Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,244)

Search Parameters:
Keywords = enrichment ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1338 KB  
Article
Genomic Analysis of Cardiovascular Diseases Utilizing Space Omics and Medical Atlas
by Ryung Lee, Abir Rayhun, Jang Keun Kim, Cem Meydan, Afshin Beheshti, Kyle Sporn, Rahul Kumar, Jacques Calixte, M. Windy McNerney, Jainam Shah, Ethan Waisberg, Joshua Ong and Christopher Mason
Genes 2025, 16(9), 996; https://doi.org/10.3390/genes16090996 (registering DOI) - 25 Aug 2025
Abstract
Background: The Space Omics and Medical Atlas (SOMA) is an extensive database containing gene expression information from samples collected during the short-duration Inspiration4 spaceflight mission in 2021. Given our prior understanding of the genetic basis for cardiovascular diseases in spaceflight, including orthostatic intolerance [...] Read more.
Background: The Space Omics and Medical Atlas (SOMA) is an extensive database containing gene expression information from samples collected during the short-duration Inspiration4 spaceflight mission in 2021. Given our prior understanding of the genetic basis for cardiovascular diseases in spaceflight, including orthostatic intolerance and cardiac deconditioning, we aimed to characterize changes in differential gene expression among astronauts using SOMA-derived data and curated cardiovascular pathways. Methods: Using the KEGG 2021 database, we curated a list of genes related to cardiovascular adaptations in spaceflight, focusing on pathways such as fluid shear stress and atherosclerosis, lipid metabolism, arrhythmogenic ventricular hypertrophy, and cardiac muscle contraction. Genes were cross-matched to spaceflight-relevant datasets from the Open Science Data Repository (OSDR). Differential expression analysis was performed using DESeq2 (v1.40.2, R) with normalization by median-of-ratios, paired pre-/post-flight covariates, and log2 fold change shrinkage using apeglm. Differentially expressed genes (DEGs) were defined as |log2FC| ≥ 1 and FDR < 0.05 (Benjamini–Hochberg correction). Module score analyses were conducted across SOMA cell types to confirm conserved cardiac adaptation genes. Results: A total of 185 spaceflight-relevant genes were analyzed. Statistically significant changes were observed in immune-related cardiovascular pathways, particularly within monocytes and T cells. Persistent upregulation of arrhythmogenic genes such as GJA1 was noted at post-flight day 82. WikiPathways enrichment revealed additional pathways, including focal adhesion, insulin signaling, and heart development. Conclusions: Short-duration spaceflight induces significant gene expression changes that are relevant to cardiovascular disease risk. These changes are mediated largely through immune signaling and transcriptional regulation in peripheral blood mononuclear cells. Findings highlight the need for tailored countermeasures and longitudinal monitoring in future long-duration missions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2902 KB  
Article
Adaptive Plasticity of Phragmites australis in Aboveground and Belowground Productivity Under Salinization and Nitrogen Enrichment
by Yinhua Wang, Xinyi Tian, Chen Yang, Changcheng Guo, Yifan Li, Xin Lyu, Ningning Li and Hongyu Guo
Agronomy 2025, 15(9), 2031; https://doi.org/10.3390/agronomy15092031 (registering DOI) - 25 Aug 2025
Abstract
Understanding plants’ productivity plasticity in response to environmental variations is crucial for evaluating their adaptive capacity and resilience in the face of rapid global changes. Phragmites australis, an important species in coastal wetlands, plays a vital role in ecosystem functions and wetland [...] Read more.
Understanding plants’ productivity plasticity in response to environmental variations is crucial for evaluating their adaptive capacity and resilience in the face of rapid global changes. Phragmites australis, an important species in coastal wetlands, plays a vital role in ecosystem functions and wetland agriculture. Coastal areas are increasingly threatened by soil salinization due to rising sea levels and eutrophication driven by elevated nitrogen inputs. However, how P. australis adjusts its aboveground and belowground productivity under these environmental stresses remains poorly understood. We examined how P. australis alters its productivity in response to varying salinity and nitrogen enrichment levels through a mesocosm experiment. Our results showed that elevated salinity reduced both aboveground (by 2.7–13.7%) and belowground (by 15.3–24.7%) productivity, decreasing the belowground-to-aboveground biomass ratio of P. australis. In contrast, nitrogen enrichment promoted aboveground productivity (by 18.3–65.5%), but suppressed belowground biomass (by 11.7–29.7%), further reducing the biomass ratio. Nitrogen enrichment alleviated the negative impact of salinity on aboveground productivity, but exacerbated its effects on belowground biomass, further shifting resource allocation to aboveground growth. These findings underscore the adaptive plasticity of P. australis and suggest its potential role in supporting sustainable wetland agriculture, providing both ecological and economic benefits in the face of ongoing global environmental changes. Full article
Show Figures

Figure 1

24 pages, 1271 KB  
Article
Unlocking Pomegranate’s Potential: Ultrasonication-Enriched Oil in Nanobeads for Innovative Cosmetic Hydrogels
by Ameni Ben Abdennebi, Iness Bettaieb Rebey, Rym Essid, Majdi Hammami, Hamza Gadhoumi, Raghda Yazidi, Emna Chaabani, Saber Khammessi, Salma Nait Mohamed, Walid Yeddes and Moufida Saidani-Tounsi
Cosmetics 2025, 12(5), 180; https://doi.org/10.3390/cosmetics12050180 - 25 Aug 2025
Abstract
Pomegranate (Punica granatum L.), is renowned for its bioactive compounds, offering significant potential in cosmetic applications due to its antioxidant, anti-inflammatory, and antimicrobial properties. This study presents a sustainably sourced cosmetic ingredient developed by enriching pomegranate seed oil with peel powder using [...] Read more.
Pomegranate (Punica granatum L.), is renowned for its bioactive compounds, offering significant potential in cosmetic applications due to its antioxidant, anti-inflammatory, and antimicrobial properties. This study presents a sustainably sourced cosmetic ingredient developed by enriching pomegranate seed oil with peel powder using optimized ultrasonication, followed by encapsulation in alginate nanobeads and integration into a minimalist hydrogel formulation. A Box–Behnken experimental design was employed to optimize ultrasonication parameters (15 min, 90% power, 202 mg/mL powder-to-oil ratio), yielding an enriched PSO with significantly enhanced total phenolic content (TPC: 69.23 ± 1.66 mg GAE/g), total flavonoid content (TFC: 61.09 ± 1.66 mg QE/g), and robust DPPH antioxidant activity (78.63 ± 3.81%). The enriched oil exhibited enhanced oxidative stability (peroxide value: 5.75 ± 0.30 meq O2/kg vs. 50.95 ± 0.07 meq O2/kg for neutral oil), improved fatty acid profile, and significant anti-inflammatory (IC50 = 897.25 µg/mL for NO inhibition) and antibacterial activities. Alginate nanobeads (432.46 ± 12.59 nm, zeta potential: −30.74 ± 3.20 mV) ensured bioactivity preservation, while the hydrogel maintained physicochemical and microbial stability over 60 days under accelerated conditions (40 ± 2 °C, 75 ± 5% RH). This multifunctional formulation, integrating sustainable extraction, advanced encapsulation, and a minimalist delivery system, represents a highly promising natural ingredient for anti-aging and antioxidant cosmetic applications. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

27 pages, 19372 KB  
Article
Chronic Carbonate Alkalinity Exposure Induces Dysfunction in Ovary and Testis Development in Largemouth Bass Micropterus salmoides by Oxidative Damage and Sex-Specific Pathways
by Jixiang Hua, Yifan Tao, Wen Wang, Hui Sun, Taide Zhu, Siqi Lu, Bingwen Xi and Jun Qiang
Antioxidants 2025, 14(9), 1042; https://doi.org/10.3390/antiox14091042 - 23 Aug 2025
Viewed by 52
Abstract
Saline–alkaline water resources are globally widespread, and their rational development offers significant potential to alleviate freshwater scarcity. Saline–alkaline water aquaculture farming not only affects fish growth and survival but also impairs reproductive and developmental functions. Largemouth bass (Micropterus salmoides), an economically [...] Read more.
Saline–alkaline water resources are globally widespread, and their rational development offers significant potential to alleviate freshwater scarcity. Saline–alkaline water aquaculture farming not only affects fish growth and survival but also impairs reproductive and developmental functions. Largemouth bass (Micropterus salmoides), an economically important fish, has demonstrated excellent high tolerance to such environments, in order to investigate the effects of alkaline water aquaculture environments on its growth performance, sex hormone levels, gonadal development, and molecular adaptation mechanisms. In this study, largemouth bass were chronically exposed to freshwater (0.55 mmol/L), low alkalinity (10 mmol/L), or high alkalinity (25 mmol/L) and cultured for 80 days. Alkalinity exposure more severely impacted the growth rate of females. High alkalinity significantly increased the hepatosomatic index and decreased the gonadosomatic index in both sexes; moreover, it induced oxidative stress in both sexes, evidenced by reduced superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAOC) levels and elevated malondialdehyde (MDA) content. Furthermore, the levels of sex hormones Serum estradiol (E2), 11-ketotestosterone (11-KT), and testosterone were significantly reduced, accompanied by either an elevated ratio of primary oocytes and follicular atresia, or by reduced spermatogenesis. Apoptotic signals appeared in gonadal interstitial cells, with upregulated expression of genes P53, Bax, Casp3, and Casp8. Ultrastructural damage included fewer mitochondria and cristae blurring, further indicating tissue damage causing dysfunction. Transcriptome results showed that oxidative stress damage and energy metabolism imbalance caused by carbonate alkalinity were key to the delayed gonadal development, which was mainly manifested in enrichment of the ECM–receptor interaction and PI3K-Akt signaling pathways in females exposed to low alkalinity, and the GnRH secretion and chemokine signaling pathways in males. Glycosphingolipid biosynthesis and Ferroptosis pathway were enriched in females exposed to high alkalinity, and the Cortisol synthesis and secretion pathway were enriched in males. Overall, high-alkalinity exposure significantly delayed gonadal development in both sexes of largemouth bass, leading to reproductive impairment. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

28 pages, 3284 KB  
Article
An Attention-Enhanced Bottleneck Network for Apple Segmentation in Orchard Environments
by Imran Md Jelas, Nur Alia Sofia Maluazi and Mohd Asyraf Zulkifley
Agriculture 2025, 15(17), 1802; https://doi.org/10.3390/agriculture15171802 - 23 Aug 2025
Viewed by 57
Abstract
As global food demand continues to rise, conventional agricultural practices face increasing difficulty in sustainably meeting production requirements. In response, deep learning-driven automated systems have emerged as promising solutions for enhancing precision farming. Nevertheless, accurate fruit segmentation remains a significant challenge in orchard [...] Read more.
As global food demand continues to rise, conventional agricultural practices face increasing difficulty in sustainably meeting production requirements. In response, deep learning-driven automated systems have emerged as promising solutions for enhancing precision farming. Nevertheless, accurate fruit segmentation remains a significant challenge in orchard environments due to factors such as occlusion, background clutter, and varying lighting conditions. This study proposes the Depthwise Asymmetric Bottleneck with Attention Mechanism Network (DABAMNet), an advanced convolutional neural network (CNN) architecture composed of multiple Depthwise Asymmetric Bottleneck Units (DABou), specifically designed to improve apple segmentation in RGB imagery. The model incorporates the Convolutional Block Attention Module (CBAM), a dual attention mechanism that enhances channel and spatial feature discrimination by adaptively emphasizing salient information while suppressing irrelevant content. Furthermore, the CBAM attention module employs multiple global pooling strategies to enrich feature representation across varying spatial resolutions. Through comprehensive ablation studies, the optimal configuration was identified as early CBAM placement after DABou unit 5, using a reduction ratio of 2 and combined global max-min pooling, which significantly improved segmentation accuracy. DABAMNet achieved an accuracy of 0.9813 and an Intersection over Union (IoU) of 0.7291, outperforming four state-of-the-art CNN benchmarks. These results demonstrate the model’s robustness in complex agricultural scenes and its potential for real-time deployment in fruit detection and harvesting systems. Overall, these findings underscore the value of attention-based architectures for agricultural image segmentation and pave the way for broader applications in sustainable crop monitoring systems. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 2387 KB  
Article
SARS-CoV-2 Infection in Children: Revisiting Host–Virus Interactions Through Post-Infection Immune Profiling
by Catarina Gregório Martins, Miguel Ângelo-Dias, Maria de Jesus Chasqueira, Maria João Brito, Tiago Milheiro Silva, Maria Vitória Matos, Maria Teresa Lopes, Hélio Crespo, Mariana Mata, Luís Miguel Borrego and Paulo Paixão
Pathogens 2025, 14(9), 838; https://doi.org/10.3390/pathogens14090838 - 22 Aug 2025
Viewed by 81
Abstract
Children with COVID-19 typically experience milder symptoms and lower hospitalization rates, though severe cases do occur. Understanding age-related immune responses is crucial for future preparedness. We characterized immune response dynamics to SARS-CoV-2 in 145 samples from 119 pediatric patients (<18 years) with confirmed [...] Read more.
Children with COVID-19 typically experience milder symptoms and lower hospitalization rates, though severe cases do occur. Understanding age-related immune responses is crucial for future preparedness. We characterized immune response dynamics to SARS-CoV-2 in 145 samples from 119 pediatric patients (<18 years) with confirmed infection, assessed at four distinct time points: <14 days, 14 days–3 months, 3–6 months, and 6–12 months post-infection. At infection, patients presented increased activated T-cells, higher levels of exhaustion (i.e., PD-1+), lower numbers of unswitched memory B-cells, and increased antibody-secreting cells (ASCs). Both humoral and cellular anti-SARS-CoV-2 responses increased over time (all patients showed measurable responses in the last assessment). Asymptomatic/mildly symptomatic patients (58.6%) showed increased specific cellular responses from infection onwards, along with enriched memory B-cell subsets (but not ASCs), and distinct T-cell activation profiles. Children with severe disease were younger, predominantly boys, displayed altered T/B-cell ratios, and reduced PHA responses when infected. Compared to adolescents, younger children showed lower antibody titers and weaker cellular responses to SARS-CoV-2, possibly underlining the higher prevalence of severe manifestations in younger children. Our study illustrates important age-, gender-, and disease severity-dependent variations in immune responses to SARS-CoV-2, which can be helpful in improving patient management and immunization strategies adjusted to age groups. Full article
(This article belongs to the Special Issue Emerging Viral Infections in the Respiratory Tract)
Show Figures

Figure 1

21 pages, 9378 KB  
Article
Integrated Approach for the Optimization of the Sustainable Extraction of Polyphenols from a South American Abundant Edible Plant: Neltuma ruscifolia
by Giuliana S. Seling, Roy C. Rivero, Camila V. Sisi, Verónica M. Busch and M. Pilar Buera
Foods 2025, 14(17), 2927; https://doi.org/10.3390/foods14172927 - 22 Aug 2025
Viewed by 169
Abstract
The pods from Neltuma ruscifolia (vinal), an underutilized species, are rich in bioactive functional compounds. However, the extraction procedures to obtain the highest proportion of these compounds, considering sustainability aspects, have not been optimized. This study aimed to optimize and compare [...] Read more.
The pods from Neltuma ruscifolia (vinal), an underutilized species, are rich in bioactive functional compounds. However, the extraction procedures to obtain the highest proportion of these compounds, considering sustainability aspects, have not been optimized. This study aimed to optimize and compare three affordable extraction methods—dynamic maceration (DME), ultrasound-assisted extraction (UE), and microwave-assisted extraction (ME)—to obtain enriched extracts. The effects of temperature, ethanol-to-water ratio in the solvent, extraction time, and frequency (for ME) were evaluated using a Box–Behnken design and response surface methodology to optimize total polyphenolic content (TPC), total flavonoids (TF), and antioxidant capacity (DPPH). Energy consumption and carbon footprints were also assessed, and phenolic compounds in the optimized extracts were identified by HPLC. The ethanol-to-water ratio emerged as the most influential factor, showing synergistic effects with both time and temperature, enabling optimal yields at intermediate ethanol concentrations. Gallic acid, rutin, and theobromine were found to be the most abundant components, followed by cinnamic, caffeic, and chlorogenic acids. Although UE exhibited the lowest energy consumption (0.64 ± 0.03 Wh/mg of TPC), the simple and easily implementable DME—optimized at 40 min, 50 °C, and 42% ethanol—proved to be the most efficient method, combining high extractive performance (TPC 1432 mg GAE/100 g Dw), reduced solvent use, and intermediate energy efficiency (1.84 Wh/mg of TPC). These findings highlight the potential of vinal as a natural source of bioactive ingredients obtained through simple and cost-effective techniques adaptable to small producers while underscoring the value of experimental design in optimizing sustainable extraction technologies and elucidating the interactions between key processing factors. Full article
Show Figures

Graphical abstract

23 pages, 12646 KB  
Article
Titanite Textures, U-Pb Dating, Chemistry, and In Situ Nd Isotopes of the Lalingzaohuo Mafic Magmatic Enclaves and Host Granodiorites in the East Kunlun Orogen Belt: Insights into Magma Mixing Processes
by Zisong Zhao, Bingzhang Wang, Shengwei Wu and Jiqing Li
Minerals 2025, 15(9), 886; https://doi.org/10.3390/min15090886 - 22 Aug 2025
Viewed by 204
Abstract
Widespread Triassic granitic magmatism is archived in the East Kunlun Orogen Belt (EKOB) of Northern Qinghai–Tibet Plateau. Mafic magmatic enclaves (MMEs), commonly hosted in these plutons, are generally interpreted as products of magma mixing; however, the specific magmatic processes remain poorly understood. In [...] Read more.
Widespread Triassic granitic magmatism is archived in the East Kunlun Orogen Belt (EKOB) of Northern Qinghai–Tibet Plateau. Mafic magmatic enclaves (MMEs), commonly hosted in these plutons, are generally interpreted as products of magma mixing; however, the specific magmatic processes remain poorly understood. In this study, we present new data on the complex zoning patterns, in situ U–Pb ages, trace element compositions, and Nd isotopic characteristics of titanite grains from the MMEs and host granodiorite of Laningzaohuo Zhongyou pluton. Whole-rock geochemical data indicate that the pluton is composed of volcanic arc-related, calc-alkaline, metaluminous I-type granodiorite. Titanite in the MMEs and the granodiorite yield similar U–Pb ages of ~244 Ma but display distinct textural and compositional features. Titanite from the granodiorite is typically euhedral, characterized by magmatic core and mantle with deuteric rim, and exhibits sector and fir-tree zoning in the core. In contrast, titanite from the MMEs is generally anhedral, also showing magmatic core and mantle as well as deuteric rims, but exhibits oscillatory zoning and incomplete sector and fir-tree zoning in the core. Titanite cores in the MMEs have εNd(t) ranging from −2.5 to −3.4, comparable to those of the coeval gabbro and MMEs elsewhere in the EKOB. These cores also show higher LREE/HREE ratios compared to titanite cores in the granodiorite, suggesting crystallization from mixed magmas with greater contributions from enriched lithospheric mantle sources. Titanite mantles in the MMEs yield εNd(t) of −4.0 to −4.8, slightly lower than the cores in the MMEs but higher than those of titanite cores and mantles in the granodiorite (−4.6 to −5.5). The mantle can be interpreted as crystallized from mixed magmas with less mafic components. Titanite rims in the MMEs have εNd(t) of −5.0 to −5.7, identical to those in the granodiorite, and have REE concentrations and Th/U and Nb/Ta ratios consistent with the titanite rims in the granodiorite, clearly indicative of crystallization from evolved, hydrated, granodioritic magmas. Plagioclase in the MMEs exhibits disequilibrium textures such as sieve texture and reverse zoning, with An36–66, contrasting with the more uniform An contents (An35–37) in the granodiorite. This suggests that plagioclase in the MMEs crystallized in an environment influenced by both mafic and felsic magmas. Amphibole thermobarometry indicates that amphibole in the MMEs crystallized at ~788 °C and ~295 MPa, slightly higher than the crystallization conditions in the granodiorite (~778 °C and ~259 MPa). We thus propose that the chemical and textural differences between titanite in the MMEs and granodiorite suggest that the MMEs formed within a mushy hybrid layer generated by injection of upwelling basaltic magma into a pre-existing granitic magma chamber. Titanite cores and mantles in the MMEs likely crystallized from variably mixed magmas. They subsequently underwent resorption and disequilibrium growth within the hybrid layer, and were eventually overgrown by rims formed from evolved interstitial granitic melts within the mushy enclaves. These findings demonstrate that the complex zoning and geochemical titanite in the MMEs provide valuable insights into magma mixing processes. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

17 pages, 2755 KB  
Article
Enhanced Osteogenic Response to an Osteochondral Scaffold Modified with BMP-2 or Strontium-Enriched Amorphous Calcium Phosphate in a Co-Culture In Vitro Model
by Stefania Pagani, Manuela Salerno, Janis Locs, Jana Vecstaudza, Laura Dolcini, Milena Fini, Gianluca Giavaresi, Giuseppe Filardo and Marta Columbaro
J. Funct. Biomater. 2025, 16(8), 302; https://doi.org/10.3390/jfb16080302 - 21 Aug 2025
Viewed by 342
Abstract
Background: A trilayered collagen/collagen–magnesium–hydroxyapatite (Col/Col-Mg-HA) scaffold is used in clinical practice to treat osteochondral lesions, but the regeneration of the subchondral bone is still not satisfactory. Objective: The aim of this study was to test, in vitro, the osteoinductivity induced by [...] Read more.
Background: A trilayered collagen/collagen–magnesium–hydroxyapatite (Col/Col-Mg-HA) scaffold is used in clinical practice to treat osteochondral lesions, but the regeneration of the subchondral bone is still not satisfactory. Objective: The aim of this study was to test, in vitro, the osteoinductivity induced by the addition of bone morphogenetic protein-2 (BMP-2) or amorphous calcium phosphate granules with strontium ions (Sr-ACP), in order to improve the clinical regeneration of subchondral bone, still incomplete. Methodology: Normal human osteoblasts (NHOsts) were seeded on the scaffolds and grown for 14 days in the presence of human osteoclasts and conditioned medium of human endothelial cells. NHOst adhesion and morphology were observed with transmission electron microscopy, and metabolic activity was tested by Alamar blue assay. The expression of osteoblast- and osteoclast-typical markers was evaluated by RT-PCR on scaffolds modified by enrichment with BPM-2 or Sr-ACP, as well as on unmodified material used as a control. Results: NHOsts adhered well to all types of scaffolds, maintained their typical morphology, and secreted abundant extracellular matrix. On the modified materials, COL1A1, SPARC, SPP1, and BGLAP were more expressed than on the unmodified ones, showing the highest expression in the presence of BMP-2. On Sr-ACP-enriched scaffolds, NHOsts had a lower proliferation rate and a lower expression of RUNX2, SP7, and ALPL compared to the other materials. The modified scaffolds, particularly the one containing Sr-ACP, increased the expression of the osteoclasts’ typical markers and decreased the OPG/RANKL ratio. Both types of scaffold modification were able to increase the osteoinductivity with respect to the original scaffold used in clinical practice. BMP-2 modification seemed to be more slightly oriented to sustain NHOst activity, and Sr-ACP seemed to be more slightly oriented to sustain the osteoclast activity. These could provide a concerted action toward better regeneration of the entire osteochondral unit. Full article
Show Figures

Figure 1

20 pages, 3960 KB  
Article
Laboratory-Scale Biochar-Aerated Constructed Wetlands for Low C/N Wastewater: Standardization and Legal Cooperation from a Watershed Restoration Perspective
by Mengbing Li, Sili Tan, Jiajun Huang, Qianhui Chen and Guanlong Yu
Water 2025, 17(16), 2482; https://doi.org/10.3390/w17162482 - 21 Aug 2025
Viewed by 281
Abstract
To address the problems of eutrophication exacerbation in water bodies caused by low carbon-to-nitrogen ratio (C/N) wastewater and the limited nitrogen removal efficiency of conventional constructed wetlands, this study proposes the use of biochar (Corncob biochar YBC, Walnut shell biochar HBC, and [...] Read more.
To address the problems of eutrophication exacerbation in water bodies caused by low carbon-to-nitrogen ratio (C/N) wastewater and the limited nitrogen removal efficiency of conventional constructed wetlands, this study proposes the use of biochar (Corncob biochar YBC, Walnut shell biochar HBC, and Manure biochar FBC) coupled with intermittent aeration technology to enhance nitrogen removal in constructed wetlands. Through the construction of vertical flow wetland systems, hydraulic retention time (HRT = 1–3 d) and influent C/N ratios (1, 3, 5) were regulated, before being combined with material characterization (FTIR/XPS) and microbial analysis (16S rRNA) to reveal the synergistic nitrogen removal mechanisms. HBC achieved efficient NH4+-N adsorption (32.44 mg/L, Langmuir R2 = 0.990) through its high porosity (containing Si-O bonds) and acidic functional groups. Under optimal operating conditions (HRT = 3 d, C/N = 5), the CW-HBC system achieved removal efficiencies of 97.8%, 98.8%, and 79.6% for NH4+-N, TN, and COD, respectively. The addition of biochar shifted the dominant bacterial phylum toward Actinobacteriota (29.79%), with its slow-release carbon source (TOC = 18.5 mg/g) alleviating carbon limitation. Mechanistically, HBC synergistically optimized nitrogen removal pathways through “adsorption-biofilm (bacterial enrichment)-microzone oxygen regulation (pore oxygen gradient).” Based on technical validation, a dual-track institutionalization pathway of “standards-legislation” is proposed: incorporating biochar physicochemical parameters and aeration strategies into multi-level water environment technical standards; converting common mechanisms (such as Si-O adsorption) into legal requirements through legislative amendments; and innovating legislative techniques to balance precision and universality. This study provides an efficient technical solution for low C/N wastewater treatment while constructing an innovative framework for the synergy between technical specifications and legislation, supporting the improvement of watershed ecological restoration systems. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

22 pages, 1986 KB  
Article
Predictive Microbial Markers Distinguish Responders and Non-Responders to Adalimumab: A Step Toward Precision Medicine in Ulcerative Colitis
by Shaghayegh Baradaran Ghavami, Arfa Moshiri, Carola Bonaretti, Maryam Farmani, Margherita Squillario, Eddi Di Marco, Shabnam Shahrokh, Hedieh Balaii, Maria Valeria Corrias, Mirco Ponzoni, Amir Sadeghi and Roberto Biassoni
Microorganisms 2025, 13(8), 1941; https://doi.org/10.3390/microorganisms13081941 - 20 Aug 2025
Viewed by 170
Abstract
Ulcerative colitis (UC) is a chronic, relapsing inflammatory disease of the colon, often associated with gut microbial dysbiosis. Although anti-TNF-α agents, such as Adalimumab (Cinnora®), are used to treat moderate-to-severe UC, the treatment response is highly variable. Identifying early microbial biomarkers [...] Read more.
Ulcerative colitis (UC) is a chronic, relapsing inflammatory disease of the colon, often associated with gut microbial dysbiosis. Although anti-TNF-α agents, such as Adalimumab (Cinnora®), are used to treat moderate-to-severe UC, the treatment response is highly variable. Identifying early microbial biomarkers of response could help support personalized therapeutic strategies and prevent unnecessary exposure to ineffective treatments. However, the long-term effects of anti-TNF therapy on both stool and mucosal microbiota remain poorly understood. This prospective longitudinal study included 23 corticosteroid-refractory or -dependent UC patients who started Adalimumab after endoscopy-confirmed flare-ups. Stool samples and inflamed colonic biopsies were collected at baseline, and 3 and 6 months. Microbiota profiling was performed using 16S rRNA sequencing. Microbial changes were analyzed over time and compared between responders (Mayo score 0–1) and non-responders (Mayo score ≥ 2). Sixty percent of patients achieved clinical remission. In responders, stool microbiota showed increased Bacteroidetes and decreased Proteobacteria abundances, along with an enrichment of beneficial taxa including Faecalibacterium prausnitzii, Bifidobacterium, and Akkermansia muciniphila. Mucosal microbiota exhibited persistent dysbiosis, characterized by an increase in Proteobacteria and a reduced Firmicutes/Proteobacteria ratio. Notably, responders showed distinct compartment-specific microbial changes, with a decrease in Gammaproteobacteria in stool and an increase in Corynebacterium in tissue. Adalimumab induces divergent microbial changes in stool and mucosa. While stool microbiota trends toward eubiosis in responders, persistent mucosal dysbiosis may reflect asymptomatic inflammation. These findings underscore the importance of niche-specific microbiome profiling in UC and support its integration into personalized treatment monitoring. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Graphical abstract

16 pages, 4895 KB  
Article
Spatial Distribution Characteristics of Soil Nutrients and Stoichiometric Ratios in Eragrostis minor Distribution Areas of Gansu Province, Northwestern China
by Shuiqin Hu, Xiaoming Bai, Hanrui Wang, Fu Ran, Qian Ruan, Mahran Sadiq and Siyuan Ding
Agronomy 2025, 15(8), 1996; https://doi.org/10.3390/agronomy15081996 - 20 Aug 2025
Viewed by 270
Abstract
Soil nutrients and stoichiometric ratios are significant parameters for Eragrostis minor Host sustainability in a recent climate change scenario. However, their characteristics in Northwestern China are still unclear, particularly at Gansu belt, and require further investigation. In the study, we analyzed soil pH, [...] Read more.
Soil nutrients and stoichiometric ratios are significant parameters for Eragrostis minor Host sustainability in a recent climate change scenario. However, their characteristics in Northwestern China are still unclear, particularly at Gansu belt, and require further investigation. In the study, we analyzed soil pH, organic matter (OM), nutrients, and stoichiometric ratios from eight E. minor distribution sites in Gansu Province at 0–10, 10–20 and 20–30 cm soil depths. Results showed that soils were alkaline, with pH increasing significantly with depth (p < 0.05). The soil OM, nitrogen (N), and phosphorus (P) decreased with depth, showing topsoil nutrient enrichment. Baiyin Huining (HN) and Dingxi Anding (AD) exhibited the highest nutrient levels, likely due to higher altitudes. The soil stoichiometric ratios were lower than both China’s depth-averaged values and the global averages, indicating N as the primary limiting factor. Further, correlation analysis showed that the soil nutrients were mainly affected by altitude, and N chiefly limited the soil stoichiometric ratios. Therefore, E. minor can be managed and conserved sustainably at HN and AD sites in Gansu’s dry temperate ecosystem. These findings offer theoretical support for ecological adaptability assessment, conservation of germplasm resources, and E. minor utilization in Gansu province, China. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 2431 KB  
Article
The Complete Mitochondrial Genome of Liobagrus huaiheensis (Teleostei: Siluriformes: Amblycipitidae): Characterization, Phylogenetic Placement, and Insights into Genetic Diversity
by Chaoqun Su, Chenxi Tan, Liangjie Zhao, Jiahui Liu, Xusheng Guo, Gaoyou Yao, Weizhao Zhang and Tiezhu Yang
Genes 2025, 16(8), 977; https://doi.org/10.3390/genes16080977 - 19 Aug 2025
Viewed by 276
Abstract
Background/Objectives: Liobagrus huaiheensis, an endemic fish in the Huaihe River basin, is a newly described species with limited molecular genetic research, hindering understanding of its evolutionary status, population structure, and genetic diversity. This study aimed to characterize its complete mitochondrial genome, [...] Read more.
Background/Objectives: Liobagrus huaiheensis, an endemic fish in the Huaihe River basin, is a newly described species with limited molecular genetic research, hindering understanding of its evolutionary status, population structure, and genetic diversity. This study aimed to characterize its complete mitochondrial genome, clarify its phylogenetic position within Liobagrus, and assess its population genetic diversity. Methods: We obtained the complete mitogenome of L. huaiheensis (sourced from the Zhugan River) through sequencing, followed by detailed annotation of this genomic sequence. We analyzed its genomic structure, nucleotide composition, codon usage, and base asymmetry. Selection pressure on 13 protein-coding genes (PCGs) was evaluated using Ka/Ks ratios. Phylogenetic trees were generated by means of Bayesian inference (BI) and maximum likelihood (ML), using a dataset composed of 13 protein-coding genes (PCGs) from 37 species. Population genetic diversity was assessed using the cox1 gene. Results: The mitogenome is a 16,512 bp circular molecule encoding 37 genes and one control region, with a conserved structure typical of Liobagrus. It has high A + T content (55.74%) with A-preference and C-enrichment. All PCGs undergo purifying selection (Ka/Ks < 1). Phylogenetic analyses revealed L. huaiheensis is closest to L. obesus (100% support), with Liobagrus divided into three clades. The cox1 gene analysis showed low diversity (Hd = 0.656, π = 0.00171) and neutral evolution. Conclusions: This study fills the mitogenome data gap for L. huaiheensis, clarifies its evolutionary characteristics and phylogenetic position, and provides a basis for conservation genetics of Huaihe endemic fishes and molecular evolution research on Amblycipitidae. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

24 pages, 5298 KB  
Article
Therapeutic Potential of Ozonated Ocimum basilicum L. from Saudi Arabia: Phytochemical Characterization and Enhanced Bioactivities
by Husam Qanash, Sulaiman A. Alsalamah, Abdulrahman S. Bazaid, Mohammed Ibrahim Alghonaim, Amro Duhduh and Ibtisam Hudani
Pharmaceuticals 2025, 18(8), 1223; https://doi.org/10.3390/ph18081223 - 19 Aug 2025
Viewed by 235
Abstract
Background/Objectives: Medicinal plants are an abundant source of bioactive molecules, particularly in arid environments, such as Saudi Arabia, where Ocimum basilicum L. (Saudi basil) has long been used for its therapeutic properties. This study aimed to examine the phytochemical profile and bioactivities [...] Read more.
Background/Objectives: Medicinal plants are an abundant source of bioactive molecules, particularly in arid environments, such as Saudi Arabia, where Ocimum basilicum L. (Saudi basil) has long been used for its therapeutic properties. This study aimed to examine the phytochemical profile and bioactivities of non-ozonated (untreated) and ozonated methanolic extracts of O. basilicum and to determine whether ozonation enhances their biological effects, with a focus on antidiabetic, anti-Alzheimer, anti-inflammatory, antimicrobial, and cytotoxic properties. Methods: Fresh leaves of O. basilicum were extracted with methanol, subjected to ozonation, and analyzed by HPLC. In vitro assays were conducted to evaluate α-amylase, α-glucosidase, and BChE inhibition, RBC membrane stabilization, antibacterial activity against Helicobacter pylori and cytotoxicity using normal lung fibroblasts (WI-38) and human colorectal adenocarcinoma cell line (Caco-2). Results: Ozonation modified the phytochemical profile, enriching chlorogenic and rosmarinic acids. Ozonated extracts exhibited stronger inhibition of α-amylase with an IC50 of 5.09 µg/mL compared to 13.6 µg/mL of untreated Saudi basil and α-glucosidase (IC50 6.15 µg/mL vs. 9.42 µg/mL). They also showed enhanced BChE inhibition with an IC50 of 13.4 µg/mL compared to 31.8 µg/mL of non-ozonated extract. In addition, ozonated extracts produced significant anti-inflammatory effects by stabilizing RBCs, with an IC50 of 8.04 µg/mL compared to 8.44 µg/mL for untreated extracts and 4.41 µg/mL for indomethacin. Ozonated extracts produced larger H. pylori inhibition zones (26.7 mm) and an MBC/MIC ratio of 1. Cytotoxicity testing revealed that ozonated extracts were less toxic to WI-38 cells, with IC50 values of 437.89 µg/mL versus 191.06 µg/mL, and 149.14 µg/mL compared to 103.7 µg/mL of untreated Saudi basil in Caco-2 cells. Conclusions: Ozonation enriches the phytochemical composition of O. basilicum, enhancing antidiabetic, neuroprotective, anti-inflammatory, and antibacterial activities while reducing cytotoxicity on normal cells. These findings support the potential of ozonated O. basilicum as a safe and promising natural therapeutic candidate for metabolic, neurodegenerative, and infectious diseases. Full article
Show Figures

Graphical abstract

17 pages, 4295 KB  
Article
Transcriptomic Analysis Reveals Regulatory Responses of Fatty Acid Positional Distribution in Triacylglycerols and Lipid Composition to Dietary n-3 HUFA in the Muscle of Trachinotus ovatus
by Xin Gao, Mengmeng Li, Junfeng Guan, Zhiyi Cheng, Dizhi Xie and Yuanyou Li
Animals 2025, 15(16), 2427; https://doi.org/10.3390/ani15162427 - 19 Aug 2025
Viewed by 217
Abstract
The nutritional value of lipids depends not only on their fatty acid composition but also on their stereospecific positioning on the glycerol backbone. This study investigated the fatty acid composition and sn-2 positional distribution of triacylglycerols (TAG), as well as the composition [...] Read more.
The nutritional value of lipids depends not only on their fatty acid composition but also on their stereospecific positioning on the glycerol backbone. This study investigated the fatty acid composition and sn-2 positional distribution of triacylglycerols (TAG), as well as the composition of major phospholipids in golden pompano (Trachinotus ovatus) juveniles (initial weight: 10 g) fed five diets including graded levels of dietary n-3 highly unsaturated fatty acids (HUFA; 0.64–2.10%) for 56 days. With increasing dietary n-3 HUFA levels, the proportions of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and total n-3 HUFA in muscle TAG, phosphatidylcholine (PC), and phosphatidylethanolamine (PE) significantly increased. Phospholipids, especially PC and PE, were preferentially enriched with n-3 HUFA, and the sn-2 positions of TAG showed a significantly increased deposition of DHA and reduced n-6/n-3 ratios. RNA-Seq analysis was performed on muscle tissues of T. ovatus subjected to different dietary n-3 HUFA levels to further investigate the molecular mechanisms of lipid compositional and structural changes. A total of 126,792 unigenes were obtained, of which 47.78% were successfully annotated. KEGG pathway enrichment analysis implicated the glycerophospholipid, glycerolipid, and sphingolipid metabolism pathways in lipid composition and distribution regulation, identifying gpat4, agpat3, agpat8, lpeat1, and lpgat1 as potential regulators. These findings offer insights into lipid remodeling in marine fish and support strategies to enhance aquaculture product quality. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

Back to TopTop