Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,630)

Search Parameters:
Keywords = electrochemical testing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2293 KB  
Article
Rapid and Quantitative Detection of TNF-α in Human Tears Using a Portable Electrochemiluminescence-Based Device
by Shaohong Qu, Boyu Zhu, Zihao Liu, Xing Chen, Peifang Dong and Lihang Zhu
Biosensors 2025, 15(10), 645; https://doi.org/10.3390/bios15100645 (registering DOI) - 29 Sep 2025
Abstract
Personalized, point-of-care testing of human tears is essential for ocular disease diagnosis, yet it is hampered by picomolar biomarker levels and microliter sample volumes. In this work, we developed an integrated, portable electrochemiluminescence (ECL)-based device for rapid and quantitative detection of tumor necrosis [...] Read more.
Personalized, point-of-care testing of human tears is essential for ocular disease diagnosis, yet it is hampered by picomolar biomarker levels and microliter sample volumes. In this work, we developed an integrated, portable electrochemiluminescence (ECL)-based device for rapid and quantitative detection of tumor necrosis factor alpha (TNF-α), a pivotal inflammatory marker in ocular surface disease, with particular relevance to dry eye syndrome (DES). The device integrates a miniaturized electrochemical cell for ECL reactions and a compact silica photomultiplier for signal measurement. A vertical silica mesochannel (VSM)-coated ITO electrode is also integrated and further functionalized with TNF-α-specific aptamers. The VSM enables the enrichment of ECL luminophores, thus enabling further amplification of ECL signals and enhancing sensitivity. A wide linear range from 0.1 to 200 pg/mL was achieved using 10-fold dilution of 3 μL tear samples. Overall, this study provides a portable, highly sensitive platform for personalized analysis of TNF-α in tear fluid, enabling rapid point-of-care assessment of DES. Full article
15 pages, 4098 KB  
Article
Corrosion Resistance Properties of As-Sintered 17-4 PH Samples Additive-Manufactured Through Binder Jetting
by Pietro Forcellese, Wasiq Ali Khan, Tommaso Mancia, Michela Simoncini, Matěj Reiser, Milan Kouřil and Tiziano Bellezze
Metals 2025, 15(10), 1082; https://doi.org/10.3390/met15101082 - 27 Sep 2025
Abstract
The corrosion resistance and microstructural characteristics of 17-4 PH stainless steel fabricated through Metal Binder Jetting (MBJ) were investigated through Cyclic Potentiodynamic Polarization (CPP), Open Circuit Potential (OCP) monitoring, SEM-EDX, optical microscopy, XRD, and chemical etching. Electrochemical tests revealed that as-sintered samples exhibited [...] Read more.
The corrosion resistance and microstructural characteristics of 17-4 PH stainless steel fabricated through Metal Binder Jetting (MBJ) were investigated through Cyclic Potentiodynamic Polarization (CPP), Open Circuit Potential (OCP) monitoring, SEM-EDX, optical microscopy, XRD, and chemical etching. Electrochemical tests revealed that as-sintered samples exhibited isotropic corrosion performance across different build-up orientations and directions. The CPP tests indicated the formation of a passive film with limited stability, while the monitoring of the OCP showed initial instability, followed by stabilization over time. Microstructural analysis indicated the presence of microporosities and a structure consisting of martensitic and ferritic grains in the as-sintered 17-4 PH, alongside copper and niobium segregations at grain boundaries, which may deeply influence localized corrosion susceptibility. These findings suggest that the as-sintered 17-4 PH fabricated through MBJ exhibits comparable corrosion behavior to 17-4 PH additive-manufactured through other techniques in which the sintering process is involved. The study highlights the influence of microstructure on electrochemical performance and underscores the need for post processing treatments to enhance corrosion resistance. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

16 pages, 4544 KB  
Article
Simplified Chemical Treatments for Improved Adhesive Bonding Durability and Corrosion Protection of High-Pressure Die-Cast Aluminum Alloy AlSi10MnMg
by Changfeng Fan, Bo Yang, Xue Wang, Xianghua Zhan, Xiaoli Yin, Jianmin Shi, Wei Wang, Yancong Liu and Klaus Dilger
Coatings 2025, 15(10), 1122; https://doi.org/10.3390/coatings15101122 - 27 Sep 2025
Abstract
The adhesive bonding of high-pressure die-cast (HPDC) aluminum alloy AlSi10MnMg is extensively applied in the aerospace and automotive sectors. Surface pretreatment of HPDC aluminum prior to bonding is crucial for enhancing bonding strength and durability, as it regulates surface roughness, and chemical properties. [...] Read more.
The adhesive bonding of high-pressure die-cast (HPDC) aluminum alloy AlSi10MnMg is extensively applied in the aerospace and automotive sectors. Surface pretreatment of HPDC aluminum prior to bonding is crucial for enhancing bonding strength and durability, as it regulates surface roughness, and chemical properties. Traditional multi-step surface treatments including chromic acid anodizing for HPDC AlSi10MnMg are hazardous, complex, and often fail to balance adhesive bonding durability and corrosion protection, limiting their industrial applicability. This study examined the impact of various chemical treatments on the adhesive bonding performance of an AlSi10MnMg aluminum alloy. The treated surfaces were bonded using a structural adhesive, and bonding performance was evaluated via wedge tests under pristine conditions and after accelerated aging. A scanning electron microscope (SEM) was used to study the surface morphology, chemical composition, and corrosion characteristics of the treated surfaces. Energy dispersive spectroscopy (EDS), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization measurements were employed. Excellent adhesion characteristics, dominated by the cohesive failure of the adhesive, were observed in H2O2-treated samples. The H2O2-treated samples exhibited the shortest initial crack length, indicating a superior baseline bonding quality, and showed minimal crack propagation (only slight extension) after aging under extreme environmental conditions (70 °C and 100% relative humidity for 4 weeks). Electrochemical measurements revealed that the SG200-treated sample achieved the lowest corrosion current density (0.25 ± 0.03 μA/cm2) with an excellent corrosion resistance, while sol–gel-treated samples generally suffered from a poor adhesion, with interfacial failure. This study proposes a simplified, single-step chemical treatment using an H2O2 solution that effectively achieves both a strong adhesive bonding and an excellent corrosion resistance, without the drawbacks of conventional methods. It offers a viable alternative to conventional multi-step hazardous surface treatments. Full article
Show Figures

Figure 1

16 pages, 7974 KB  
Article
The Impact of Hydrogen Charging Time on Microstructural Alterations in Pipeline Low-Carbon Ferrite–Pearlite Steel
by Vanya Dyakova, Boris Yanachkov, Kateryna Valuiska, Yana Mourdjeva, Rumen Krastev, Tatiana Simeonova, Krasimir Kolev, Rumyana Lazarova and Ivaylo Katzarov
Metals 2025, 15(10), 1079; https://doi.org/10.3390/met15101079 - 27 Sep 2025
Abstract
This study investigates the effect of hydrogen charging time on the mechanical properties and microstructural evolution of low-carbon ferrite–pearlite steel that has been in service for over 30 years in natural gas transmission. Specimens were subjected to in-situ electrochemical hydrogen charging for varying [...] Read more.
This study investigates the effect of hydrogen charging time on the mechanical properties and microstructural evolution of low-carbon ferrite–pearlite steel that has been in service for over 30 years in natural gas transmission. Specimens were subjected to in-situ electrochemical hydrogen charging for varying durations, followed by tensile testing. Detailed microstructural analysis was performed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Despite negligible changes in the overall hydrogen content (CH≈ 4.0 wppm), significant alterations in fracture morphology were observed. Fractographic and TEM analyses revealed a clear transition from ductile fracture in uncharged specimens to a predominance of brittle fracture modes (quasi-cleavage, intergranular, and transgranular) in hydrogen-charged samples. The results show time-dependent microstructural changes, including increased dislocation density and the formation of prismatic loop debris, particularly within the ferrite phase. Prolonged charging leads to localized embrittlement, which is explained by enhanced hydrogen trapping at ferrite-cementite boundaries, grain boundaries, and dislocation cores. TEM investigations further indicated a sequential activation of hydrogen embrittlement mechanisms: initially, Hydrogen-Enhanced Localized Plasticity (HELP) dominates within ferrite grains, followed by Hydrogen-Enhanced Decohesion (HEDE), particularly at ferrite-cementite interfaces in pearlite colonies. These findings demonstrate that extended hydrogen charging promotes defect localization, dislocation pinning, and interface decohesion, ultimately accelerating fracture propagation. The study provides valuable insight into the degradation mechanisms of ferrite-pearlite steels exposed to hydrogen, highlighting the importance of charging time. The results are essential for assessing the reliability of legacy pipeline steels and guiding their safe use in future hydrogen transport infrastructure. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals: Behaviors and Mechanisms)
Show Figures

Figure 1

18 pages, 2888 KB  
Article
Data Analysis of Electrical Impedance Spectroscopy-Based Biosensors Using Artificial Neural Networks for Resource Constrained Devices
by Marco Grossi and Martin Omaña
J. Low Power Electron. Appl. 2025, 15(4), 56; https://doi.org/10.3390/jlpea15040056 - 26 Sep 2025
Abstract
Portable and wearable sensors have gained attention in recent years to perform measurements in many different applications. Sensors based on Electrical Impedance Spectroscopy (EIS) are particularly promising, because they can make accurate measurements with minimum perturbation to the sample under test. Electrochemical biosensors [...] Read more.
Portable and wearable sensors have gained attention in recent years to perform measurements in many different applications. Sensors based on Electrical Impedance Spectroscopy (EIS) are particularly promising, because they can make accurate measurements with minimum perturbation to the sample under test. Electrochemical biosensors are devices that use electrochemical techniques to measure a target analyte. In the case of electrochemical biosensors based on EIS, the measured impedance spectrum is fitted to that of an equivalent electrical circuit, whose component values are then used to estimate the concentration of the target analyte. Fitting EIS data is usually carried out by sophisticated algorithms running on a PC. In this paper, we have evaluated the feasibility to perform EIS data fitting using simple Artificial Neural Networks (ANNs) that can be run on resource constrained microcontrollers, which are typically used for portable and wearable sensors. We considered a typical case of an impedance spectrum in the range 0.1–10 kHz, modeled by using the simplified Randles equivalent circuit. Our analyses have shown that simple ANNs can be a low power alternative to perform EIS data fitting on low-cost microcontrollers with a memory occupation in the order of kilo bytes and a measurement accuracy between 1% and 3%. Full article
Show Figures

Figure 1

19 pages, 912 KB  
Article
An Integrated Co-Simulation Framework for the Design, Analysis, and Performance Assessment of EIS-Based Measurement Systems for the Online Monitoring of Battery Cells
by Nicola Lowenthal, Roberta Ramilli, Marco Crescentini and Pier Andrea Traverso
Batteries 2025, 11(10), 351; https://doi.org/10.3390/batteries11100351 - 26 Sep 2025
Abstract
Electrochemical impedance spectroscopy (EIS) is widely used at the laboratory level for monitoring/diagnostics of battery cells, but the design and validation of in situ, online measurement systems based on EIS face challenges due to complex hardware–software interactions and non-idealities. This study aims to [...] Read more.
Electrochemical impedance spectroscopy (EIS) is widely used at the laboratory level for monitoring/diagnostics of battery cells, but the design and validation of in situ, online measurement systems based on EIS face challenges due to complex hardware–software interactions and non-idealities. This study aims to develop an integrated co-simulation framework to support the design, debugging, and validation of EIS measurement systems devoted to the online monitoring of battery cells, helping to predict experimental results and identify/correct the non-ideality effects and sources of uncertainty. The proposed framework models both the hardware and software components of an EIS-based system to simulate and analyze the impedance measurement process as a whole. It takes into consideration the effects of physical non-idealities on the hardware–software interactions and how those affect the final impedance estimate, offering a tool to refine designs and interpret test results. For validation purposes, the proposed general framework is applied to a specific EIS-based laboratory prototype, previously designed by the research group. The framework is first used to debug the prototype by uncovering hidden non-idealities, thus refining the measurement system, and then employed as a digital model of the latter for fast development of software algorithms. Finally, the results of the co-simulation framework are compared against a theoretical model, the real prototype, and a benchtop instrument to assess the global accuracy of the framework. Full article
Show Figures

Figure 1

18 pages, 14537 KB  
Article
Enhanced Mechanical and Corrosion Properties of As-Extruded Mg-12Gd-2Zn-0.4Zr Alloy by Nd Additions
by Jiahuan He, Lixin Hong, Jianwei Dai and Xiaobo Zhang
Metals 2025, 15(10), 1077; https://doi.org/10.3390/met15101077 - 26 Sep 2025
Abstract
The microstructures and mechanical and corrosion properties of Mg-12Gd-2Zn-xNd-0.4Zr (x = 0, 0.5, and 1.0 wt.%) alloys after hot-extrusion have been studied by scanning electron microscope (SEM), transmission electron microscope (TEM), electron back scattered diffraction (EBSD), X-ray diffractometer (XRD), electronic [...] Read more.
The microstructures and mechanical and corrosion properties of Mg-12Gd-2Zn-xNd-0.4Zr (x = 0, 0.5, and 1.0 wt.%) alloys after hot-extrusion have been studied by scanning electron microscope (SEM), transmission electron microscope (TEM), electron back scattered diffraction (EBSD), X-ray diffractometer (XRD), electronic universal testing machine, atomic force microscope (AFM), immersion, and electrochemical tests. The results show that all the alloys consist of an α-Mg matrix, β phase, and stacking faults (SFs). Obvious texture (<1¯21¯0> parallel to the extrusion direction and the direction close to <0001>) can be found due to the introduction of the Nd element. The yield strength (YS) of the alloys with Nd additions in different testing conditions is higher than that without Nd addition. The addition of 0.5 wt.% Nd achieves the highest tensile YS at room temperature (262 MPa) and 180 °C (251 MPa), along with compression YS (246 MPa), attributable to grain refinement, stacking faults, texture, and solute atom strengthening. Moreover, the compression YS to tensile YS ratio of the as-extruded alloy increases from 0.87 to 0.98, indicating a significant improvement of tension–compression YS asymmetry. The Nd addition also plays a great role in the enhanced corrosion resistance of the alloys. Specifically, the corrosion potential of the different phases in the alloys shows the following order: β phase > SFs > α-Mg matrix. The alloy with 0.5 wt.% Nd addition exhibits the best corrosion resistance owing to its lower corrosion potential difference between the β phase and α-Mg matrix. Full article
Show Figures

Figure 1

17 pages, 4731 KB  
Article
Effects of Ceramic Particulate Type and Porosity on the Corrosion Behavior of Open-Cell AlSn6Cu Composites Produced via Liquid-State Processing
by Mihail Kolev, Vanya Dyakova, Yoanna Kostova, Boriana Tzaneva, Hristina Spasova and Rositza Dimitrova
Metals 2025, 15(10), 1073; https://doi.org/10.3390/met15101073 - 25 Sep 2025
Abstract
The corrosion behavior of open-cell AlSn6Cu-based composites, one reinforced with SiC particles and the other with Al2O3 particles, was investigated. The composites were fabricated via liquid-state processing, employing both squeeze casting and the replication method, and they produced in two [...] Read more.
The corrosion behavior of open-cell AlSn6Cu-based composites, one reinforced with SiC particles and the other with Al2O3 particles, was investigated. The composites were fabricated via liquid-state processing, employing both squeeze casting and the replication method, and they produced in two distinct pore size ranges (800–1000 µm and 1000–1200 µm). Corrosion performance was systematically evaluated through gravimetric (weight loss) measurements and electrochemical techniques, including open-circuit potential monitoring and potentiodynamic polarization tests. Comprehensive microstructural and phase analyses were conducted using X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The results revealed that both reinforcement type and pore architecture have a significant impact on corrosion resistance. Al2O3-reinforced composites consistently outperformed their SiC-containing counterparts, and pore enlargement generally improved performance for the unreinforced alloy and the Al2O3 composite but not for the SiC composite. Overall, the optimal corrosion resistance is achieved by pairing a coarser-pore architecture (1000–1200 µm) with Al2O3 reinforcement, which minimizes both instantaneous (electrochemical) and cumulative (gravimetric) corrosion metrics. This study addresses a gap in current research by providing the first detailed assessment of corrosion in open-cell AlSn6Cu-based composites with controlled pore architectures and different ceramic reinforcements, offering valuable insights for the development of advanced lightweight materials for harsh environments. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Metal Matrix Composites)
Show Figures

Figure 1

17 pages, 5183 KB  
Article
Multi-Scale Damage Evolution of Soil-Rock Mixtures Under Freeze–Thaw Cycles: Revealed by Electrochemical Impedance Spectroscopy Testing and Fractal Theory
by Junren Deng, Lei Wang, Guanglin Tian and Hongwei Deng
Fractal Fract. 2025, 9(10), 624; https://doi.org/10.3390/fractalfract9100624 - 25 Sep 2025
Abstract
The response of the microscopic structure and macroscopic mechanical parameters of SRM under F–T cycles is a key factor affecting the safety and stability of engineering projects in cold regions. In this study, F–T tests, EIS, and uniaxial compression tests were conducted on [...] Read more.
The response of the microscopic structure and macroscopic mechanical parameters of SRM under F–T cycles is a key factor affecting the safety and stability of engineering projects in cold regions. In this study, F–T tests, EIS, and uniaxial compression tests were conducted on SRM. The construct equivalent model of different conductive paths based on EIS was constructed. A peak strength prediction model was developed using characteristic parameters derived from the equivalent models, thereby revealing the mechanism by which F–T cycles influenced both microscopic structure and macroscopic strength. The results showed that with increasing cycles, both RCP and RCPP  exhibited an exponential decreasing trend, whereas CDSRP and Df increased exponentially. Peak strength and peak secant modulus decreased exponentially, but peak strain increased exponentially. The expansion and interconnection of pores with different radii within CPP and CP caused smaller pores to evolve into larger ones while generating new pores, which led to a decline in RCPP and RCP. Moreover, this expansion enlarged the soil–rock contact area by connecting adjacent gas-phase pores and promoted the transformation of CSRPP into DSRPP, enhancing the parallel-plate capacitance effect and resulting in an increase in CDSRP. Moreover, the interconnection increased the roughness of soil–soil and soil–rock contact surfaces, leading to a rising trend in Df. The combined influence of CDSRP and Df yielded a strength prediction model with higher correlation than a single factor, providing more accurate predictions of UCS. However, the increases in CDSRP and Df induced by F–T cycles also contributed to microscopic structure damage and strength deterioration, reducing the load-bearing capacity and ultimately causing a decline in UCS. Full article
(This article belongs to the Special Issue Applications of Fractal Analysis in Structural Geology)
Show Figures

Figure 1

23 pages, 3690 KB  
Article
Reliability and Performance Evaluation of IoT-Based Gas Leakage Detection Systems for Residential Environments
by Elia Landi, Lorenzo Parri, David Baldo, Stefano Parrino, Tunahan Vatansever, Ada Fort, Marco Mugnaini and Valerio Vignoli
Electronics 2025, 14(19), 3798; https://doi.org/10.3390/electronics14193798 - 25 Sep 2025
Abstract
This paper presents the reliability assessment of an IoT-based sensor node designed for detecting combustible gas leaks in residential environments. Building on a previously published design that integrates low-power micromachined (Micro-Electro-Mechanical Systems, MEMS) pellistors and electrochemical Volatile Organic Compounds (VOC) sensors, this study [...] Read more.
This paper presents the reliability assessment of an IoT-based sensor node designed for detecting combustible gas leaks in residential environments. Building on a previously published design that integrates low-power micromachined (Micro-Electro-Mechanical Systems, MEMS) pellistors and electrochemical Volatile Organic Compounds (VOC) sensors, this study evaluates the node’s long-term robustness and stability under both realistic and accelerated operating conditions. The system employs a dual-sensor strategy in which the VOC sensor acts as a sentinel, activating the pellistor only when necessary, thereby optimizing power consumption and extending battery life. BLE and LoRa communication capabilities support flexible deployment and real-time data transmission. To ensure suitability for safety-critical applications, we conducted comprehensive reliability testing, including accelerated life tests and environmental stress testing in compliance with IEC 60068 standards. The results confirm the system’s ability to maintain consistent performance and data integrity under thermal, mechanical, and chemical stress, demonstrating its robustness for prolonged operation in demanding environments. Overall, this work underscores the importance of rigorous reliability validation for IoT-based safety devices and positions the proposed solution as a significant step toward enhancing residential gas safety, with potential applications in broader industrial monitoring scenarios. Full article
Show Figures

Figure 1

15 pages, 1842 KB  
Article
PtBiCoAgSn Multi-Component Alloy Electrocatalysts Enhancing the Oxidation of Ethylene Glycol to Value-Added C2 Products
by Si-Tong Chen, Lin Wang, Hai-En Hou, Kang-Shuo Wang, Zhou Lan, Yao-Yue Yang and Wen-Bin Cai
Molecules 2025, 30(19), 3872; https://doi.org/10.3390/molecules30193872 - 24 Sep 2025
Viewed by 29
Abstract
Ethylene glycol oxidation (EGOR) transforms waste plastic-derived chemicals into high-value products, representing an upcycling strategy that enhances resource efficiency. Pt-based electrocatalysts have shown promise for oxidizing ethylene glycol (EG) to high-value glycolic acid (GA), but they still suffer from high Pt usage, limited [...] Read more.
Ethylene glycol oxidation (EGOR) transforms waste plastic-derived chemicals into high-value products, representing an upcycling strategy that enhances resource efficiency. Pt-based electrocatalysts have shown promise for oxidizing ethylene glycol (EG) to high-value glycolic acid (GA), but they still suffer from high Pt usage, limited activity and stability, and poor low-potential selectivity. In this work, we report a highly dispersed PtBiCoAgSn multi-component alloy (MCA) electrocatalyst (denoted as MCA-PtBiCoAgSn) with outstanding catalytic activity and deactivation resistance, demonstrating a remarkable EGOR mass activity of 16.65 A mgPt1 at 0.76 V vs. RHE, which is 8-fold higher than that of commercial Pt/C (2.03 A mgPt1). Also, it can maintain an EGOR current density of 4.89 A mgPt1 after an extended long-term stability test. Additionally, it shows superior Faradaic efficiency (FE) for C2 products compared to Pt/C across the potential window of 0.5~0.9 V vs. RHE, with the FE of GA being up to 91% at a very low potential of 0.5 V vs. RHE. Moreover, in situ electrochemical infrared spectroscopy in a thin-layer configuration confirmed that EGOR proceeds via the C2 pathway on MCA-PtBiCoAgSn surfaces. This work may provide new insights into the design of high-efficiency and low-cost EGOR catalysts. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Graphical abstract

16 pages, 2201 KB  
Article
Electrochemical Immunodetection of Bacillus anthracis Spores
by Karolina Morawska, Tomasz Sikora, Aleksandra Nakonieczna, Renata Tyśkiewicz, Monika Wiśnik-Sawka, Łukasz Osuchowski, Paulina Osuchowska, Michał Grabka and Zygfryd Witkiewicz
Sensors 2025, 25(19), 5948; https://doi.org/10.3390/s25195948 - 24 Sep 2025
Viewed by 87
Abstract
The Centers for Disease Control and Prevention (CDC) classifies Bacillus anthracis as one of the most dangerous pathogens that may affect public health and national security. Due to its importance as a potential biological weapon, this bacteria has been classified in the highest [...] Read more.
The Centers for Disease Control and Prevention (CDC) classifies Bacillus anthracis as one of the most dangerous pathogens that may affect public health and national security. Due to its importance as a potential biological weapon, this bacteria has been classified in the highest category A, together with such pathogens as variola virus or botulinum neurotoxin. Characteristic features of this pathogen that increase its military importance are the ease of its cultivation, transport, and storage and its ability to create survival forms that are extremely resistant to environmental conditions. However, beyond bioterrorism, B. anthracis is also a naturally occurring pathogen. Anthrax outbreaks occur in livestock and wildlife, particularly in spore-contaminated regions of Africa, Asia, and North America. Spores persist for decades, leading to recurrent infections and zoonotic transmission through direct contact, inhalation, or consumption of contaminated meat. This work presents a new electrochemical method for detecting and quantifying B. anthracis in spore form using a selective immune reaction. The developed method is based on the thiol-modified electrodes that constitute the sensing element of the electrochemical system. Tests with the B. anthracis spore suspension showed that the detection limit for this pathogen is as low as 103 CFU/mL. Furthermore, it was possible to quantify the analyte with a sensitivity of 11 mV/log (CFU/mL). Due to several features, such as low unit cost, portability, and minimal apparatus demands, this method can be easily implemented in field analyzers for this pathogen and provides an alternative to currently used techniques and devices. Full article
Show Figures

Figure 1

11 pages, 2008 KB  
Article
Corrosion-Resistant Plasma Electrolytic Oxidation Composite Coatings on Ti6Al4V for Harsh Acidic Environments
by Michael Garashchenko, Yuliy Yuferov and Konstantin Borodianskiy
J. Compos. Sci. 2025, 9(10), 515; https://doi.org/10.3390/jcs9100515 - 23 Sep 2025
Viewed by 166
Abstract
Titanium alloys are widely employed in structural and electrochemical applications owing to their excellent mechanical properties and inherent corrosion resistance. However, their stability in harsh acidic environments, such as those encountered in energy storage systems, remains a critical issue. In this study, composite [...] Read more.
Titanium alloys are widely employed in structural and electrochemical applications owing to their excellent mechanical properties and inherent corrosion resistance. However, their stability in harsh acidic environments, such as those encountered in energy storage systems, remains a critical issue. In this study, composite ceramic coatings were synthesized on a Ti6Al4V alloy using plasma electrolytic oxidation (PEO) in silicate-, phosphate-, and sulfate-based electrolytes, with and without the addition of α-alumina nanoparticles. The resulting coatings were comprehensively characterized to assess their surface morphology, chemical and phase compositions, and corrosion performance. Thus, the corrosion current density decreased from 9.7 × 104 for bare Ti6Al4V to 143 nA/cm2 for the coating fabricated in phosphate electrolyte with alumina nanoparticles, while the corrosion potential shifted anodically from –0.68 to +0.49 V vs. silver chloride electrode in 5 M H2SO4. Among the tested electrolytes, coatings produced in the phosphate-based electrolyte with Al2O3 showed the highest polarization resistance (113 kΩ·cm2), outperforming those fabricated in silicate- (71.6 kΩ·cm2) and sulfate-based (89.0 kΩ·cm2) systems. The composite coatings exhibited a multiphase structure with reduced surface porosity and the incorporation of crystalline oxide phases. Notably, titania–alumina nanoparticle composites demonstrated significantly enhanced corrosion resistance. These findings confirm that PEO-derived composite coatings provide an effective surface engineering strategy for enhancing the stability of the Ti6Al4V alloy in aggressive acidic environments relevant to advanced electrochemical systems. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

13 pages, 5067 KB  
Article
Investigation of Corrosion Resistance in Powder-Coated 6060 Aluminum Alloy: Effects of Powder Coating and Pre-Anodizing Followed by Powder Coating
by Aikaterini Baxevani, Eleni Lamprou, Azarias Mavropoulos, Fani Stergioudi, Nikolaos Michailidis and Ioannis Tsoulfaidis
Metals 2025, 15(10), 1062; https://doi.org/10.3390/met15101062 - 23 Sep 2025
Viewed by 115
Abstract
This study investigates the corrosion resistance of EN AW 6060 aluminum alloy powder-coated samples, with and without pre-anodizing treatment. The samples were exposed to a 3.5% NaCl solution, which is known for its strong corrosive effects, and their corrosion behavior was evaluated using [...] Read more.
This study investigates the corrosion resistance of EN AW 6060 aluminum alloy powder-coated samples, with and without pre-anodizing treatment. The samples were exposed to a 3.5% NaCl solution, which is known for its strong corrosive effects, and their corrosion behavior was evaluated using two electrochemical techniques: Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS). The aim was to assess the effectiveness of powder coatings in enhancing corrosion resistance and to examine the role of surface preparation and prior treatments. Polarization tests provided corrosion current densities and corrosion rates, while EIS data were analyzed using equivalent electrical circuits to evaluate the integrity of the protective layers. The results show that powder coatings significantly improves corrosion resistance compared to uncoated aluminum and the combination of pre-anodizing followed by painting offers the highest protection. These findings confirm the improved performance achieved through multilayer surface treatments and support the application of powder coatings acting as a durable barrier against environmental factors. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

20 pages, 13705 KB  
Article
Harnessing Hydrothermal Treatments to Control Magnesium Alloy Degradation for Bioresorbable Implants: A Comprehensive Evaluation of Bath Chemistry Effect
by Matteo Pavarini, Nadia Milanesi, Monica Moscatelli and Roberto Chiesa
Metals 2025, 15(9), 1056; https://doi.org/10.3390/met15091056 - 22 Sep 2025
Viewed by 227
Abstract
Magnesium alloys have been recently recognized as promising materials for temporary orthopedic applications, thanks to their biocompatibility, nontoxicity and biodegradability, combined with bone-like mechanical properties; nevertheless, their clinical viability is still hindered by their excessively rapid corrosion in physiological environments. In this context, [...] Read more.
Magnesium alloys have been recently recognized as promising materials for temporary orthopedic applications, thanks to their biocompatibility, nontoxicity and biodegradability, combined with bone-like mechanical properties; nevertheless, their clinical viability is still hindered by their excessively rapid corrosion in physiological environments. In this context, hydrothermal surface modification offers a simple and inexpensive option to form thick ceramic conversion films capable of protecting magnesium and delaying the initial stages of corrosion. In this study, magnesium samples were hydrothermally treated in various aqueous baths to systematically assess the influence of their chemistry on the resulting coating features. The obtained coatings were characterized in terms of physicochemical properties, electrochemical corrosion behavior in SBF, and long-term degradation with volumetric loss quantification by µ-CT. The results highlighted how corrosion resistance is dictated by coating uniformity rather than thickness. Moreover, XRD analyses revealed that all the best-performing coatings contained a stable magnesium oxide phase in addition to magnesium hydroxide, a feature absent in less protective films. A simple sodium nitrate solution was found to produce the most protective layer, showing the lowest volumetric losses after immersion testing. Full article
(This article belongs to the Special Issue Recent Advances in Surface Modification of Metallic Materials)
Show Figures

Figure 1

Back to TopTop