Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,054)

Search Parameters:
Keywords = emissive probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3922 KB  
Article
Both Benzannulation and Heteroatom-Controlled Photophysical Properties in Donor–π–Acceptor Ionic Dyes: A Combined Experimental and Theoretical Study
by Przemysław Krawczyk and Beata Jędrzejewska
Materials 2025, 18(20), 4676; https://doi.org/10.3390/ma18204676 (registering DOI) - 12 Oct 2025
Abstract
Donor–π–acceptor (D–π–A) dyes have garnered significant attention due to their unique optical properties and potential applications in various fields, including optoelectronics, chemical sensing and bioimaging. This study presents the design, synthesis, and comprehensive photophysical investigation of a series of ionic dyes incorporating five- [...] Read more.
Donor–π–acceptor (D–π–A) dyes have garnered significant attention due to their unique optical properties and potential applications in various fields, including optoelectronics, chemical sensing and bioimaging. This study presents the design, synthesis, and comprehensive photophysical investigation of a series of ionic dyes incorporating five- and six-membered heterocyclic rings as electron-donating and electron-withdrawing units, respectively. The influence of the dye structure, i.e., (a) the systematically varied heteroatom (NMe, S and O) in donor moiety, (b) benzannulation of the acceptor part and (c) position of the donor vs. acceptor, on the photophysical properties was evaluated by steady-state and time-resolved spectroscopy across solvents of varying polarity. To probe solvatochromic behavior, the Reichardt parameters and the Catalán four-parameter scale, including polarizability (SP), dipolarity (SdP), acidity (SA) and basicity (SB) parameters, were applied. Emission dynamics were further analyzed through time-resolved fluorescence spectroscopy employing multi-exponential decay models to accurately describe fluorescence lifetimes. Time-dependent density functional theory (TDDFT) calculations supported the experimental findings by elucidating electronic structures, charge-transfer character, and dipole moments in the ground and excited states. The experimental results show the introduction of O or S instead of NMe causes substantial hypsochromic shifts in the absorption and emission bands. Benzannulation enhances the photoinduced charge transfer and causes red-shifted absorption spectra to be obtained without deteriorating the emission properties. Hence, by introducing an appropriate modification, it is possible to design materials with tunable photophysical properties for practical applications, e.g., in opto-electronics or sensing. Full article
Show Figures

Figure 1

29 pages, 2025 KB  
Review
Emerging Radioligands as Tools to Track Multi-Organ Senescence
by Anna Gagliardi, Silvia Migliari, Alessandra Guercio, Giorgio Baldari, Tiziano Graziani, Veronica Cervati, Livia Ruffini and Maura Scarlattei
Diagnostics 2025, 15(19), 2518; https://doi.org/10.3390/diagnostics15192518 - 4 Oct 2025
Viewed by 319
Abstract
Senescence is a dynamic, multifaceted process implicated in tissue aging, organ dysfunction, and intricately associated with numerous chronic diseases. As senescent cells accumulate, they drive inflammation, fibrosis, and metabolic disruption through the senescence-associated secretory phenotype (SASP). Despite its clinical relevance, senescence remains challenging [...] Read more.
Senescence is a dynamic, multifaceted process implicated in tissue aging, organ dysfunction, and intricately associated with numerous chronic diseases. As senescent cells accumulate, they drive inflammation, fibrosis, and metabolic disruption through the senescence-associated secretory phenotype (SASP). Despite its clinical relevance, senescence remains challenging to detect non-invasively due to its heterogeneous nature and the lack of universal biomarkers. Recent advances in the development of specific imaging probes for positron emission tomography (PET) enable in vivo visualization of senescence-associated pathways across key organs, such as the lung, heart, kidney, and metabolic processes. For instance, [18F]FPyGal, a β-galactosidase-targeted tracer, has demonstrated selective accumulation in senescent cells in both preclinical and early clinical studies, while FAP-targeted radioligands are emerging as tools for imaging fibrotic remodeling in the lung, liver, kidney, and myocardium. This review examines a new generation of PET radioligands targeting hallmark features of senescence, with the potential to track and measure the process, the ability to be translated into clinical interventions for early diagnosis, and longitudinal monitoring of senescence-driven pathologies. By integrating organ-specific imaging biomarkers with molecular insights, PET probes are poised to transform our ability to manage and treat age-related diseases through personalized approaches. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

18 pages, 2667 KB  
Article
Spectral Profiling of Early αsyn Aggregation in HEK293 Cells Modified to Stably Express Human WT and A53T-αsyn
by Priyanka Swaminathan, Karsten Sættem Godø, Eline Bærøe Bjørn, Therése Klingstedt, Debdeep Chatterjee, Per Hammarström, Rajeevkumar Raveendran Nair and Mikael Lindgren
Cells 2025, 14(19), 1542; https://doi.org/10.3390/cells14191542 - 2 Oct 2025
Viewed by 470
Abstract
Alpha-synuclein (αsyn) misfolding and aggregation underlie several neurodegenerative disorders, including Parkinson’s disease. Early oligomeric intermediates are particularly toxic yet remain challenging to detect and characterize within cellular systems. Here, we employed the luminescent conjugated oligothiophene h-FTAA to investigate early aggregation events of human [...] Read more.
Alpha-synuclein (αsyn) misfolding and aggregation underlie several neurodegenerative disorders, including Parkinson’s disease. Early oligomeric intermediates are particularly toxic yet remain challenging to detect and characterize within cellular systems. Here, we employed the luminescent conjugated oligothiophene h-FTAA to investigate early aggregation events of human wildtype (huWT) and A53T-mutated αsyn (huA53T) both in vitro and in HEK293 cells stably expressing native human-αsyn. Comparative fibrillation assays revealed that h-FTAA detected αsyn aggregation with higher sensitivity and earlier onset than Thioflavin T, with the A53T variant displaying accelerated fibrillation. HEK293 cells stably expressing huWT- or huA53T-αsyn were exposed to respective pre-formed fibrils (PFFs), assessed via immunocytochemistry, h-FTAA staining, spectral emission profiling, and fluorescence lifetime imaging microscopy (FLIM). Notably, huA53T PFFs promoted earlier aggregation patterns and yielded narrower fluorescence lifetime distributions compared with huWT PFFs. Spectral imaging showed h-FTAA emission maxima (~550–580 nm) red-shifted and broadened in cells along with variable lifetimes (0.68–0.87 ns), indicating heterogeneous aggregate conformations influenced by cellular milieu. These findings demonstrate that h-FTAA is useful for distinguishing early αsyn conformers in living systems and, together with stable αsyn-expressing HEK293 cells, offers a platform for probing early αsyn morphotypes. Taken together, this opens for further discovery of biomarkers and drugs that can interfere with αsyn aggregation. Full article
(This article belongs to the Special Issue Applications of Proteomics in Human Diseases and Treatments)
Show Figures

Figure 1

16 pages, 4987 KB  
Article
Nitrogen Transformation Survival Strategies of Ammonia-Oxidizing Bacterium N.eA1 Under High Nitrite Stress
by Zhiyao Yan, Kai Li, Yuhang Liu, Zhijun Ren, Xueying Li and Haobin Yang
Sustainability 2025, 17(19), 8708; https://doi.org/10.3390/su17198708 - 27 Sep 2025
Viewed by 389
Abstract
Ammonia-oxidizing bacteria (AOB) are key to the nitrogen cycle, but their resistance to nitrite (NO2-N) accumulation is unclear. This study examined N.eA1, an AOB from the completely autotrophic nitrogen removal over nitrite (CANON) process, assessing its adaptive responses to [...] Read more.
Ammonia-oxidizing bacteria (AOB) are key to the nitrogen cycle, but their resistance to nitrite (NO2-N) accumulation is unclear. This study examined N.eA1, an AOB from the completely autotrophic nitrogen removal over nitrite (CANON) process, assessing its adaptive responses to NO2-N. The ammonia oxidation and N2O emission were evaluated at varying NO2-N levels, and 3D fluorescence, extracellular polymeric substances (EPS), and soluble microbial products (SMP) analysis were used to probe stress responses. Cellular respiration and key enzyme activities were measured, and proteomics was applied to study protein expression changes. Results showed that higher NO2-N levels boosted N2O production, inhibited nitrification, and stimulated denitrification in N.eA1. At 100 mg·L−1 NO2-N, EPS rose and SMP fell, with ammonia monooxygenase (AMO) suppressed and nitrite reductase (NIR) as well as nitric oxide reductase (NOR) enhanced. Gene expression analysis revealed decreased AMO, hydroxylamine oxidoreductase (HAO), and energy transport-related enzymes, but increased NIR and NOR genes. The downregulation of electron transport complex genes offered insights into molecular adaptation to nitrite stress of N.eA1, highlighting the interplay between metabolic and genetic responses, which is essential for developing sustainable and efficient nitrogen management strategies. Full article
(This article belongs to the Special Issue Sustainability and Advanced Research on Microbiology)
Show Figures

Figure 1

18 pages, 1611 KB  
Review
Blazars as Probes for Fundamental Physics
by Giorgio Galanti
Universe 2025, 11(10), 327; https://doi.org/10.3390/universe11100327 - 27 Sep 2025
Viewed by 144
Abstract
Blazars are a class of active galactic nuclei characterized by having one of their relativistic jets oriented close to our line of sight. Their broad emission spectrum makes them exceptional laboratories for probing fundamental physics. In this review, we explore the potential impact [...] Read more.
Blazars are a class of active galactic nuclei characterized by having one of their relativistic jets oriented close to our line of sight. Their broad emission spectrum makes them exceptional laboratories for probing fundamental physics. In this review, we explore the potential impact on blazar observations of three scenarios beyond the standard paradigm: (i) the hadron beam model, (ii) the interaction of photons with axion-like particles (ALPs), and (iii) Lorentz invariance violation. We focus on the very-high-energy spectral features these scenarios induce in the blazars Markarian 501 and 1ES 0229+200, making them ideal targets for testing such effects. Additionally, we examine ALP-induced effects on the polarization of UV-X-ray and high-energy photons from the blazar OJ 287. The unique signatures produced by these models are accessible to current and upcoming instruments—such as the ASTRI Mini Array, CTAO, LHAASO, IXPE, COSI, and AMEGO—offering new opportunities to probe and constrain fundamental physics through blazar observations. Full article
(This article belongs to the Special Issue Multi-wavelength Properties of Active Galactic Nuclei)
Show Figures

Figure 1

21 pages, 554 KB  
Article
Assessing the Environmental Impact of Fiscal Consolidation in OECD Countries: Evidence from the Panel QARDL Approach
by Ameni Mtibaa and Foued Badr Gabsi
J. Risk Financial Manag. 2025, 18(9), 529; https://doi.org/10.3390/jrfm18090529 - 22 Sep 2025
Viewed by 444
Abstract
Concerns about ensuring a sustainable environment are growing, attracting major attention from policy professionals worldwide. Therefore, this study investigates the nonlinear impacts of fiscal consolidation on CO2 emissions in 17 OECD countries from 1978 to 2020. To probe the short- and long-term [...] Read more.
Concerns about ensuring a sustainable environment are growing, attracting major attention from policy professionals worldwide. Therefore, this study investigates the nonlinear impacts of fiscal consolidation on CO2 emissions in 17 OECD countries from 1978 to 2020. To probe the short- and long-term connections across various quantiles of CO2 emissions, we adopted panel QARDL frameworks. The Granger non-causality test was used to investigate the variables’ association with CO2 emission. The study’s main findings confirm the overall beneficial effect of fiscal consolidation on carbon emissions. It reduces CO2 emissions at almost all quantiles in the short run. By contrast, in the long run, the effect is positive at lower quantiles and turns negative at upper quantiles. Furthermore, a causality analysis identified a bidirectional causal relationship between fiscal consolidation and CO2 emissions, confirming the existence of mutual influence. While Keynesian theory links fiscal consolidation to economic recession, our findings support the non-Keynesian view, showing that such policy can foster economic growth and thereby contribute to reducing CO2 emissions in the short run. Thus, OECD countries are orienting public spending and carbon taxation toward environmentally friendly practices while ensuring environmental protection and deficit reduction. Nonetheless, the identified mixed effect in the long run highlights the need for sustained consolidation policies by enhancing expenditure efficiency and adopting targeted taxation measures to achieve lasting emission reductions and support the transition to cleaner energy, even when emissions are relatively low. Full article
(This article belongs to the Special Issue Sustainable Finance for Fair Green Transition)
Show Figures

Figure 1

18 pages, 13021 KB  
Article
EMPhone: Electromagnetic Covert Channel via Silent Audio Playback on Smartphones
by Yongjae Kim, Hyeonjun An and Dong-Guk Han
Sensors 2025, 25(18), 5900; https://doi.org/10.3390/s25185900 - 21 Sep 2025
Viewed by 466
Abstract
Covert channels enable hidden communication that poses significant security risks, particularly when smartphones are used as transmitters. This paper presents the first end-to-end implementation and evaluation of an electromagnetic (EM) covert channel on modern Samsung Galaxy S21, S22, and S23 smartphones (Samsung Electronics [...] Read more.
Covert channels enable hidden communication that poses significant security risks, particularly when smartphones are used as transmitters. This paper presents the first end-to-end implementation and evaluation of an electromagnetic (EM) covert channel on modern Samsung Galaxy S21, S22, and S23 smartphones (Samsung Electronics Co., Ltd., Suwon, Republic of Korea). We first demonstrate that a previously proposed method relying on zero-volume playback is no longer effective on these devices. Through a detailed analysis of EM emissions in the 0.1–2.5 MHz range, we discovered that consistent, volume-independent signals can be generated by exploiting the hardware’s recovery delay after silent audio playback. Based on these findings, we developed a complete system comprising a stealthy Android application for transmission, a time-based modulation scheme, and a demodulation technique designed around the characteristics of the generated signals to ensure reliable reception. The channel’s reliability and robustness were validated through evaluations of modulation time, probe distance, and message length. Experimental results show that the maximum error-free bit rate (bits per second, bps) reached 0.558 bps on Galaxy S21 and 0.772 bps on Galaxy S22 and Galaxy S23. Reliable communication was feasible up to 0.5 cm with a near-field probe, and a low alignment-aware bit error rate (BER) was maintained even for 100-byte messages. This work establishes a practical threat, and we conclude by proposing countermeasures to mitigate this vulnerability. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

31 pages, 1319 KB  
Review
Fluorescent Probes for Monitoring Toxic Elements from the Nuclear Industry: A Review
by Clovis Poulin-Ponnelle, Denis Boudreau and Dominic Larivière
Sensors 2025, 25(18), 5835; https://doi.org/10.3390/s25185835 - 18 Sep 2025
Viewed by 523
Abstract
With nuclear power playing an increasing role in efforts to reduce carbon emissions, the development of effective and sensitive monitoring tools for (radio)toxic elements in the environment has become essential. This review highlights recent advances in fluorescent probes developed for the detection of [...] Read more.
With nuclear power playing an increasing role in efforts to reduce carbon emissions, the development of effective and sensitive monitoring tools for (radio)toxic elements in the environment has become essential. This review highlights recent advances in fluorescent probes developed for the detection of key elements associated with the nuclear industry, including uranium, cesium, strontium, technetium, zirconium, and beryllium. Various sensor platforms, ranging from organic ligands and DNAzymes to metal–organic frameworks and quantum dots, offer promising features, such as high sensitivity, selectivity, and suitability for environmental matrices. Several recent designs now achieve detection limits in the nanomolar to picomolar range, revealing new perspectives for environmental and biological applications. Full article
Show Figures

Figure 1

19 pages, 649 KB  
Article
Study on the Gamma-Ray Radiation Properties of High-Redshift Blazars at z > 2.5
by Fan Wu, Li Zhang and Benzhong Dai
Universe 2025, 11(9), 320; https://doi.org/10.3390/universe11090320 - 18 Sep 2025
Viewed by 196
Abstract
The high-redshift blazars are important cosmological probes for exploring the early universe and unraveling the fundamental emission processes and the structure of the active galactic nuclei. The high-energy GeV gamma-ray emissions of 38 high-redshift blazars (z > 2.5) observed by Fermi-LAT were analyzed. [...] Read more.
The high-redshift blazars are important cosmological probes for exploring the early universe and unraveling the fundamental emission processes and the structure of the active galactic nuclei. The high-energy GeV gamma-ray emissions of 38 high-redshift blazars (z > 2.5) observed by Fermi-LAT were analyzed. Along with the Archive multiwavelength data, we employ one-zone leptonic external Compton (EC) models to reproduce the spectral energy distributions (SEDs) of 38 sources. Both the external photons from the molecular torus (MT) and the broad-line region (BLR) are considered. We obtained the best-fitting parameters for describing the characteristics of the jets and accretion disks. The results indicate that high-redshift blazars exhibit higher γ-ray luminosities, energy densities, jet powers, kinetic powers, accretion disk luminosities, black hole (BH) masses, radiation efficiencies, and mass accretion rates compared to low-redshift blazars. For high-redshift blazars, the influence of the accretion rate on jet power appears to weaken, and in most cases, the jet power exceeds the total accretion power. We speculate that for high-redshift blazars, rapid accretion may lead to magnetic field saturation, thereby reducing the effectiveness of the Blandford–Payne (BP) process. Consequently, the Blandford–Znajek (BZ) process is likely to play a more dominant role in powering jets in high-redshift blazars compared to low-redshift blazars. Naturally, we acknowledge that selection effects cannot be fully eliminated. Full article
(This article belongs to the Special Issue Multi-wavelength Properties of Active Galactic Nuclei)
Show Figures

Figure 1

11 pages, 2227 KB  
Article
Controlling Stimulated Emission via Intramolecular Charge Transfer in Amino-Coumarin Dyes: Switching from Reverse Saturable to Saturable Absorption
by Jidong Jia, Siya Wu, Yinlin Lu, Jingyuan Xu, Hang Zuo, Xingzhi Wu and Yinglin Song
Molecules 2025, 30(18), 3799; https://doi.org/10.3390/molecules30183799 - 18 Sep 2025
Viewed by 324
Abstract
Given the pivotal role of coumarins as tunable nonlinear optical (NLO) materials for advanced photonics, this study aims to decipher the regulatory mechanisms governing their excited-state dynamics and nonlinear absorption. In this study, two amino-coumarin dyes (102 and 153) differing in electron-withdrawing groups [...] Read more.
Given the pivotal role of coumarins as tunable nonlinear optical (NLO) materials for advanced photonics, this study aims to decipher the regulatory mechanisms governing their excited-state dynamics and nonlinear absorption. In this study, two amino-coumarin dyes (102 and 153) differing in electron-withdrawing groups are synthesized to probe the impact of intramolecular charge transfer (ICT) on transient dynamics and nonlinear absorption. Frontier orbital and natural transition orbital analyses reveal subtle alterations in the ICT characteristics of amino-coumarin molecules. These minor modifications induce a significant red shift in the stimulated emission band within transient absorption spectroscopy, ultimately triggering a transition from reverse saturable absorption (RSA) to saturable absorption (SA) at 515 nm. Our findings demonstrate that, with straightforward molecular modifications, coumarins emerge as promising dual-function materials for saturable absorption and optical limiting. Full article
Show Figures

Figure 1

21 pages, 433 KB  
Article
How Does the Carbon Emission Trading Policy Enhance Corporate Green Technology Innovation? Evidence from Advanced Manufacturing Enterprises
by Shiheng Xie, Pengbo Zhao and Shuping Wang
Sustainability 2025, 17(18), 8199; https://doi.org/10.3390/su17188199 - 11 Sep 2025
Viewed by 492
Abstract
As global climate change progresses and the “dual carbon” strategy advances, market-based carbon emission trading systems are of great theoretical and practical importance for green technology innovation. In this paper, A-share listed advanced manufacturing enterprises in pilot regions from 2010 to 2023 are [...] Read more.
As global climate change progresses and the “dual carbon” strategy advances, market-based carbon emission trading systems are of great theoretical and practical importance for green technology innovation. In this paper, A-share listed advanced manufacturing enterprises in pilot regions from 2010 to 2023 are taken as samples, and a multi-period difference-in-differences (DID) method is employed to probe into the mechanism by which this policy influences green technology innovation in China’s advanced manufacturing enterprises. Empirical analysis reveals that carbon emission trading exerts a remarkable promoting impact on green technology innovation in China’s advanced manufacturing enterprises. The study indicates that the policy’s influence on enterprises is indirect; specifically, government policies encourage enterprises to raise their R&D investment, thus facilitating green technology innovation to some degree. Moreover, carbon emission rights prices play a positive moderating role, which is vital for maintaining the policy’s incentive function in long-term green transition—within a reasonable range, carbon prices can enhance the policy’s promoting effect. In addition, enterprise-specific features like company size and asset-liability ratio have certain effects on enterprises’ green technology innovation behaviors. The research findings will offer a theoretical foundation and practical reference for optimizing China’s carbon market mechanism in advanced manufacturing and advancing the green transformation of China’s advanced manufacturing industry. Full article
Show Figures

Figure 1

13 pages, 3321 KB  
Article
Plasma Controlled Growth Dynamics and Electrical Properties of Ag Nanofilms via RF Magnetron Sputtering
by Jiali Chen, Yanyan Wang, Tianyuan Huang, Peiyu Ji and Xuemei Wu
Coatings 2025, 15(9), 1062; https://doi.org/10.3390/coatings15091062 - 10 Sep 2025
Viewed by 296
Abstract
Silver thin films are widely utilized in plasmonic, electronic, and catalytic devices due to their excellent conductivity, optical properties, and surface activity. However, the nanostructure and performance of Ag films are highly dependent on deposition parameters, particularly during radio-frequency magnetron sputtering (RF-MS). In [...] Read more.
Silver thin films are widely utilized in plasmonic, electronic, and catalytic devices due to their excellent conductivity, optical properties, and surface activity. However, the nanostructure and performance of Ag films are highly dependent on deposition parameters, particularly during radio-frequency magnetron sputtering (RF-MS). In this study, we systematically investigate the effects of RF power, sputtering time, and substrate type on the growth behavior, crystallinity, and electrical conductivity of Ag films. Optical emission spectroscopy (OES) and Langmuir probe diagnostics were employed to analyze the plasma environment, revealing the evolution of electron temperature and plasma density with varying RF powers. Structural characterizations using XRD, SEM, and AFM demonstrate that higher RF power results in reduced grain size, increased film density, and improved crystallinity, while deposition time influences film thickness and grain coalescence. Substrate material also plays a key role, with Cu substrates promoting better crystallinity due to improved lattice matching. Electrical measurements show that denser films with larger grains exhibit lower sheet resistance. These findings provide a comprehensive understanding of the plasma–film interplay and offer strategic insights for optimizing silver nanofilms in high-performance optoelectronic and catalytic systems. Full article
Show Figures

Figure 1

30 pages, 4237 KB  
Article
On the “Bi-Phase” of Fluorescence to Scattering with Single-Fiber Illumination and Detection: A Quasi-Analytical Photon-Transport Approach Operated with Center-Illuminated Area Detection
by Daqing Piao
Photonics 2025, 12(9), 904; https://doi.org/10.3390/photonics12090904 - 9 Sep 2025
Viewed by 391
Abstract
Bi-phasic (with a local minimum) response of fluorescence to scattering when probed by a single fiber (SF) was first observed in 2003. Subsequent experiments and Monte Carlo studies have shown the bi-phasic turning of SF fluorescence to occur at a dimensionless reduced scattering [...] Read more.
Bi-phasic (with a local minimum) response of fluorescence to scattering when probed by a single fiber (SF) was first observed in 2003. Subsequent experiments and Monte Carlo studies have shown the bi-phasic turning of SF fluorescence to occur at a dimensionless reduced scattering of ~1 and vary with absorption. The bi-phase of SF fluorescence received semi-empirical explanations; however, better understandings of the bi-phase and its dependence on absorption are necessary. This work demonstrates a quasi-analytical projection of a bi-phasic pattern comparable to that of SF fluorescence via photon-transport analyses of fluorescence in a center-illuminated-area-detection (CIAD) geometry. This model-approach is principled upon scaling of the diffuse fluorescence between CIAD and a SF of the same size of collection, which expands the scaling of diffuse reflectance between CIAD and a SF discovered for steady-state and time-domain cases. Analytical fluorescence for CIAD is then developed via radial-integration of radially resolved fluorescence. The radiance of excitation is decomposed to surface, collimated, and diffusive portions to account for the surface, near the point-of-entry, and diffuse portion of fluorescence associated with a centered illumination. Radiative or diffuse transport methods are then used to quasi-analytically deduce fluorescence excited by the three portions of radiance. The resulting model of fluorescence for CIAD, while limiting to iso-transport properties at the excitation and emission wavelengths, is compared against the semi-empirical model for SF, revealing bi-phasic turning [0.5~2.6] at various geometric sizes [0.2, 0.4, 0.6, 0.8, 1.0 mm] and a change of three orders of magnitude in the absorption of the background medium. This model projects a strong reduction in fluorescence versus strong absorption at high scattering, which differs from the semi-empirical SF model’s projection of a saturating pattern unresponsive to further increases in the absorption. This framework of modeling fluorescence may be useful to project frequency-domain and lifetime pattens of fluorescence in an SF and CIAD. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

13 pages, 1833 KB  
Article
A Ratiometric Fluorescent Probe Based on CDs-Functionalized UiO-66 for Efficient Detection of Uric Acid
by Hongmei Gao, Yourong Zhao, Yuhong Xie, Yiying Wang, Jie Che, Daojiang Gao and Zhanglei Ning
Chemosensors 2025, 13(9), 340; https://doi.org/10.3390/chemosensors13090340 - 5 Sep 2025
Viewed by 487
Abstract
In this study, a novel carbon quantum dots-functionalized UiO-66 composite was successfully prepared via the post-synthetic modification method and further developed into a ratiometric fluorescent probe for detecting uric acid. The composite demonstrates excellent structural and luminescent stability under challenging environmental conditions. As [...] Read more.
In this study, a novel carbon quantum dots-functionalized UiO-66 composite was successfully prepared via the post-synthetic modification method and further developed into a ratiometric fluorescent probe for detecting uric acid. The composite demonstrates excellent structural and luminescent stability under challenging environmental conditions. As a ratiometric fluorescent probe, its recognition principle relies on the ratio of response signals from two different fluorescent emission centers in the composite. In the presence of uric acid, the fluorescence emission intensity at 430 nm from CDs did not change significantly. However, the fluorescence intensity at 545 nm from Tb3+ ions decreased remarkably. This material was evaluated for its capacity to sense urinary components and was shown to specifically recognize uric acid over a wide concentration range (0~5 × 10−3 M). Moreover, it exhibited strong resistance to interference and high sensitivity in uric acid detection. The detection limit (LOD) was determined to be 0.102 μM through quantitative analysis. The sensing mechanism was validated through spectral overlap and fluorescence lifetime analysis, which can be attributed to the fluorescence resonance energy transfer (FRET) process. This ratiometric fluorescent probe provides an efficient and reliable strategy for detecting the biomarker uric acid. Full article
Show Figures

Figure 1

18 pages, 1759 KB  
Article
Colorimetric Detection of Nitrosamines in Human Serum Albumin Using Cysteine-Capped Gold Nanoparticles
by Sayo O. Fakayode, David K. Bwambok, Souvik Banerjee, Prateek Rai, Ronald Okoth, Corinne Kuiters and Ufuoma Benjamin
Sensors 2025, 25(17), 5505; https://doi.org/10.3390/s25175505 - 4 Sep 2025
Viewed by 1099
Abstract
Nitrosamines, including N-nitroso diethylamine (NDEA) have emerged as pharmaceutical impurities and carcinogenic environmental contaminants of grave public health safety concerns. This study reports on the preparation and first use of cysteine–gold nanoparticles (CysAuNPs) for colorimetric detection of NDEA in human serum albumin (HSA) [...] Read more.
Nitrosamines, including N-nitroso diethylamine (NDEA) have emerged as pharmaceutical impurities and carcinogenic environmental contaminants of grave public health safety concerns. This study reports on the preparation and first use of cysteine–gold nanoparticles (CysAuNPs) for colorimetric detection of NDEA in human serum albumin (HSA) under physiological conditions. Molecular docking (MD) and molecular dynamic simulation (MDS) were performed to probe the interaction between NDEA and serum albumin. UV–visible absorption and fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging were used to characterize the synthesized CysAuNPs. These CysAuNPs show a UV–visible absorbance wavelength maxima (λmax) at 377 nm and emission λmax at 623 nm. Results from DLS measurement revealed the CysAuNPs’ uniform size distribution and high polydispersity index of 0.8. Microscopic imaging using TEM showed that CysAuNPs have spherical to nanoplate-like morphology. The addition of NDEA to HSA in the presence of CysAuNPs resulted in a remarkable increase in the absorbance of human serum albumin. The interaction of NDEA–CysAuNPs–HSA is plausibly facilitated by hydrogen bonding, sulfur linkages, or by Cys–NDEA-induced electrostatic and van der Waal interactions. These are due to the disruption of the disulfide bond linkage in Cys–Cys upon the addition of NDEA, causing the unfolding of the serum albumin and the dispersion of CysAuNPs. The combined use of molecular dynamic simulation and colorimetric experiment provided complementary data that allows robust analysis of NDEA in serum samples. In addition, the low cost of the UV–visible spectrophotometer and the easy preparation and optical sensitivity of CysAuNPs sensors are desirable, allowing the low detection limit of the CysAuNPs sensors, which are capable of detecting as little as 0.35 µM NDEA in serum albumin samples, making the protocol an attractive sensor for rapid detection of nitrosamines in biological samples. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Sensors 2025)
Show Figures

Figure 1

Back to TopTop