Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = enkephalins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1382 KB  
Article
Predictive Value of Point-of-Care Proenkephalin for Worsening Renal Function and Mortality in Patients Presenting to Emergency Department with Acute Heart Failure
by Dionysis Matsiras, Effie Polyzogopoulou, Ioannis Ventoulis, Vasiliki Bistola, Christos Verras, Ignatios Ikonomidis and John Parissis
J. Clin. Med. 2025, 14(16), 5730; https://doi.org/10.3390/jcm14165730 - 13 Aug 2025
Viewed by 375
Abstract
Background: Enkephalins are endogenous opioid peptides that modulate cardiovascular and renal function and are overexpressed in patients with acute heart failure (AHF). Although biologically active enkephalins lack a favorable biomarker profile, their stable surrogate proenkephalin 119–159 (PENK) appears to display prognostic value in [...] Read more.
Background: Enkephalins are endogenous opioid peptides that modulate cardiovascular and renal function and are overexpressed in patients with acute heart failure (AHF). Although biologically active enkephalins lack a favorable biomarker profile, their stable surrogate proenkephalin 119–159 (PENK) appears to display prognostic value in AHF settings. The aim of the present study was to evaluate the role of point-of-care (POC) PENK in predicting mortality and worsening renal function (WRF) in patients presenting to the emergency department (ED) with AHF. Methods: In this single-center observational study, 107 patients presenting to the ED with AHF were prospectively enrolled. We measured PENK levels upon ED presentation with a commercially available POC immunoassay and investigated their association with WRF within 48 h and all-cause mortality during a 1-year follow-up. Results: The patients had a mean age of 72 ± 13 years, and 58% were men. Moreover, 62% had acutely decompensated chronic heart failure (HF), 24% had pulmonary edema, 9% had cardiogenic shock, and 5% had right HF. The median PENK levels were 111 [60–193] pmol/L. PENK was independently associated with WRF (adjusted OR, 95% CI: 15.4 [2.0–120.2]; p = 0.009), with levels of ≥90.5 pmol/L identified as the optimal cut-off for predicting WRF (AUC: 0.690; p < 0.001). PENK was also an independent predictor of short- and long-term all-cause mortality, with an optimal cut-off of ≥95.8 pmol/L (AUC for 30-day, 90-day, and 1-year mortality: 0.717, 0.723, and 0.724, respectively; all p < 0.001). Conclusions: In patients presenting to the ED with AHF, POC PENK may serve as an early prognostic marker of WRF and short- and long-term mortality. Full article
(This article belongs to the Special Issue Patient-Oriented Treatments for Heart Failure)
Show Figures

Graphical abstract

13 pages, 2313 KB  
Article
Effects of Cholinergic and Opioid Antagonists on In Vitro Release of Met-Enkephalin, Somatostatin and Insulin-like Growth Factor-1 by and PENK Expression in Crop, Proventriculus and Duodenum of Newly Hatched Chickens
by Colin G. Scanes, Klaudia Jaszcza, Alina Gajewska and Krystyna Pierzchala-Koziec
Animals 2025, 15(12), 1702; https://doi.org/10.3390/ani15121702 - 9 Jun 2025
Viewed by 436
Abstract
The gastrointestinal (GI) tract is under neural, endocrine and paracrine control. The release (basal and in the presence of either cholinergic and opioid antagonists) of Met-enkephalin, insulin-like growth factor 1 (IGF-1) and somatostatin (SRIF) was determined quantitatively in vitro using explants of the [...] Read more.
The gastrointestinal (GI) tract is under neural, endocrine and paracrine control. The release (basal and in the presence of either cholinergic and opioid antagonists) of Met-enkephalin, insulin-like growth factor 1 (IGF-1) and somatostatin (SRIF) was determined quantitatively in vitro using explants of the crop, proventriculus and duodenum from either day 0 or day 1 chicks. In addition, the effects of cholinergic and opioid antagonists on PENK gene expression were examined. Thus, the aim of this study was to determine the roles of cholinergic and opioid receptors in the GI tract in newly hatched chickens. Moreover, the effect of IGF-1 and Met-enkephalin on cell division in duodenal explants in vitro was determined. There was both the release of Met-enkephalin from, and PENK expression in, the explants of the crop, proventriculus and duodenum tissue. This is the first report of any neuropeptide(s) being synthesized in and/or released from the crop. In vitro release of Met-enkephalin, IGF-1 and SRIF from duodenal and proventriculus explants was influenced (p < 0.01) by either cholinergic or opioid antagonists; for instance, in the presence of atropine, decreases (p < 0.001) of 17.8% and 57.7% are seen, respectively, in Met-enkephalin release and PENK expression in crop explants from day 1 chicks. Moreover, in the presence of atropine, there were increases (p < 0.001) of 47.7% and 70.9% in IGF-1 release in proventriculus explants from, respectively, day 0 and day 1 chicks. Met-enkephalin and/or IGF-1 stimulated the cell division of duodenal explants in vitro. This is the first report of Met-enkephalin release and PENK expression in the avian crop and of the effects of cholinergic or opioid antagonists on these factors. It is also the first report of either cholinergic or opioid control of IGF-1 release in the periphery of any species. There were strong relationships (p < 0.05) between the release of Met-enkephalin and that of IGF-1 in the duodenum and between the release of SRIF and that of IGF-1 in the proventriculus. This is the first report of IGF-1 and Met-enkephalin stimulating (p < 0.001) the proliferation of duodenal cells and, together, exerting a synergist effect. It is concluded that the release of Met-enkephalin, IGF-1 and SRIF from foregut regions is under tonic cholinergic and opioid control. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

26 pages, 1666 KB  
Review
Proenkephalin 119–159 in Heart Failure: From Pathophysiology to Clinical Implications
by Dionysis Matsiras, Ioannis Ventoulis, Christos Verras, Vasiliki Bistola, Sofia Bezati, Barbara Fyntanidou, Effie Polyzogopoulou and John T. Parissis
J. Clin. Med. 2025, 14(8), 2657; https://doi.org/10.3390/jcm14082657 - 13 Apr 2025
Cited by 1 | Viewed by 732
Abstract
Heart failure (HF) is a challenging clinical syndrome with high morbidity and mortality rates. Along the spectrum of cardiovascular diseases, HF constitutes an ever-expanding area of research aiming at combating the associated mortality and improving the prognosis of patients with HF. Although natriuretic [...] Read more.
Heart failure (HF) is a challenging clinical syndrome with high morbidity and mortality rates. Along the spectrum of cardiovascular diseases, HF constitutes an ever-expanding area of research aiming at combating the associated mortality and improving the prognosis of patients with HF. Although natriuretic peptides have an established role among biomarkers in HF diagnosis and prognosis, several novel biomarkers reflecting the complex pathophysiology of HF are under investigation for their ability to predict adverse clinical outcomes in HF. Proenkephalin 119–159 (PENK119–159) is a non-functional peptide belonging to the enkephalin family of the endogenous opioid system and is considered a surrogate biomarker of the biologically active enkephalin peptides. PENK119–159 has demonstrated promising results in predicting short- and long-term mortality, readmission rates, and worsening renal function in patients with HF. Indeed, in the setting of HF, the levels of both active enkephalins and their surrogate PENK119–159 are elevated and are associated with a dismal prognosis. However, the biological effects of PENK119–159 remain largely unknown. Thus, it is crucial to gain a deeper insight into both the physiology of the enkephalin peptide family and the enkephalin-mediated cardiovascular regulation. In order to elucidate the complex pathophysiological mechanisms that lead to the upregulation of enkephalins in patients with HF, as well as the potential clinical implications of elevated enkephalins and PENK119–159 levels in this patient population, the present review will describe the physiology and distribution of the endogenous opioid peptides and their corresponding opioid receptors, with a particular focus on the action of enkephalins. The effects of the enkephalin peptides will be analyzed in both healthy subjects and patients with HF, especially with regard to their role in the regulation of cardiovascular and renal function. The review will also discuss the findings of recent studies that have explored the prognostic value of PENK119–159 in patients with HF. Full article
(This article belongs to the Special Issue Patient-Oriented Treatments for Heart Failure)
Show Figures

Graphical abstract

14 pages, 1613 KB  
Article
The Role of Endogenous Beta-Endorphin and Enkephalins in the Crosstalk Between Ethanol and Morphine
by Andy Tseng, Syed Muzzammil Ahmad, Abdul Hamid and Kabirullah Lutfy
Pharmaceuticals 2025, 18(1), 107; https://doi.org/10.3390/ph18010107 - 16 Jan 2025
Cited by 1 | Viewed by 1132
Abstract
Background: There is clinical concern about the combined use of alcohol and opiates. Several lines of evidence support an interaction between alcohol and the endogenous opioid system. Thus, we hypothesized that ethanol, by causing the release of opioid peptides, may sensitize the system [...] Read more.
Background: There is clinical concern about the combined use of alcohol and opiates. Several lines of evidence support an interaction between alcohol and the endogenous opioid system. Thus, we hypothesized that ethanol, by causing the release of opioid peptides, may sensitize the system to the action of exogenous opioids such as morphine. Objectives: In this study, using the place conditioning paradigm, a model of reward, we determined whether a morphine challenge would alter the pre-established preference induced by ethanol conditioning in mice, and whether this response was mediated by the mu opioid receptor (MOP). Given that ethanol exposure stimulates the release of opioid peptides, we also assessed the role of beta-endorphin (β-END) and enkephalins (ENKs) in this response. Methods: Mice lacking MOPs, β-END, and/or ENKs, and their respective wild-type controls were tested for preconditioning place preference on day 1. Mice were then conditioned with ethanol (2 g/kg) versus saline on days 2 to 4 and then tested under a drug-free state for postconditioning place preference on day 5. On day 8, mice received a single injection of morphine (5 mg/kg) and were tested for place preference. On the test days, mice were placed in the central chamber and allowed to explore the chambers. The amount of time that mice spent in the drug-paired chamber was recorded. Results: We found that a challenge dose of morphine given on day 8 enhanced the conditioned place preference (CPP) response in mice previously conditioned with ethanol. This response was abolished in MOP-null mice, confirming the role of MOPs in this response. Although this enhanced response was not altered in mice lacking either β-END or ENKs compared to their wild-type littermates/controls, it was completely blunted in mice lacking both β-END and enkephalins. Conclusions: Together, these results suggest that these opioid peptides jointly mediate the crosstalk between the rewarding actions of morphine and ethanol. Full article
Show Figures

Graphical abstract

13 pages, 1123 KB  
Review
Long Neuro-COVID-19: Current Mechanistic Views and Therapeutic Perspectives
by Anny Slama Schwok and Julien Henri
Biomolecules 2024, 14(9), 1081; https://doi.org/10.3390/biom14091081 - 28 Aug 2024
Cited by 4 | Viewed by 3633
Abstract
Long-lasting COVID-19 (long COVID) diseases constitute a real life-changing burden for many patients around the globe and, overall, can be considered societal and economic issues. They include a variety of symptoms, such as fatigue, loss of smell (anosmia), and neurological–cognitive sequelae, such as [...] Read more.
Long-lasting COVID-19 (long COVID) diseases constitute a real life-changing burden for many patients around the globe and, overall, can be considered societal and economic issues. They include a variety of symptoms, such as fatigue, loss of smell (anosmia), and neurological–cognitive sequelae, such as memory loss, anxiety, brain fog, acute encephalitis, and stroke, collectively called long neuro-COVID-19 (long neuro-COVID). They also include cardiopulmonary sequelae, such as myocardial infarction, pulmonary damage, fibrosis, gastrointestinal dysregulation, renal failure, and vascular endothelial dysregulation, and the onset of new diabetes, with each symptom usually being treated individually. The main unmet challenge is to understand the mechanisms of the pathophysiologic sequelae, in particular the neurological symptoms. This mini-review presents the main mechanistic hypotheses considered to explain the multiple long neuro-COVID symptoms, namely immune dysregulation and prolonged inflammation, persistent viral reservoirs, vascular and endothelial dysfunction, and the disruption of the neurotransmitter signaling along various paths. We suggest that the nucleoprotein N of SARS-CoV-2 constitutes a “hub” between the virus and the host inflammation, immunity, and neurotransmission. Full article
Show Figures

Figure 1

23 pages, 1936 KB  
Review
Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives
by Mario García-Domínguez
Biomolecules 2024, 14(8), 926; https://doi.org/10.3390/biom14080926 - 30 Jul 2024
Cited by 13 | Viewed by 7062
Abstract
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, [...] Read more.
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders. Full article
Show Figures

Figure 1

13 pages, 1618 KB  
Article
Disparate Effects of Stressors on Met-Enkephalin System Parameters and on Plasma Concentrations of Corticosterone in Young Female Chickens
by Colin Guy Scanes and Krystyna Pierzchala-Koziec
Animals 2024, 14(15), 2201; https://doi.org/10.3390/ani14152201 - 29 Jul 2024
Cited by 2 | Viewed by 1141
Abstract
The effects of stressors were examined on Met-enkephalin-related parameters and plasma concentrations of corticosterone in 14-week-old female chickens. Water deprivation for 24 h was accompanied by a tendency for increased plasma concentration of Met-enkephalin while plasma concentrations of corticosterone were elevated in water-deprived [...] Read more.
The effects of stressors were examined on Met-enkephalin-related parameters and plasma concentrations of corticosterone in 14-week-old female chickens. Water deprivation for 24 h was accompanied by a tendency for increased plasma concentration of Met-enkephalin while plasma concentrations of corticosterone were elevated in water-deprived birds. Concentrations of Met-enkephalin were reduced in the anterior pituitary gland and adrenal gland in water-deprived pullets while proenkephalin (PENK) expression was increased in both tissues. There were changes in the plasma concentrations of Met-enkephalin and corticosterone in pullets subjected to either feed withholding or crowding. Concentrations of Met-enkephalin were increased in the anterior pituitary gland but decreased in adrenal glands in pullets subjected to crowding stress. The increase in the plasma concentrations of Met-enkephalin was ablated when the chickens were pretreated with naltrexone. However, naltrexone did not influence either basal or crowding on plasma concentrations of corticosterone. In vitro release of Met-enkephalin from the anterior pituitary or adrenal tissues was depressed in the presence of naltrexone. It was concluded that Met-enkephalin was part of the neuroendocrine response to stress in female chickens. It was concluded that stress influenced the release of both Met-enkephalin and corticosterone, but there was not complete parallelism. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

13 pages, 2167 KB  
Article
CBD Versus CBDP: Comparing In Vitro Receptor-Binding Activities
by Mehdi Haghdoost, Scott Young, Alisha K. Holloway, Matthew Roberts, Ivori Zvorsky and Marcel O. Bonn-Miller
Int. J. Mol. Sci. 2024, 25(14), 7724; https://doi.org/10.3390/ijms25147724 - 15 Jul 2024
Cited by 3 | Viewed by 3142
Abstract
Phytocannabinoids with seven-carbon alkyl chains (phorols) have gained a lot of attention, as they are commonly believed to be more potent versions of typical cannabinoids with shorter alkyl chains. At the time of this article, cannabidiphorol (CBDP) and tetrahydrocannabiphorol (THCP) can both be [...] Read more.
Phytocannabinoids with seven-carbon alkyl chains (phorols) have gained a lot of attention, as they are commonly believed to be more potent versions of typical cannabinoids with shorter alkyl chains. At the time of this article, cannabidiphorol (CBDP) and tetrahydrocannabiphorol (THCP) can both be purchased in the North American market, even though their biological activities are nearly unknown. To investigate their relative potency, we conducted in vitro receptor-binding experiments with CBDP (cannabinoid CB1/CB2 receptor antagonism, serotonin 5HT-1A agonism, dopamine D2S (short form) agonism, and mu-opioid negative allosteric modulation) and compared the observed activity with that of CBD. To our knowledge, this is the first publication to investigate CBDP’s receptor activity in vitro. A similar activity profile was observed for both CBD and CBDP, with the only notable difference at the CB2 receptor. Contrary to common expectations, CBD was found to be a slightly more potent CB2 antagonist than CBDP (p < 0.05). At the highest tested concentration, CBD demonstrated antagonist activity with a 33% maximum response of SR144528 (selective CB2 antagonist/inverse agonist). CBDP at the same concentration produced a weaker antagonist activity. A radioligand binding assay revealed that among cannabinoid and serotonin receptors, CB2 is likely the main biological target of CBDP. However, both CBD and CBDP were found to be significantly less potent than SR144528. The interaction of CBDP with the mu-opioid receptor (MOR) produced unexpected results. Although the cannabidiol family is considered to be a set of negative allosteric modulators (NAMs) of opioid receptors, we observed a significant increase in met-enkephalin-induced mu-opioid internalization when cells were incubated with 3 µM of CBDP and 1 µM met-enkephalin, a type of activity expected from positive allosteric modulators (PAMs). To provide a structural explanation for the observed PAM effect, we conducted molecular docking simulations. These simulations revealed the co-binding potential of CBDP (or CBD) and met-enkephalin to the MOR. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

20 pages, 9404 KB  
Article
Computational Insights into the Interaction between Neprilysin and α-Bisabolol: Proteolytic Activity against Beta-Amyloid Aggregates in Alzheimer’s Disease
by Jonathan Elias Rodrigues Martins, José Ednésio da Cruz Freire, Francisco Sérgio Lopes Vasconcelos-Filho, Diego da Silva de Almeida, Vânia Marilande Ceccatto and Bruno Lopes de Sousa
Processes 2024, 12(5), 885; https://doi.org/10.3390/pr12050885 - 27 Apr 2024
Cited by 3 | Viewed by 1906
Abstract
(1) Background: Alzheimer’s disease (AD) is an irreversible disorder of the central nervous system associated with beta-amyloid protein (Aβ) deposition and accumulation. Current treatments can only act on symptoms and not the etiologic agent. Neprilysin and α-bisabolol have been shown to reduce the [...] Read more.
(1) Background: Alzheimer’s disease (AD) is an irreversible disorder of the central nervous system associated with beta-amyloid protein (Aβ) deposition and accumulation. Current treatments can only act on symptoms and not the etiologic agent. Neprilysin and α-bisabolol have been shown to reduce the aggregation of Aβ, suggesting a potential interaction between both molecules, leading to increased proteolytic activity on Aβ aggregates. (2) Methods: Computational simulations were conducted to explore the interaction between murine neprilysin [NEP(m)] and α-bisabolol and their effects on enzymatic activity. NEP(m) structure was predicted using comparative modeling, and the binding pattern to α-bisabolol and its effects on leu-enkephalin binding were explored through docking calculations and molecular dynamics simulations, respectively. (3) Results: The findings suggest that α-bisabolol stabilizes the Val481-Pro488 segment of NEP2(m), which directly interacts with the peptide substrate, enabling an optimized alignment between the catalytic residue Glu525 and leu-enkephalin. (4) Conclusions: This computational evidence strongly supports the notion that α-bisabolol stabilizes peptide substrates at the NEP2(m) catalytic site, leading to the positive modulation of enzymatic activity. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

10 pages, 1195 KB  
Brief Report
A Novel Ophthalmic Solution Containing Glicopro® Complex for the Treatment of Patients with Dry Eye Disease: Results from a Pilot Study
by Giuseppe Giannaccare, Sabrina Vaccaro, Massimiliano Borselli, Costanza Rossi, Giovanna Carnovale Scalzo, Giovanni Scalia, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Lucrezia Zerillo, Immacolata Polvere, Pasquale Vito, Tiziana Zotti, Romania Stilo and Vincenzo Scorcia
J. Clin. Med. 2024, 13(5), 1447; https://doi.org/10.3390/jcm13051447 - 1 Mar 2024
Cited by 2 | Viewed by 1722
Abstract
(1) Background: Dry eye disease (DED) is a multifactorial ocular surface disease characterized by an imbalance in ocular surface homeostasis, and tear substitutes constitute the first line of treatment. The present study aimed to evaluate the changes in the signs and symptoms [...] Read more.
(1) Background: Dry eye disease (DED) is a multifactorial ocular surface disease characterized by an imbalance in ocular surface homeostasis, and tear substitutes constitute the first line of treatment. The present study aimed to evaluate the changes in the signs and symptoms of patients with DED treated with a novel tear substitute containing the GlicoPro® complex. (2) Methods: Patients with DED not successfully responding to other tear substitutes were enrolled and treated with a novel ophthalmic solution (two drops four times daily). Patients were examined before starting the study treatment (T0) and after 30 (T1) and 60 (T2) days of treatment by means of Keratograph for the evaluation of the following: (i) tear meniscus height (TMH); (ii) noninvasive Keratograph break-up time (NIKBUT); (iii) bulbar redness; and (iv) infrared meibography. The SANDE questionnaire was administered to assess ocular discomfort symptoms. Analysis of the tear content of proenkephalin and Met/Leu-enkephalin was also performed. (3) Results: At T2, a significant improvement in NIKBUT first, average, and class, TMH, and SANDE score was found. The tear content of proenkephalins was significantly higher at T1, whereas processed active Met/Leu-enkephalins increased at both T1 and T2. (4) Conclusions: Our novel tear substitute based on GlicoPro® resulted in a significant improvement in ocular discomfort symptoms, tear volume, and stability in the patients treated. The increase in active peptides processed in tears may represent the pathophysiological substrate underlying this finding. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

14 pages, 1291 KB  
Article
Effects of Restraint Stress on Circulating Corticosterone and Met Enkephalin in Chickens: Induction of Shifts in Insulin Secretion and Carbohydrate Metabolism
by Colin G. Scanes, Krystyna Pierzchała-Koziec and Alina Gajewska
Animals 2024, 14(5), 752; https://doi.org/10.3390/ani14050752 - 28 Feb 2024
Cited by 6 | Viewed by 1931
Abstract
This study examined the effects of acute restraint stress in the presence or absence of naltrexone on the circulating concentrations of insulin, glucose, Met-enkephalin and corticosterone in 14-week-old chickens [design: 2 sex × 2 stress/non-stress × 2 +/− naltrexone]. In chickens (five male [...] Read more.
This study examined the effects of acute restraint stress in the presence or absence of naltrexone on the circulating concentrations of insulin, glucose, Met-enkephalin and corticosterone in 14-week-old chickens [design: 2 sex × 2 stress/non-stress × 2 +/− naltrexone]. In chickens (five male and five females per treatment) subjected to restraint for 30 min, there were increases in the plasma concentrations of corticosterone and Met-enkephalin. The plasma concentrations of insulin and glucose were also increased in the chickens during restraint. Moreover, there were increases in the plasma concentrations of insulin and glucose in the chickens. The patterns of expression of the proenkephalin gene (PENK) in both the anterior pituitary gland and the adrenal gland were very similar to that of plasma Met-enkephalin. There were relationships between the plasma concentrations of corticosterone, Met-enkephalin, insulin and glucose after 30 min of restraint. The effects of naltrexone treatment on both untreated and stressed chickens were also examined, with naltrexone attenuating the stress-induced increases in the plasma concentrations of corticosterone, Met-enkephalin and glucose but not in those of insulin. The present study demonstrates that stress increases insulin secretion in chickens but also induces insulin resistance. Full article
(This article belongs to the Special Issue Advances in Poultry Behaviour and Welfare)
Show Figures

Figure 1

26 pages, 4920 KB  
Article
Design, Synthesis, and Antitumor Evaluation of an Opioid Growth Factor Bioconjugate Targeting Pancreatic Ductal Adenocarcinoma
by Justyna Budka, Dawid Debowski, Shaoshan Mai, Magdalena Narajczyk, Stanislaw Hac, Krzysztof Rolka, Eirinaios I. Vrettos, Andreas G. Tzakos and Iwona Inkielewicz-Stepniak
Pharmaceutics 2024, 16(2), 283; https://doi.org/10.3390/pharmaceutics16020283 - 16 Feb 2024
Cited by 4 | Viewed by 2719
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), have emerged in oncology clinical trials. OGF, an endogenous peptide interacting with the OGF receptor (OGFr), plays a crucial role in inhibiting cell proliferation across various cancer types. This in vitro study explores the potential anticancer efficacy of a newly synthesized OGF bioconjugate in synergy with the classic chemotherapeutic agent, gemcitabine (OGF-Gem). The study delves into assessing the impact of the OGF-Gem conjugate on cell proliferation inhibition, cell cycle regulation, the induction of cellular senescence, and apoptosis. Furthermore, the antimetastatic potential of the OGF-Gem conjugate was demonstrated through evaluations using blood platelets and AsPC-1 cells with a light aggregometer. In summary, this article demonstrates the cytotoxic impact of the innovative OGF-Gem conjugate on pancreatic cancer cells in both 2D and 3D models. We highlight the potential of both the OGF-Gem conjugate and OGF alone in effectively inhibiting the ex vivo pancreatic tumor cell-induced platelet aggregation (TCIPA) process, a phenomenon not observed with Gem alone. Furthermore, the confirmed hemocompatibility of OGF-Gem with platelets reinforces its promising potential. We anticipate that this conjugation strategy will open avenues for the development of potent anticancer agents. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

18 pages, 3739 KB  
Article
The Opioid Receptor Influences Circadian Rhythms in Human Keratinocytes through the β-Arrestin Pathway
by Paul Bigliardi, Seetanshu Junnarkar, Chinmay Markale, Sydney Lo, Elena Bigliardi, Alex Kalyuzhny, Sheena Ong, Ray Dunn, Walter Wahli and Mei Bigliardi-Qi
Cells 2024, 13(3), 232; https://doi.org/10.3390/cells13030232 - 25 Jan 2024
Cited by 4 | Viewed by 2743
Abstract
The recent emphasis on circadian rhythmicity in critical skin cell functions related to homeostasis, regeneration and aging has shed light on the importance of the PER2 circadian clock gene as a vital antitumor gene. Furthermore, delta-opioid receptors (DOPrs) have been identified as playing [...] Read more.
The recent emphasis on circadian rhythmicity in critical skin cell functions related to homeostasis, regeneration and aging has shed light on the importance of the PER2 circadian clock gene as a vital antitumor gene. Furthermore, delta-opioid receptors (DOPrs) have been identified as playing a crucial role in skin differentiation, proliferation and migration, which are not only essential for wound healing but also contribute to cancer development. In this study, we propose a significant association between cutaneous opioid receptor (OPr) activity and circadian rhythmicity. To investigate this link, we conducted a 48 h circadian rhythm experiment, during which RNA samples were collected every 5 h. We discovered that the activation of DOPr by its endogenous agonist Met-Enkephalin in N/TERT-1 keratinocytes, synchronized by dexamethasone, resulted in a statistically significant 5.6 h delay in the expression of the core clock gene PER2. Confocal microscopy further confirmed the simultaneous nuclear localization of the DOPr-β-arrestin-1 complex. Additionally, DOPr activation not only enhanced but also induced a phase shift in the rhythmic binding of β-arrestin-1 to the PER2 promoter. Furthermore, we observed that β-arrestin-1 regulates the transcription of its target genes, including PER2, by facilitating histone-4 acetylation. Through the ChIP assay, we determined that Met-Enkephalin enhances β-arrestin-1 binding to acetylated H4 in the PER2 promoter. In summary, our findings suggest that DOPr activation leads to a phase shift in PER2 expression via β-arrestin-1-facilitated chromatin remodeling. Consequently, these results indicate that DOPr, much like its role in wound healing, may also play a part in cancer development by influencing PER2. Full article
Show Figures

Figure 1

11 pages, 2454 KB  
Article
Proenkephalin Levels and Its Determinants in Patients with End-Stage Kidney Disease Treated with Hemodialysis and Peritoneal Dialysis
by Wiktoria Grycuk, Zuzanna Jakubowska and Jolanta Małyszko
Int. J. Mol. Sci. 2023, 24(19), 15015; https://doi.org/10.3390/ijms241915015 - 9 Oct 2023
Cited by 5 | Viewed by 1735
Abstract
Recently, proenkephalin A (PENK A) has been shown to reflect glomerular dysfunction and to predict new-onset acute kidney injury and heart failure. While previous studies have investigated PENK A as a biomarker in individuals with preserved renal function, PENK A concentration in patients [...] Read more.
Recently, proenkephalin A (PENK A) has been shown to reflect glomerular dysfunction and to predict new-onset acute kidney injury and heart failure. While previous studies have investigated PENK A as a biomarker in individuals with preserved renal function, PENK A concentration in patients with end-stage kidney disease (ESKD) was not investigated. Plasma PENK A concentration was assessed in 88 patients with ESKD treated with hemodialysis (HD) or peritoneal dialysis (PD), and its associations with kidney function and heart failure indicators were investigated. In HD patients, the difference in PENK A levels before and after hemodialysis, was measured and further assessed for an association with the type of HD membrane used. PENK A levels did not differ significantly between HD and PD patients. In HD patients, the median PENK A concentration was significantly higher before than after hemodialysis (1.368 vs. 2.061, p = 0.003). No correlation was found between PENK A level and urea (p = 0.192), eGFR (p = 0.922), dialysis vintage (p = 0.637), and residual urine output (p = 0.784). Heart failure (p = 0.961), EF (p = 0.361), and NT-proBNP (p = 0.949) were not associated with increased PENK A concentration. PENK A does not reflect renal function and cardiac status in patients with ESKD. Further research is required to establish the clinical utility of the new biomarker in patients with impaired kidney function. Full article
(This article belongs to the Special Issue Renal Dysfunction, Uremic Compounds, and Other Factors 2.0)
Show Figures

Figure 1

10 pages, 1123 KB  
Article
Endogenous Opioids in Crohn’s Disease
by Adrian Martyniak, Andrzej Wędrychowicz and Przemysław J. Tomasik
Biomedicines 2023, 11(7), 2037; https://doi.org/10.3390/biomedicines11072037 - 20 Jul 2023
Cited by 4 | Viewed by 2566
Abstract
Caring for patients with Crohn’s disease (CD) is a serious challenge in modern medicine. The increasing incidence of CD among adolescents and the severe course of the disease create the need for new methods of diagnosis and therapy. Endogenous opioids are a group [...] Read more.
Caring for patients with Crohn’s disease (CD) is a serious challenge in modern medicine. The increasing incidence of CD among adolescents and the severe course of the disease create the need for new methods of diagnosis and therapy. Endogenous opioids are a group of low molecular weight chemical compounds with analgesic and anti-inflammatory properties. Endorphins, enkephalins, and dynorphins may have potentially beneficial effects on the course of CD. Previous research data on this topic are inconsistent. Some authors have reported an increase in the concentration of leukocytes during the course of inflammatory bowel disease (IBD) while others have described a downward trend, explained by DPP-IV enzyme activity. Even fewer data are available on plasma endo-opioid level. There is also a lack of comprehensive studies that have assessed the endo-opioid system in patients with IBD. Therefore, the objective of this study was to measure the serum concentrations of human β-endorphin, human proenkephalin (A), and human big dynorphin in CD patients in the acute phase of the disease, during hospital treatment, and in the remission state. All determinations were performed using ELISA kits. The results of our study showed that the concentrations of all the tested endo-opioids, especially β-endorphin and proenkephalin (A), were reduced in adolescents with CD compared to those in the healthy control group, during the acute phase of the disease, and in the remission state. Modulation of the endogenous opioid system and the use of selective nonnarcotic agonists of opioid receptors seems to be promising goals in the future treatment of CD. Full article
Show Figures

Figure 1

Back to TopTop