Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = embedded solid lubrication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12805 KB  
Article
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting
by Ze Sun, Hui Chen, Xianglong Meng, Guangchun Xiao, Zhaoqiang Chen, Mingdong Yi, Jingjie Zhang, Wenyu Liu and Chonghai Xu
Materials 2025, 18(9), 2110; https://doi.org/10.3390/ma18092110 - 4 May 2025
Cited by 2 | Viewed by 623
Abstract
The continuous advancement of technology has led to escalating demands for superior tribological performance in industrial applications, necessitating the enhancement of ceramic materials’ frictional properties through innovative approaches. Solid-lubricant embedding is a widely employed lubrication strategy in metals. However, the challenge of machining [...] Read more.
The continuous advancement of technology has led to escalating demands for superior tribological performance in industrial applications, necessitating the enhancement of ceramic materials’ frictional properties through innovative approaches. Solid-lubricant embedding is a widely employed lubrication strategy in metals. However, the challenge of machining holes on ceramic surfaces remains a significant barrier to applying this lubrication technique to ceramics. Gel casting, as a near-net-shaping process, offers several advantages, including uniform green body density, low organic content, and the capability to fabricate components with complex geometries, making it a promising solution for addressing these challenges. In this study, alumina ceramics with small surface holes designed for embedding oil-containing microcapsules were fabricated via gel casting using an N-hydroxy methylacrylamide gel system, which demonstrates lower toxicity compared to conventional acrylamide systems. The fabricated alumina ceramic materials exhibited a high density of 98.2%, a hardness of 16 GPa, and a bending strength of 276 MPa. The oil-containing microcapsules were self-synthesized using hexafluorophosphate ionic liquid as the core material and polyurea-formaldehyde as the wall material. The research results show that under conditions of using an alumina ball, sliding speed of 10 cm/min, load of 5 N, and at room temperature, the material with a microcapsule content of 15 wt% and embedded hole diameter of 1.2 mm reduced the friction coefficient from 0.696 in an unlubricated condition to 0.317. Moreover, the embedding of microcapsules further improved the wear resistance of the alumina. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

12 pages, 5585 KB  
Article
Friction Properties of Alumina–Silicon Carbide–Silver–Graphene Nanoplatelet Self-Lubricating Composite Prepared by SPS Technique
by Viktor Puchý, Jana Andrejovská, Richard Sedlák, Róbert Džunda, František Kromka, Ivan Petryshynets, Mária Podobová and Ladislav Falat
Lubricants 2025, 13(1), 3; https://doi.org/10.3390/lubricants13010003 - 27 Dec 2024
Cited by 1 | Viewed by 1073
Abstract
Al2O3 with SiC, silver, and graphene nanoplatelets (GNPs) powder mixture was produced by ball milling using ethanol as dispersion media. The GNP-reinforced Al2O3-SiC-Ag ceramic–metal composites were densified by spark plasma sintering technology (SPS). A homogeneous dispersion [...] Read more.
Al2O3 with SiC, silver, and graphene nanoplatelets (GNPs) powder mixture was produced by ball milling using ethanol as dispersion media. The GNP-reinforced Al2O3-SiC-Ag ceramic–metal composites were densified by spark plasma sintering technology (SPS). A homogeneous dispersion of GNPs in Al2O3-SiC-Ag was observed from the sintered samples, and the GNPs were embedded between the grains, which resulted in increasing the contact area. The trans-granular mechanism of crack propagation becomes increasingly dominant by adding GNPs. The hardness reaches 27 GPa, as tested by the Vickers microhardness method, which reflects an increase of 11% compared to Ag-GNPs-free Al2O3-SiC. On the other hand, by adding Ag-GNP content, the improvement in density is limited. Wear mechanisms, as determined through ball-on-flat testing, including adhesion, abrasion, and microcracks, are observed and discussed. The composite demonstrated remarkable self-lubricating properties, exhibiting a lower coefficient of friction (COF) and wear rate in an air environment compared to monolithic Al₂O₃-SiC. This improvement is attributed to the formation of a self-lubricating film, enabled by the uniform distribution of Ag and GNPs within the Al₂O₃-SiC matrix. The findings of this study propose a novel material design approach for developing self-lubricating ceramic composites with hybrid solid lubricants. Full article
Show Figures

Figure 1

19 pages, 11868 KB  
Article
Tribological Investigation of Polymer Composite Dynamic Shaft Seals in Extraterrestrial Applications
by Ádám Kalácska, Alexander Coen, Jean Carlos Poletto, Patrick De Baets and Gábor Kalácska
Lubricants 2024, 12(12), 451; https://doi.org/10.3390/lubricants12120451 - 18 Dec 2024
Cited by 4 | Viewed by 1206
Abstract
Polymer seals are utilized in various engineering applications to prevent leakage and contamination. The study investigates the wear and friction behavior of PTFE-based dynamic rotary seals, targeting their usage in space applications. Pin-on-disc dry sliding wear tests were performed with 0.5 MPa contact [...] Read more.
Polymer seals are utilized in various engineering applications to prevent leakage and contamination. The study investigates the wear and friction behavior of PTFE-based dynamic rotary seals, targeting their usage in space applications. Pin-on-disc dry sliding wear tests were performed with 0.5 MPa contact pressure and 0.2 m/s sliding velocity combining different lip seal (PTFE, PTFE+GF+MoS2), packing (PTFE, PTFE+Aramid fiber+solid lubricant) and shaft materials (34CrNiMo6, PEEK) involving third-body lunar (LHS-1) and Martian regolith (MGS-1) simulants. To understand the different influences of extraterrestrial regolith simulants compared to commonly encountered abrasives on Earth, quartz sand was selected as a reference. Quartz soil resulted in lower wear rates but a similar coefficient of friction to other regoliths. In the case of lip seals, testing with LHS-1 on PEEK and testing with MGS-1 on steel resulted in the most severe wear. Post-mortem surface analysis revealed the effect of external abrasive particles on the wear process and the transfer layer formation. The surface analysis confirmed that both lunar and Martian regolith simulants resulted in significant embedded particles. Based on the wear performance results, the lip seals performed better, but installation with an external packing could further aid the tribosystem. Full article
(This article belongs to the Special Issue Modeling and Characterization of Wear)
Show Figures

Figure 1

16 pages, 4758 KB  
Article
Mechanical and Tribological Properties of Ag/TiBx Nanocomposite Thin Films with Strong Antibacterial Effect Prepared by Magnetron Co-Sputtering
by Marek Vidiš, Martin Truchlý, Vitalii Izai, Tomáš Fiantok, Miroslav Rajninec, Tomáš Roch, Leonid Satrapinskyy, Marián Haršáni, Štefan Nagy, Veronika Turiničová and Marián Mikula
Coatings 2023, 13(6), 989; https://doi.org/10.3390/coatings13060989 - 25 May 2023
Cited by 3 | Viewed by 1649
Abstract
The use of silver-based antimicrobial materials has been growing recently. Considering the threat of developing silver-resistant bacteria, it is essential to address the endurance of such materials and the amount of silver released into the environment. Here we report on a durable, antibacterial [...] Read more.
The use of silver-based antimicrobial materials has been growing recently. Considering the threat of developing silver-resistant bacteria, it is essential to address the endurance of such materials and the amount of silver released into the environment. Here we report on a durable, antibacterial Ag/TiBx nanocomposite coating prepared by conventional magnetron sputtering. The coating consists of fine Ag clusters embedded in extremely hard, wear-resistant overstoichiometric TiBx, which serves as a protective matrix. The highest E. coli growth inhibition of 97% is observed for the coating containing 24 at.% of Ag. A strong antibacterial effect is also maintained after 45 days of immersion in the Luria–Bertani + 5% HNO3 solution. Despite a marked hardness decrease from 40 GPa for TiBx to 6.4 GPa for Ag/TiBx with 28 at.% of Ag, the coating maintains a good specific wear rate of 6 × 10−5 mm3/Nm. Moreover, the addition of Ag, which acts as a solid lubricant, decreases the coefficient of friction from 0.77 to 0.35, even at room temperature. Thanks to the combination of antibacterial properties and enhanced wear resistance, such material can find application as a protective coating for cutlery, door handles, water taps, and other daily-used objects in public areas. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

13 pages, 4004 KB  
Article
Effects of Copper Content on the Microstructural, Mechanical and Tribological Properties of TiAlSiN–Cu Superhard Nanocomposite Coatings
by Sung-Bo Heo, Wang Ryeol Kim, Jun-Ho Kim, Su-Hyeon Choe, Daeil Kim, Jae-Hun Lim and In-Wook Park
Coatings 2022, 12(12), 1995; https://doi.org/10.3390/coatings12121995 - 19 Dec 2022
Cited by 5 | Viewed by 2363
Abstract
The effects of the Cu content on the microstructural, mechanical and tribological properties of the TiAlSiN–Cu coatings were investigated in an effort to improve the wear resistance with a good fracture toughness for cutting tool applications. A functionally graded TiAlSiN–Cu coating with various [...] Read more.
The effects of the Cu content on the microstructural, mechanical and tribological properties of the TiAlSiN–Cu coatings were investigated in an effort to improve the wear resistance with a good fracture toughness for cutting tool applications. A functionally graded TiAlSiN–Cu coating with various copper (Cu) contents was fabricated by a filtered cathodic arc ion plating technique using four different (Ti, TiAl2, Ti4Si, and Ti4Cu) targets in an argon-nitrogen atmosphere. The results showed that the TiAlSiN–Cu coatings are a nanocomposite consisting of (Ti,Al)N nano-crystallites (~5 to 7 nm) embedded in an amorphous matrix, which is a mixture of TiOx, AlOx, SiOx, SiNx, and CuOx phase. The addition of Cu atoms into the TiAlSiN coatings led to the formation of an amorphous copper oxide (CuOx) phase in the coatings. The maximum nanohardness (H) of ~46 GPa, H/E ratio of ~0.102, and adhesion bonding strength between coating and substrate of ~60 N (LC2) were obtained at a Cu content ranging from 1.02 to 2.92 at.% in the TiAlSiN–Cu coatings. The coating with the lowest friction coefficient and best wear resistance was also obtained at a Cu content of 2.92 at.%. The formation of the amorphous CuOx phase during coating growth or sliding test played a key role as a smooth solid-lubricant layer, and reduced the average friction coefficient (~0.46) and wear rate (~10 × 10−6 mm3/N·m). Full article
(This article belongs to the Special Issue Multifunctional Coatings and Lubrication)
Show Figures

Figure 1

17 pages, 5284 KB  
Article
Microstructure and Wear Resistance of Hot-Work Tool Steels after Electron Beam Surface Alloying with B4C and Al
by Undrakh Mishigdorzhiyn, Aleksandr Semenov, Nikolay Ulakhanov, Aleksandr Milonov, Dorzho Dasheev and Pavel Gulyashinov
Lubricants 2022, 10(5), 90; https://doi.org/10.3390/lubricants10050090 - 7 May 2022
Cited by 7 | Viewed by 3126
Abstract
(1) Background: Operational properties and durability of dies in different metal-forming processes significantly depend on their surface quality. Major die failures are related to surface damage due to heat checking cracks, wear, etc. Thereby, strengthening of the working surfaces of dies for hot [...] Read more.
(1) Background: Operational properties and durability of dies in different metal-forming processes significantly depend on their surface quality. Major die failures are related to surface damage due to heat checking cracks, wear, etc. Thereby, strengthening of the working surfaces of dies for hot bending, stamping, forging, and die casting processes is an urgent engineering challenge. Surface alloying with high-energy beams improves the properties of steel products. In these processes, the alloying powders and the treated surfaces can be remelted by electron beam within a short time while the bulk structure of the component remains unchanged, resulting in minimal distortion. The paper presents the results of the electron beam surface alloying (EBSA) of H21 and L6 tool steels with the treatment pastes containing boron carbide and aluminum powders. (2) Methods: Two types of pastes were used for surface alloying: a single-component (B4C) paste and a two-component (B4C+Al) one. The microstructure, microhardness, wear resistance, and elemental and phase composition of the layers obtained on steels were investigated. (3) Results: Four layers up to 0.4 mm thick were distinguished on the surface of the steels after the EBSA. Metallographic analysis showed coarse dendrite formation in the layers embedded in matrices of a eutectic or a solid solution. Microhardness of the steels after the two-component EBSA was higher than after B4C EBSA, which was related to a higher concentration of hard phases, such as iron borides and carbides. In addition, aluminum boride was revealed by the XRD analysis on L6 steel after B4C+Al EBSA. (4) Conclusions: Wear test indicated that the most resistant samples were H21 steel after single B4C EBSA and L6 steel after B4C+Al EBSA. Both samples contained carbon particles in the layer contributing to the high wear resistance as a lubricant. The conducted research is beneficial for mechanical engineering, automotive engineering, medical technology, aerospace engineering, and related industries, where coatings with high microhardness, wear resistance, and surface quality are demanded. Full article
Show Figures

Figure 1

14 pages, 3231 KB  
Article
Analysis of the Surface/Interface Damage Evolution Behavior of a Coating–Substrate System under Heavy-Load Elastohydrodynamic Lubrication
by Yangyi Xiao, Mengjie Zou, Wankai Shi and Minglin Kang
Coatings 2019, 9(10), 642; https://doi.org/10.3390/coatings9100642 - 3 Oct 2019
Cited by 5 | Viewed by 2763
Abstract
Keeping a coating–substrate system undamaged during heavy-load elastohydrodynamic lubrication (EHL) conditions is challenging. To overcome this problem, an EHL model with a coated gear pair was built. Firstly, based on the full-system finite element method, the effect of the coating elastic modulus on [...] Read more.
Keeping a coating–substrate system undamaged during heavy-load elastohydrodynamic lubrication (EHL) conditions is challenging. To overcome this problem, an EHL model with a coated gear pair was built. Firstly, based on the full-system finite element method, the effect of the coating elastic modulus on the oil film pressure was obtained. Secondly, the failure mode was predicted after the stress analysis. Finally, the surface/interface damage evolution behavior of the coating–substrate system was analyzed visually by embedding cohesive zone elements. In the numerical calculation, stiffer coatings tended to increase the film pressure and secondary pressure spike, compared with more compliant coatings. As the coating stiffness decreased, the maximum equivalent stress in the system reduced, and its location tended to develop close to or at the substrate. The coating cracking and interfacial delamination were individually caused by the shear stress in the coating and shear stress on the interface, and both of them initiated in the region of the secondary pressure peak. The interfacial delamination increased the crack failure probability of coating and vice versa. Therefore, through analyzing the EHL model, the exact damage growth location and its evolution in the coated solids can be determined, and the failure mechanism can be comprehensively revealed. Full article
Show Figures

Figure 1

20 pages, 21358 KB  
Article
Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics
by Marios Constantinou, Petros Nikolaou, Loukas Koutsokeras, Apostolos Avgeropoulos, Dimitrios Moschovas, Constantinos Varotsis, Panos Patsalas, Pantelis Kelires and Georgios Constantinides
Nanomaterials 2018, 8(4), 209; https://doi.org/10.3390/nano8040209 - 30 Mar 2018
Cited by 16 | Viewed by 5604
Abstract
This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical [...] Read more.
This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a–C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a–C:H:Ag and a–C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required. Full article
(This article belongs to the Special Issue Design and Development of Nanostructured Thin Films)
Show Figures

Graphical abstract

22 pages, 748 KB  
Review
The Role of Solid Lubricants for Brake Friction Materials
by Werner Österle and Andrey I. Dmitriev
Lubricants 2016, 4(1), 5; https://doi.org/10.3390/lubricants4010005 - 29 Feb 2016
Cited by 91 | Viewed by 14437
Abstract
This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about [...] Read more.
This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus, a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol % of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and minimum wear. Full article
(This article belongs to the Special Issue Tribofilms and Solid Lubrication)
Show Figures

Figure 1

Back to TopTop