Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (434)

Search Parameters:
Keywords = electrode conception

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3890 KB  
Article
Multiple Functions of Carbon Additives in NASICON-Type Electrodes for Stabilizing the Sodium Storage Performance
by Trajche Tushev, Sonya Harizanova, Maria Shipochka, Radostina Stoyanova and Violeta Koleva
Molecules 2025, 30(17), 3547; https://doi.org/10.3390/molecules30173547 - 29 Aug 2025
Viewed by 136
Abstract
Recently, there has been increased interest in NASICON-type electrodes for sodium-ion batteries due to their unique combination of intercalation properties, low cost, and safety. However, their commercialization is hindered by the low electrical conductivity. One strategy to overcome this issue is to integrate [...] Read more.
Recently, there has been increased interest in NASICON-type electrodes for sodium-ion batteries due to their unique combination of intercalation properties, low cost, and safety. However, their commercialization is hindered by the low electrical conductivity. One strategy to overcome this issue is to integrate NASICON materials with carbon additives. This study shows that carbon additives improve the sodium storage performance of a NASICON-type electrode in various ways, depending on the additives’ functional groups, texture, and conductivity properties. The proof-of-concept is based on a multi-electron phospho-sulphate electrode, NaFeVPO4(SO4)2 (NFVPS) mixed with carbon black (C) and reduced graphene oxide (rGO). Carbon-coated samples are obtained via a simple ball milling procedure followed by thermal treatment in an argon flow. Sodium storage in the composites occurs through capacitive and Faradaic reactions. The Faradaic reaction is facilitated at the carbon black composite, while the capacitive reaction dominates for the rGO composite. NFVPS operates through two-electron reactions at 20 °C, while the increased temperatures favor the three-electron reaction. The rGO composite outperforms the carbon black composite in terms of cycling stability and rate capability at 20 and 40 °C. The role of the rGO and carbon black in electrochemical performance is discussed based on the different reactivity of hydroxyl/epoxide and carbonyl functional groups with the electrolyte salt, NaPF6, and the solvent, polypropylene carbonate. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Graphical abstract

28 pages, 10014 KB  
Article
Nanomaterial Functionalized Carbon Fiber-Reinforced Composites with Energy Storage Capabilities
by Venkatesh Gangipamula, Karamat Subhani, Peter J. Mahon and Nisa Salim
Nanomaterials 2025, 15(17), 1325; https://doi.org/10.3390/nano15171325 - 28 Aug 2025
Viewed by 322
Abstract
We have demonstrated the fabrication of laminate composites with functional features to demonstrate energy storage capabilities. The present study investigates the surface modification of carbon fibers by coating dual materials of reduced graphene oxide (rGO) and cellulose-based activated carbon to enhance their energy [...] Read more.
We have demonstrated the fabrication of laminate composites with functional features to demonstrate energy storage capabilities. The present study investigates the surface modification of carbon fibers by coating dual materials of reduced graphene oxide (rGO) and cellulose-based activated carbon to enhance their energy storage capacitance for the development of structural supercapacitors. The dual coating on carbon fibers enabled a near 210-fold improvement in surface area, surpassing that of pristine carbon fibers. This formed a highly porous graphene network with activated carbon, resulting in a well-connected fiber–graphene-activated carbon network on carbon fibers. The electrochemical supercapacitor, fabricated from surface-functionalized carbon fibers, provides the best performance, with a specific capacitance of 172 F g−1 in an aqueous electrolyte. Furthermore, the symmetrical structural supercapacitor (SSSC) device delivered a specific capacitance of 227 mF g−1 across a wide potential window of 6 V. The electrochemical stability of the SSSC device was validated by a high capacitance retention of 97.3% over 10,000 cycles. Additionally, the study showcased the practical application of this technology by successfully illuminating an LED using the proof-of-concept SSSC device with G-aC/CF electrodes. Overall, the findings of this study highlight the potential of carbon fiber composites as a promising hybrid material, offering both structural integrity and a functional performance suitable for aerospace and automobile applications. Full article
(This article belongs to the Special Issue Fabrication and Applications of Polymer Nanocomposite Materials)
Show Figures

Graphical abstract

11 pages, 1576 KB  
Article
Proof-of-Concept Development of a Bioelectric Biosensor Using Arduino for Monitoring Dopaminergic Response in Neuroblastoma Cells
by Magdalene Pappa and Spyridon Kintzios
Micromachines 2025, 16(8), 951; https://doi.org/10.3390/mi16080951 - 19 Aug 2025
Viewed by 619
Abstract
This study presents the proof-of-concept design and preliminary implementation of a bioelectric biosensor based on an Arduino platform for real-time monitoring of gel-immobilized N2a neuroblastoma cells using dopamine as a model neurotransmitter. The sensor operates on the principle of bioelectric recognition assay (BERA), [...] Read more.
This study presents the proof-of-concept design and preliminary implementation of a bioelectric biosensor based on an Arduino platform for real-time monitoring of gel-immobilized N2a neuroblastoma cells using dopamine as a model neurotransmitter. The sensor operates on the principle of bioelectric recognition assay (BERA), and uses a two-electrode set-up as a simple, cost-efficient way to capture electrophysiological responses following dopamine exposure, while at the same time mimicking the in vivo cellular environment. Cellular ohmic resistance was assessed under increasing dopamine concentrations and temperatures (24 °C and 37 °C). The results showed that temperature significantly affected cell responses to increasing dopamine concentrations, possibly because of differences in dopamine diffusion in gel, which may in turn have affected membrane polarization and overall cell electric resistance. Pending further testing against a wider range of dopamine concentrations along with various dopamine agonists/antagonists, as well as optimization in terms of specificity, selectivity, and sensitivity, the biosensor could be applied in bioscreening and neuropharmacological studies in a user-friendly, scalable way. Full article
(This article belongs to the Special Issue Bioelectronics and Its Limitless Possibilities)
Show Figures

Graphical abstract

16 pages, 2774 KB  
Article
Enzyme-Free Monitoring of Glucose Using Molecularly Imprinted Polymers and Gold Nanoparticles
by Ana Rita Aires Cardoso, Pedro Miguel Cândido Barquinha and Maria Goreti Ferreira Sales
Biosensors 2025, 15(8), 537; https://doi.org/10.3390/bios15080537 - 15 Aug 2025
Viewed by 295
Abstract
This work describes a non-enzymatic electrochemical glucose biosensor combining for the first time molecularly imprinted polymers (MIPs) for glucose concentration and gold nanoparticles (AuNPs) on screen-printed carbon electrodes (SPEs), where both MIPs and AuNPs were assembled in situ. Electrochemical impedance spectroscopy (EIS) was [...] Read more.
This work describes a non-enzymatic electrochemical glucose biosensor combining for the first time molecularly imprinted polymers (MIPs) for glucose concentration and gold nanoparticles (AuNPs) on screen-printed carbon electrodes (SPEs), where both MIPs and AuNPs were assembled in situ. Electrochemical impedance spectroscopy (EIS) was used to evaluate the analytical performance of the sensor, which has a linear range between 1.0 µM and 1.0 mM when standard solutions are prepared in buffer. Direct measurement of glucose was performed by chronoamperometry, measuring the oxidation current generated during direct glucose oxidation. The selectivity was tested against ascorbic acid and the results confirmed a selective discrimination of the electrode for glucose. Overall, the work presented here represents a promising tool for tracking glucose levels in serum. The use of glucose MIP on the electrode surface allows the concentration of glucose, resulting in lower detection limits, and the use of AuNPs reduces the potential required for the oxidation of glucose, which increases selectivity. In addition, this possible combination of two analytical measurements following different theoretical concepts can contribute to the accuracy of the analytical measurements. This combination can also be extended to other biomolecules that can be electrochemically oxidised at lower potentials. Full article
Show Figures

Figure 1

15 pages, 3365 KB  
Article
Manufacturing and Preliminary Testing of Nano-Filled Elastomeric Film Cover for Morphing Airfoil
by Monica Ciminello, Filomena Piscitelli, Ruggero Volponi and Salvatore Ameduri
Sensors 2025, 25(16), 5008; https://doi.org/10.3390/s25165008 - 13 Aug 2025
Viewed by 226
Abstract
In this paper, a strain–temperature sensor with medium-high stretchability is proposed for aeronautic applications. The elastomer is conceived to be used as a protective cover on a morphing airfoil characterized by high curvatures. The main novelties in design and manufacturing compared to the [...] Read more.
In this paper, a strain–temperature sensor with medium-high stretchability is proposed for aeronautic applications. The elastomer is conceived to be used as a protective cover on a morphing airfoil characterized by high curvatures. The main novelties in design and manufacturing compared to the state of the art are: use of a non-commercial, low-viscosity PDMS crosslinked with TEOS and DBTDL to enable effective graphene dispersion; innovative sensor design featuring an insulating interlayer on the substrate; and presence of micro-voids to enhance adhesion to the substrate. The resistive performance of the nano-filled matrix is preliminarily verified through a basic functionality test during tensile and bending solicitation at room temperature first and then by considering a thermal cycle while imposing a fixed curvature. During tensile tests, the sensor could withstand an imposed elongation of 30%. The bending tests highlighted the capability of the sensors to withstand low curvature radii, lower than 7.5 cm. Then, within the thermal characterization between −20 and +50 °C, a stability of the signal was observed. A basic resistivity (zero strain) of 3.69 MΩ over a sensor 20 mm long (distance between the electrodes), 5 mm wide, and 1 mm thick. All these features make the sensors a good candidate for laboratory prototypes of morphing concepts. Among the most critical applications in the morphing field, one recalls the possibility of integrating many spots of such sensors at the leading-edge zone of a wing, monitoring the strain at extreme curvature points. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

29 pages, 1494 KB  
Article
Advanced and Robust Numerical Framework for Transient Electrohydrodynamic Discharges in Gas Insulation Systems
by Philipp Huber, Julian Hanusrichter, Paul Freden and Frank Jenau
Eng 2025, 6(8), 194; https://doi.org/10.3390/eng6080194 - 6 Aug 2025
Viewed by 299
Abstract
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable [...] Read more.
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable and consistent modeling of the space charge density under realistic conditions. The core component of the framework is a discontinuous Galerkin method that ensures the conservative properties of the underlying hyperbolic problem. The space charge density at the electrode surface is imposed as a dynamic boundary condition via Lagrange multipliers. To increase the numerical stability and convergence rate, a homotopy approach is also integrated. For the experimental validation, a measurement concept was realised that uses a subtraction method to specifically remove the displacement current component in the signal and thus enables an isolated recording of the transient ion current with superimposed voltage stresses. The experimental results on a small scale agree with the numerical predictions and prove the quality of the model. On this basis, the framework is transferred to hybrid HVDC overhead line systems with a bipolar design. In the event of a fault, significant transient space charge densities can be seen there, especially when superimposed with new types of voltage waveforms. The framework thus provides a reliable contribution to insulation coordination in complex HVDC systems and enables the realistic analysis of electrohydrodynamic coupling effects on an industrial scale. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

32 pages, 6074 KB  
Review
High-Quality Manufacturing with Electrochemical Jet Machining (ECJM) for Processing Applications: A Comprehensive Review, Challenges, and Future Opportunities
by Yong Huang, Yi Hu, Xincai Liu, Xin Wang, Siqi Wu and Hanqing Shi
Micromachines 2025, 16(7), 794; https://doi.org/10.3390/mi16070794 - 7 Jul 2025
Viewed by 748
Abstract
The enduring manufacturing goals are increasingly shifting toward ultra-precision manufacturing and micro-nano fabrication, driven by the demand for sophisticated products. Unconventional machining processes such as electrochemical jet machining (ECJM), electrical discharge machining (EDM), electrochemical machining (ECM), abrasive water jet machining (AWJM), and laser [...] Read more.
The enduring manufacturing goals are increasingly shifting toward ultra-precision manufacturing and micro-nano fabrication, driven by the demand for sophisticated products. Unconventional machining processes such as electrochemical jet machining (ECJM), electrical discharge machining (EDM), electrochemical machining (ECM), abrasive water jet machining (AWJM), and laser beam machining (LBM) have been widely adopted as feasible alternatives to traditional methods, enabling the production of high-quality engineering components with specific characteristics. ECJM, a non-contact machining technology, employs electrodes on the nozzle and workpiece to establish an electrical circuit via the jet. As a prominent special machining technology, ECJM has demonstrated significant advantages, such as rapid, non-thermal, and stress-free machining capabilities, in past research. This review is dedicated to outline the research progress of ECJM, focusing on its fundamental concepts, material processing capabilities, technological advancements, and its variants (e.g., ultrasonic-, laser-, abrasive-, and magnetism-assisted ECJM) along with their applications. Special attention is given to the application of ECJM in the semiconductor and biomedical fields, where the demand for ultra-precision components is most pronounced. Furthermore, this review explores recent innovations in process optimization, significantly boosting machining efficiency and quality. This review not only provides a snapshot of the current status of ECJM technology, but also discusses the current challenges and possible future improvements of the technology. Full article
Show Figures

Figure 1

13 pages, 2217 KB  
Article
Gaseous Ammonia Sensing from Liquids via a Portable Chemosensor with Signal Correction for Humidity
by Andrea Rescalli, Ilaria Porello, Pietro Cerveri and Francesco Cellesi
Biosensors 2025, 15(7), 407; https://doi.org/10.3390/bios15070407 - 25 Jun 2025
Cited by 1 | Viewed by 483
Abstract
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, [...] Read more.
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, lack of portability, and poor compatibility with miniaturized systems. This study introduces a proof-of-concept for a compact, portable device tailored for POC detection of gaseous ammonia released from liquid samples. The device combines a polyaniline (PANI)-based chemoresistive sensor with interdigitated electrodes and a resistance readout circuit, enclosed in a gas-permeable hydrophobic membrane that permits ammonia in the vapor phase only to reach the sensing layer, ensuring selectivity and protection from liquid interference. The ink formulation was optimized. PANI nanoparticle suspension exhibited a monomodal, narrow particle size distribution with an average size of 120 nm and no evidence of larger aggregates. A key advancement of this device is its ability to limit the impact of water vapor, a known source of interference in PANI-based sensors, while maintaining a simple sensor design. A tailored signal processing strategy was implemented, extracting the slope of resistance variation over time as a robust metric for ammonia quantification. The sensor demonstrated reliable performance across a concentration range of 1.7 to 170 ppm with strong logarithmic correlation (R2 = 0.99), and very good linear correlations in low (R2 = 0.96) and high (R2 = 0.97) subranges. These findings validate the feasibility of this POC platform for sensitive, selective, and practical ammonia detection in clinical and environmental applications. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

17 pages, 3918 KB  
Article
One-Step Synthesis of Polymeric Carbon Nitride Films for Photoelectrochemical Applications
by Alberto Gasparotto, Davide Barreca, Chiara Maccato, Ermanno Pierobon and Gian Andrea Rizzi
Nanomaterials 2025, 15(13), 960; https://doi.org/10.3390/nano15130960 - 21 Jun 2025
Viewed by 537
Abstract
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical [...] Read more.
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical applications requires effective methods for the fabrication of PCN films endowed with suitable mechanical stability and modular chemico-physical properties. In this context, as a proof-of-concept, we report herein on a simple and versatile chemical vapor infiltration (CVI) strategy for one-step PCN growth on porous Ni foam substrates, starting from melamine as a precursor compound. Interestingly, tailoring the reaction temperature enabled to control the condensation degree of PCN films from melem/melon hybrids to melon-like materials, whereas the use of different precursor amounts directly affected the mass and morphology of the obtained deposits. Altogether, such features had a remarkable influence on PCN electrochemical performances towards the oxygen evolution reaction (OER), yielding, for the best performing systems, Tafel slopes as low as ≈65 mV/dec and photocurrent density values of ≈1 mA/cm2 at 1.6 V vs. the reversible hydrogen electrode (RHE). Full article
Show Figures

Graphical abstract

14 pages, 2190 KB  
Article
Flow-Based Dielectrophoretic Biosensor for Detection of Bacteriophage MS2 as a Foodborne Virus Surrogate
by Inae Lee, Heejin So, Kacie K. H. Y. Ho, Yong Li and Soojin Jun
Biosensors 2025, 15(6), 353; https://doi.org/10.3390/bios15060353 - 3 Jun 2025
Viewed by 742
Abstract
Norovirus, a foodborne pathogen, causes a significant economic and health burden globally. Although detection methods exist, they are expensive and non-field deployable. A flow-based dielectrophoretic biosensor was designed for the detection of foodborne pathogenic viruses and was tested using bacteriophage MS2 as a [...] Read more.
Norovirus, a foodborne pathogen, causes a significant economic and health burden globally. Although detection methods exist, they are expensive and non-field deployable. A flow-based dielectrophoretic biosensor was designed for the detection of foodborne pathogenic viruses and was tested using bacteriophage MS2 as a norovirus surrogate. The flow-based MS2 sensor comprises a concentrator and a detector. The concentrator is an interdigitated electrode array designed to impart dielectrophoretic effects to manipulate viral particles toward the detector in a fluidic channel. The detector is made of a silver electrode conjugated with anti-MS2 IgG to allow for antibody–antigen biorecognition events and is supplied with the electrical current for the purpose of measurement. Serially diluted MS2 suspensions were continuously injected into the fluidic channel at 0.1 mL/min. A cyclic voltammogram indicated that current measurements from single-walled carbon nanotube (SWCNT)-coated electrodes increased compared to uncoated electrodes. Additionally, a drop in the current measurements after antibody immobilization and MS2 capture was observed with the developed electrodes. Antibody immobilization at the biorecognition site provided greater current changes with the antibody-MS2 complexes vs. the assays without antibodies. The electric field applied to the fluidic channel at 10 Vpp and 1 MHz contributed to an increase in current changes in response to MS2 bound on the detector and was dependent on the MS2 concentrations in the sample. The developed biosensor was able to detect MS2 with a sensitivity of 102 PFU/mL within 15 min. Overall, this work demonstrates a proof of concept for a rapid and field-deployable strategy to detect foodborne pathogens. Full article
Show Figures

Figure 1

35 pages, 1765 KB  
Review
The Next Frontier in Brain Monitoring: A Comprehensive Look at In-Ear EEG Electrodes and Their Applications
by Alexandra Stefania Mihai (Ungureanu), Oana Geman, Roxana Toderean, Lucas Miron and Sara SharghiLavan
Sensors 2025, 25(11), 3321; https://doi.org/10.3390/s25113321 - 25 May 2025
Viewed by 4852
Abstract
Electroencephalography (EEG) remains an essential method for monitoring brain activity, but the limitations of conventional systems due to the complexity of installation and lack of portability have led to the introduction and development of in-ear EEG technology. In-ear EEG is an emerging method [...] Read more.
Electroencephalography (EEG) remains an essential method for monitoring brain activity, but the limitations of conventional systems due to the complexity of installation and lack of portability have led to the introduction and development of in-ear EEG technology. In-ear EEG is an emerging method of recording electrical activity in the brain and is an innovative concept that offers multiple advantages both from the point of view of the device itself, which is easily portable, and from the user’s point of view, who is more comfortable with it, even in long-term use. One of the fundamental components of this type of device is the electrodes used to capture the EEG signal. This innovative method allows bioelectrical signals to be captured through electrodes integrated into an earpiece, offering significant advantages in terms of comfort, portability, and accessibility. Recent studies have demonstrated that in-ear EEG can record signals qualitatively comparable to scalp EEG, with an optimized signal-to-noise ratio and improved electrode stability. Furthermore, this review provides a comparative synthesis of performance parameters such as signal-to-noise ratio (SNR), common-mode rejection ratio (CMRR), signal amplitude, and comfort, highlighting the strengths and limitations of in-ear EEG systems relative to conventional scalp EEG. This study also introduces a visual model outlining the stages of technological development for in-ear EEG, from initial research to clinical and commercial deployment. Particular attention is given to current innovations in electrode materials and design strategies aimed at balancing biocompatibility, signal fidelity, and anatomical adaptability. This article analyzes the evolution of EEG in the ear, briefly presents the comparative aspects of EEG—EEG in the ear from the perspective of the electrodes used, highlighting the advantages and challenges of using this new technology. It also discusses aspects related to the electrodes used in EEG in the ear: types of electrodes used in EEG in the ear, improvement of contact impedance, and adaptability to the anatomical variability of the ear canal. A comparative analysis of electrode performance in terms of signal quality, long-term stability, and compatibility with use in daily life was also performed. The integration of intra-auricular EEG in wearable devices opens new perspectives for clinical applications, including sleep monitoring, epilepsy diagnosis, and brain–computer interfaces. This study highlights the challenges and prospects in the development of in-ear EEG electrodes, with a focus on integration into wearable devices and the use of biocompatible materials to improve durability and enhance user comfort. Despite its considerable potential, the widespread deployment of in-ear EEG faces challenges such as anatomical variability of the ear canal, optimization of ergonomics, and reduction in motion artifacts. Future research aims to improve device design for long-term monitoring, integrate advanced signal processing algorithms, and explore applications in neurorehabilitation and early diagnosis of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Advanced Sensors in Brain–Computer Interfaces)
Show Figures

Figure 1

15 pages, 5398 KB  
Article
Design and In Vivo Evaluation of an Intraocular Electrode for Ciliary Muscle Biopotential Measurement in a Non-Human Primate Model of Human Accommodation
by Sven Schumayer, Esmaeil Ghadiri Zahrani, Bahman Azarhoushang, Volker Bucher and Torsten Straßer
Biosensors 2025, 15(4), 247; https://doi.org/10.3390/bios15040247 - 13 Apr 2025
Viewed by 856
Abstract
The measurement of electrical potentials in the human body is becoming increasingly important in healthcare as a valuable diagnostic parameter. In ophthalmology, while these signals are primarily used to assess retinal function, other applications, such as recording accommodation-related biopotentials from the ciliary muscle, [...] Read more.
The measurement of electrical potentials in the human body is becoming increasingly important in healthcare as a valuable diagnostic parameter. In ophthalmology, while these signals are primarily used to assess retinal function, other applications, such as recording accommodation-related biopotentials from the ciliary muscle, remain poorly understood. Here, we present the development and evaluation of a novel implantable ring electrode for recording biopotentials from the ciliary muscle. Inspired by capsular tension rings, the electrode was fabricated using laser cutting, wiring, and physical vapor deposition coating. The constant impedance and weight over a simulated aging period of 391 days, demonstrated the electrode’s stability. In vivo testing in non-human primates further validated the electrode’s surgical handling and long-term stability, with no delamination or tissue ingrowth after 100 days of implantation. Recorded biopotentials from the ciliary muscle (up to 700 µV) exceeded amplitudes reported in the literature. While the results are promising, further research is needed to investigate the signal quality and origin as well as the correlation between these signals and ciliary muscle activity. Ultimately, this electrode will be used in an implanted device to record ciliary muscle biopotentials to control an artificial lens designed to restore accommodation in individuals with presbyopia. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

14 pages, 8353 KB  
Article
Design and Characterization of an Equibiaxial Multi-Electrode Dielectric Elastomer Actuator
by Simon Holzer, Bhawnath Tiwari, Stefania Konstantinidi, Yoan Civet and Yves Perriard
Materials 2025, 18(8), 1693; https://doi.org/10.3390/ma18081693 - 8 Apr 2025
Viewed by 507
Abstract
With the ongoing journey of automation advancements and a trend towards miniaturization, the choice of actuator plays a crucial role. Over recent years, soft actuators have demonstrated their usefulness in various applications, especially where light weight and high strain are required. Dielectric elastomer [...] Read more.
With the ongoing journey of automation advancements and a trend towards miniaturization, the choice of actuator plays a crucial role. Over recent years, soft actuators have demonstrated their usefulness in various applications, especially where light weight and high strain are required. Dielectric elastomer actuators (DEAs) are a class of soft actuators that provide high-strain actuation possibilities in applications like biomedicine, logistics, or consumer electronics. A variety of work featuring DEAs for actuation has been carried out in recent years, but a single work detailing the design conception, fabrication, modeling and experimental validation is lacking, especially in the context of achieving high strains with the integration of multiple electrodes and their interaction. This work discusses these issues with an equibiaxial DEA, enabling optimized equibiaxial strain patterns due to full use of the available actuation area. The developed DEA can achieve an equibiaxial strain of 12.75% for actuation at 60 V μm−1 over an active area of 7 cm2 which is an improvement of 1.3 times compared to traditional dot actuators. These properties position the device as a promising alternative for various applications like cell cultures or microassembly and provide an advantage of optimized use of passive regions within the actuator. Full article
(This article belongs to the Special Issue Electroactive Polymers: Fundamentals and Applications)
Show Figures

Figure 1

17 pages, 4127 KB  
Article
A Neuroelectronic Interface with Microstructured Substrates for Spiral Ganglion Neurons Cultured In Vitro: Proof of Concept
by Boris Delipetar, Jelena Žarković Krolo, Ana Bedalov and Damir Kovačić
Biosensors 2025, 15(4), 224; https://doi.org/10.3390/bios15040224 - 1 Apr 2025
Viewed by 675
Abstract
In this study, we present a proof-of-concept neuroelectronic interface (NEI) for extracellular stimulation and recording of neurophysiological activity in spiral ganglion neurons (SGNs) cultured in vitro on three-dimensional, micro-patterned substrates with customized microtopographies, integrated within a 196-channel microelectrode array (MEA). This approach enables [...] Read more.
In this study, we present a proof-of-concept neuroelectronic interface (NEI) for extracellular stimulation and recording of neurophysiological activity in spiral ganglion neurons (SGNs) cultured in vitro on three-dimensional, micro-patterned substrates with customized microtopographies, integrated within a 196-channel microelectrode array (MEA). This approach enables mechanotaxis-driven neuronal contact guidance, promoting SGN growth and development, which is highly sensitive to artificial in vitro environments. The microtopography geometry was optimized based on our previous studies to enhance SGN alignment and neuron-electrode interactions. The NEI was validated using SGNs dissociated from rat pups in the prehearing period and cultured for seven days in vitro (DIV). We observed viable and proliferative cellular cultures with robust neurophysiological responses in the form of local field potentials (LFPs) resembling action potentials (APs), elicited both spontaneously and through electrical stimulation. These findings provide deeper insights into SGN behavior and neuron-microenvironment interactions, laying the groundwork for further advancements in neuroelectronic systems. Full article
(This article belongs to the Special Issue Microelectrode Array for Biomedical Applications)
Show Figures

Figure 1

24 pages, 2365 KB  
Article
Green Hydrogen Generation by Water Photoelectrolysis: Economic and Environmental Analysis
by Gaetano Maggio, Salvatore Vasta, Agatino Nicita, Stefano Trocino and Mauro Giorgianni
Energies 2025, 18(6), 1439; https://doi.org/10.3390/en18061439 - 14 Mar 2025
Viewed by 963
Abstract
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g., water electrolysis). Unfortunately, the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency, expensive electrode [...] Read more.
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g., water electrolysis). Unfortunately, the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency, expensive electrode materials, etc. A novel concept, based on a tandem photoelectrolysis cell configuration with an anion-conducting membrane separating the photoanode from the photocathode, has already been proposed in the literature. This approach allows the use of low-cost metal oxide electrodes and nickel-based co-catalysts. In this paper, we conducted a study to evaluate the economic and environmental sustainability of this technology, using the environmental life cycle cost. Preliminary results have revealed two main interesting aspects: the negligible percentage of externalities in the total cost (<0.15%), which means a positive environmental impact, and as evidenced by the net present value (NPV), there are potentially financial conditions that favour future investment. In fact, an NPV higher than 150,000 EUR can be achieved after 15 years. Full article
Show Figures

Figure 1

Back to TopTop