of the light-cone QCD sum rules method (LCSR’s), the radiative Δ(1600)γN decay is studied. In particular, the magnetic dipole moment GM1(0) and the electric quadrupole moment GE1(0) are estimated. We also calculate the ratio REM=GE1(0)GM1(0) and the decay rate. The predicted multipole moments and the decay rate strongly agree with the existing experimental results as well as with the other available phenomenological approaches. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

13 pages, 2652 KB  
Review
Towards New Chiroptical Transitions Based on Thought Experiments and Hypothesis
by Takashiro Akitsu, Sanyobi Kim and Daisuke Nakane
Symmetry 2021, 13(6), 1103; https://doi.org/10.3390/sym13061103 - 21 Jun 2021
Cited by 1 | Viewed by 3150
Abstract
We studied supramolecular chirality induced by circularly polarized light. Photoresponsive azopolymers form a helical intermolecular network. Furthermore, studies on photochemical materials using optical vortex light will also attract attention in the future. In contrast to circularly polarized light carrying spin angular momentum, an [...] Read more.
We studied supramolecular chirality induced by circularly polarized light. Photoresponsive azopolymers form a helical intermolecular network. Furthermore, studies on photochemical materials using optical vortex light will also attract attention in the future. In contrast to circularly polarized light carrying spin angular momentum, an optical vortex with a spiral wave front and carrying orbital angular momentum may impart torque upon irradiated materials. In this review, we summarize a few examples, and then theoretically and computationally deduce the differences in spin angular momentum and orbital angular momentum depending on molecular orientation not on, but in, polymer films. UV-vis absorption and circular dichroism (CD) spectra are consequences of electric dipole transition and magnetic dipole transition, respectively. However, the basic effect of vortex light is postulated to originate from quadrupole transition. Therefore, we explored the simulated CD spectra of azo dyes with the aid of conventional density functional theory (DFT) calculations and preliminary theoretical discussions of the transition of CD. Either linearly or circularly polarized UV light causes the trans–cis photoisomerization of azo dyes, leading to anisotropic and/or helically organized methyl orange, respectively, which may be detectable by CD spectroscopy after some technical treatments. Our preliminary theoretical results may be useful for future experiments on the irradiation of UV light under vortex. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

15 pages, 1069 KB  
Article
Interband, Surface Plasmon and Fano Resonances in Titanium Carbide (MXene) Nanoparticles in the Visible to Infrared Range
by Manuel Gonçalves, Armen Melikyan, Hayk Minassian, Taron Makaryan, Petros Petrosyan and Tigran Sargsian
Photonics 2021, 8(2), 36; https://doi.org/10.3390/photonics8020036 - 1 Feb 2021
Cited by 11 | Viewed by 5648
Abstract
Since the discovery of the optical properties of two-dimensional (2D) titanium carbide (MXene) conductive material, an ever increasing interest has been devoted towards understanding it as a plasmonic substrate or nanoparticle. This noble metal-free alternative holds promise not only due to its lower [...] Read more.
Since the discovery of the optical properties of two-dimensional (2D) titanium carbide (MXene) conductive material, an ever increasing interest has been devoted towards understanding it as a plasmonic substrate or nanoparticle. This noble metal-free alternative holds promise not only due to its lower cost but also its 2D nature, hydrophilicity and apparent bio-compatibility. Herein, the optical properties of the most widely studied Ti3C2Tx MXene nanosheets are theoretically analyzed and absorption cross-sections are calculated exploiting available experimental data on its dielectric function. The occurrence of quadrupole surface plasmon mode in the optical absorption spectra of large MXene nanoparticles is demonstrated for the first time. The resonance wavelengths corresponding to interband transitions, longitudinal and transversal dipole oscillations and quadrupole longitudinal surface plasmon mode are identified for single and coupled nanoparticles by modeling their shapes as ellipsoids, disks and cylinders. A new mechanism of excitation of longwave transversal surface plasmon oscillations by an external electric field perpendicular to the direction of charge oscillations is presented. Excitingly enough, a new effect in coupled MXene nanoparticles—Fano resonance—is unveiled. The results of calculations are compared to known experimental data on electron absorption spectroscopy, and good agreement is demonstrated. Full article
Show Figures

Graphical abstract

Back to TopTop