Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,763)

Search Parameters:
Keywords = epithelial damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2771 KB  
Article
Strain-Specific Variability in Viral Kinetics, Cytokine Response, and Cellular Damage in Air–Liquid Cultures of Human Nasal Organoids After Infection with SARS-CoV-2
by Gina M. Aloisio, Trevor J. McBride, Letisha Aideyan, Emily M. Schultz, Ashley M. Murray, Anubama Rajan, Erin G. Nicholson, David Henke, Laura Ferlic-Stark, Amal Kambal, Hannah L. Johnson, Elina A. Mosa, Fabio Stossi, Sarah E. Blutt, Pedro A. Piedra and Vasanthi Avadhanula
Viruses 2025, 17(10), 1343; https://doi.org/10.3390/v17101343 - 6 Oct 2025
Viewed by 185
Abstract
SARS-CoV-2 variants have demonstrated distinct epidemiological patterns and clinical presentations throughout the COVID-19 pandemic. Understanding variant-specific differences at the respiratory epithelium is crucial for understanding their pathogenesis. Here, we utilized human nasal organoid air–liquid interface (HNO-ALI) cell cultures to compare the viral replication [...] Read more.
SARS-CoV-2 variants have demonstrated distinct epidemiological patterns and clinical presentations throughout the COVID-19 pandemic. Understanding variant-specific differences at the respiratory epithelium is crucial for understanding their pathogenesis. Here, we utilized human nasal organoid air–liquid interface (HNO-ALI) cell cultures to compare the viral replication kinetics, innate immune response, and epithelial damage of six different strains of SARS-CoV-2 (B.1.2, WA, Alpha, Beta, Delta, and Omicron). All variants replicated efficiently in HNO-ALIs, but with distinct replication kinetic patterns. The Delta variant exhibited delayed replication kinetics, achieving a steady state at 6 days post-infection compared to 3 days for other variants. Cytokine analysis revealed robust pro-inflammatory and chemoattractant responses (IL-6, IL-8, IP-10, CXCL9, and CXCL11) in WA1, Alpha, Beta, and Omicron infections, while Delta significantly dampened the innate immune response, with no significant induction of IL-6, IP-10, CXCL9, or CXCL11. Immunofluorescence and H&E analysis showed that all variants caused significant ciliary damage, though WA1 and Delta demonstrated less destruction at early time points (3 days post-infection). Together, these data show that, in our HNO-ALI model, the Delta variant employs a distinct “stealth” strategy characterized by delayed replication kinetics and epithelial cell innate immune evasion when compared to other variants of SARS-CoV-2, potentially explaining a mechanism that the Delta variant can use for its enhanced transmissibility and virulence observed clinically. Our findings demonstrate that variant-specific differences at the respiratory epithelium could explain some of the distinct clinical presentations and highlight the utility of the HNO-ALI system for the rapid assessment of emerging variants. Full article
(This article belongs to the Special Issue Viral Infection in Airway Epithelial Cells)
Show Figures

Figure 1

21 pages, 2466 KB  
Article
Single-Cell Transcriptomics Reveals a Multi-Compartmental Cellular Cascade Underlying Elahere-Induced Ocular Toxicity in Rats
by Jialing Zhang, Meng Li, Yuxuan Yang, Peng Guo, Weiyu Li, Hongxin An, Yongfei Cui, Luyun Guo, Maoqin Duan, Ye Lu, Chuanfei Yu and Lan Wang
Pharmaceuticals 2025, 18(10), 1492; https://doi.org/10.3390/ph18101492 - 4 Oct 2025
Viewed by 331
Abstract
Background: Antibody-drug conjugates (ADCs) have ushered in a new era of precision oncology by combining the targeting specificity of monoclonal antibodies with the potent cytotoxicity of chemotherapeutic drugs. However, the cellular and molecular mechanisms underlying their dose-limiting ocular toxicity remain unclear. Elahere™, the [...] Read more.
Background: Antibody-drug conjugates (ADCs) have ushered in a new era of precision oncology by combining the targeting specificity of monoclonal antibodies with the potent cytotoxicity of chemotherapeutic drugs. However, the cellular and molecular mechanisms underlying their dose-limiting ocular toxicity remain unclear. Elahere™, the first FDA-approved ADC targeting folate receptor α (FRα), demonstrates remarkable efficacy in platinum-resistant ovarian cancer but causes keratitis and other ocular toxicities in some patients. Notably, FRα is not expressed in the corneal epithelium—the primary site of damage—highlighting the urgent need to elucidate its underlying mechanisms. The aim of this study was to identify the cell-type-specific molecular mechanisms underlying Elahere-induced ocular toxicity. Methods: Sprague-Dawley rats were treated with intravenous Elahere (20 mg/kg) or vehicle weekly for five weeks. Ocular toxicity was determined by clinical examination and histopathology. Corneal single-cell suspensions were analyzed using the BD Rhapsody single-cell RNA sequencing (scRNA-seq) platform. Bioinformatic analyses to characterize changes in corneal cell populations, gene expression, and signaling pathways included cell clustering, differential gene expression, pseudotime trajectory inference, and cell-cell interaction modeling. Results: scRNA-seq profiling of 47,606 corneal cells revealed significant damage to the ocular surface and corneal epithelia in the Elahere group. Twenty distinct cell types were identified. Elahere depleted myeloid immune cells; in particular, homeostatic gene expression was suppressed in phagocytic macrophages. Progenitor populations (limbal stem cells and basal cells) accumulated (e.g., a ~2.6-fold expansion of limbal stem cells), while terminally differentiated cells decreased in corneal epithelium, indicating differentiation blockade. Endothelial cells exhibited signs of injury and inflammation, including reduced angiogenic subtypes and heightened stress responses. Folate receptor alpha, the target of Elahere, was expressed in endothelial and stromal cells, potentially driving stromal cells toward a pro-fibrotic phenotype. Fc receptor genes were predominantly expressed in myeloid cells, suggesting a potential mechanism underlying their depletion. Conclusions: Elahere induces complex, multi-compartmental ocular toxicity characterized by initial perturbations in vascular endothelial and immune cell populations followed by the arrest of epithelial differentiation and stromal remodeling. These findings reveal a cascade of cellular disruptions and provide mechanistic insights into mitigating Elahere-associated ocular side effects. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

18 pages, 1232 KB  
Review
The Role of Endoplasmic Reticulum Stress in the Development of Periodontitis—From Experimental Cell and Animal Models to Humans
by Sebastian Gawlak-Socka, Paulina Sokołowska, Gabriela Henrykowska, Edward Kowalczyk, Sebastian Kłosek and Anna Wiktorowska-Owczarek
Int. J. Mol. Sci. 2025, 26(19), 9620; https://doi.org/10.3390/ijms26199620 - 2 Oct 2025
Viewed by 189
Abstract
Periodontal disease is a prevalent inflammatory disorder that can lead to severe oral complications. Recent studies increasingly underline the role of endoplasmic reticulum (ER) stress in its pathogenesis. Experimental models using inflammatory agents such as lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α), and ligature-induced [...] Read more.
Periodontal disease is a prevalent inflammatory disorder that can lead to severe oral complications. Recent studies increasingly underline the role of endoplasmic reticulum (ER) stress in its pathogenesis. Experimental models using inflammatory agents such as lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α), and ligature-induced periodontitis in rodents, as well as chemical hypoxia, have consistently demonstrated the activation of unfolded protein response (UPR) pathways in periodontal cells. Key ER stress markers, including CHOP, GRP78, PERK, and ATF6, were upregulated in periodontal ligament cells, stem cells, and gingival epithelial cells under these conditions. While ER stress in periodontitis is primarily associated with detrimental outcomes such as apoptosis and inflammation, it may also have a physiological role in bone remodeling via the PERK-eIF2α-ATF4 axis. Importantly, several ER stress-modulating agents—such as oridonin, melatonin, and exosomes derived from M2 macrophages—have shown therapeutic potential by reducing stress marker expression and limiting periodontal damage. These findings suggest that targeting ER stress may offer a novel therapeutic strategy. Future human studies are essential to determine whether a combined approach targeting inflammation and ER stress could more effectively halt or reverse periodontal tissue destruction, while also assessing the long-term safety of ER stress modulation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 2302 KB  
Review
Crossroads of Iron Metabolism and Inflammation in Colorectal Carcinogenesis: Molecular Mechanisms and Therapeutic Perspectives
by Nahid Ahmadi, Gihani Vidanapathirana and Vinod Gopalan
Genes 2025, 16(10), 1166; https://doi.org/10.3390/genes16101166 - 1 Oct 2025
Viewed by 487
Abstract
Background/Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Iron metabolism and chronic inflammation are two interrelated processes that significantly influence the initiation and progression of CRC. Iron is essential for cell proliferation, but its excess promotes oxidative stress and [...] Read more.
Background/Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Iron metabolism and chronic inflammation are two interrelated processes that significantly influence the initiation and progression of CRC. Iron is essential for cell proliferation, but its excess promotes oxidative stress and DNA damage, while inflammation driven by cytokine-regulated pathways accelerates tumourigenesis. We therefore conducted this narrative review to collate the available evidence on the link between iron homeostasis and inflammatory signalling in CRC and highlight potential diagnostic and therapeutic applications. Methods: This narrative review of preclinical and clinical studies explores the molecular and cellular pathways that connect iron regulation and inflammation to CRC. Key regulatory molecules, such as the transferrin receptor (TFRC), ferroportin (SLC40A1), ferritin (FTH/FTL), hepcidin, and IL-6, were reviewed. Additionally, we summarised the findings of transcriptomic, epigenomic, and proteomic studies. Relevant therapeutic approaches, including iron chelation, ferroptosis induction, and anti-inflammatory strategies, were also discussed. Results: Evidence suggests that CRC cells exhibit altered iron metabolism, marked by the upregulation of transferrin receptor (TFRC), downregulation of ferroportin, and dysregulated expression of ferritin. Inflammatory mediators such as IL-6 activate hepcidin and STAT3 signalling, which reinforce intracellular iron retention and oxidative stress. Increased immune evasion, epithelial proliferation, and genomic instability appear to be linked to the interaction between inflammation and iron metabolism. Other promising biomarkers include ferritin, hepcidin, and composite gene expression signatures; however, their clinical application remains limited. Although several preclinical studies support the use of targeted iron therapies and combination approaches with anti-inflammatory agents or immunotherapy, there is a lack of comprehensive clinical validation confirming their efficacy and safety in humans. Conclusion: Although preclinical studies suggest that iron metabolism and inflammatory signalling form an interconnected axis closely linked to CRC, translating this pathway into reliable clinical biomarkers and effective therapeutic strategies remains a significant challenge. Future biomarker-guided clinical trials are essential to determine the clinical relevance and to establish precision medicine strategies targeting the iron–inflammation crosstalk in CRC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2149 KB  
Article
Transcriptome Analysis of Potential Genes Involved in Innate Immunity in Mudflat Crab (Helice tientsinensis)
by Lulu Chen, Ming Wang, Mengdi Zhou, Youkun Fang, Tingting Ji, Ruyang Xia, Menglu Bai, Zhengfei Wang and Jiafei Shen
Animals 2025, 15(19), 2855; https://doi.org/10.3390/ani15192855 - 30 Sep 2025
Viewed by 223
Abstract
The mudflat crab (H. tientsinensis) is a dominant species in coastal tidal flat areas, primarily inhabiting the high tide region of the intertidal zone, and possesses significant ecological and economic value. Vibrio species are one of the main bacterial pathogens responsible [...] Read more.
The mudflat crab (H. tientsinensis) is a dominant species in coastal tidal flat areas, primarily inhabiting the high tide region of the intertidal zone, and possesses significant ecological and economic value. Vibrio species are one of the main bacterial pathogens responsible for diseases in marine organisms, and they are widely distributed in seawater and estuarine environments. However, the immune mechanisms employed by H. tientsinensis in response to Vibrio infections remain unclear. This study aims to investigate the physiological and immune mechanisms by analyzing the structural changes and differential gene expression in the gill and hepatopancreas following Vibrio parahaemolyticus infection. The results indicate that V. parahaemolyticus infection causes cellular damage, with structural alterations observed in the gills (epithelial cell edema in the gill filaments, and aneurysm formation) and the hepatopancreas (changes in lumen size, nuclear condensation, and modifications in connective tissue morphology). Transcriptome analysis revealed 9766 differentially expressed genes (DEGs) in the gills of the experimental group, with 4687 upregulated and 5079 downregulated genes. These DEGs are primarily involved in different ribosomal subunits. In the hepatopancreas, 1594 DEGs were identified, with 834 upregulated and 760 downregulated. These DEGs are predominantly associated with energy-coupled proton transmembrane transport, electron transport-coupled proton transport, and lipid transporter activity. H. tientsinensis gene annotation and KEGG enrichment analysis revealed that chemical carcinogens DNA adducts, amino acid metabolism, and some immune pathways play key roles in the ability of H. tientsinensis to defend against V. parahaemolyticus infection. The findings of this study contribute to a deeper understanding of the immune mechanisms of H. tientsinensis against V. parahaemolyticus infection and provide new insights for aquaculture management. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 6292 KB  
Article
Differential Scanning Calorimetry, a Novel Method to Detect Uterine Ischemia-Reperfusion Injury During Autotransplantation in Experimental Sheep Model
by Gabor Fazekas, Balint Farkas and Denes Lorinczy
Biomedicines 2025, 13(10), 2388; https://doi.org/10.3390/biomedicines13102388 - 29 Sep 2025
Viewed by 220
Abstract
Background/Objectives: A novel treatment of absolute uterine factor infertility is uterus transplantation. In preparation for human surgery, autotransplantation was performed in a sheep model to assess ischemia-reperfusion injury of the uterine wall. Methods: Seven multiparous ewes underwent live-donor uterus autotransplantation; in [...] Read more.
Background/Objectives: A novel treatment of absolute uterine factor infertility is uterus transplantation. In preparation for human surgery, autotransplantation was performed in a sheep model to assess ischemia-reperfusion injury of the uterine wall. Methods: Seven multiparous ewes underwent live-donor uterus autotransplantation; in six, the procedure was completed successfully. Tissue blocks of complete uterine wall, endometrium, and myometrium were obtained at four predefined time points: native (baseline), after 1 h of cold ischemia, after 30 min of warm ischemia, and after 30 min of reperfusion. Samples were analyzed by differential scanning calorimetry and routine hematoxylin–eosin histology. Results: Histology demonstrated preserved epithelial, glandular, and stromal structures, with only minimal, reversible changes that increased with the ischemic duration. Differential scanning calorimetry confirmed alterations in thermal stability: in the uterine wall and myometrium, the calorimetric enthalpy decreased from baseline (3.40 ± 0.53 J/g) to reperfusion (2.62 ± 0.22 J/g), indicating structural loosening; in contrast, the endometrium calorimetric enthalpy slightly increased, suggesting greater flexibility and less susceptibility to ischemia-reperfusion injury. Conclusions: In this preliminary study, differential scanning calorimetry proved to be an effective and sensitive method for detecting early structural alterations in the uterine wall that could negatively impact post-transplant function. Cold and warm ischemia did not cause irreversible damage within a two-hour time frame, supporting the feasibility of short-term preservation in uterus transplantation. The myometrium demonstrated more significant vulnerability than the endometrium, which highlights the necessity of protective strategies to preserve smooth muscle integrity during transplantation. Full article
Show Figures

Figure 1

14 pages, 3946 KB  
Article
Histopathological and Molecular Insights into Grass Carp Kidney Responses to Co-Infection with Aeromonas hydrophila and Aeromonas veronii
by Yifei Zhou, Ruijun Zhu, Lingli Xie, Wenyao Lv, Xinyue Wang, Mengzhou Wu, Xiaoyan Xu and Junqiang Qiu
Fishes 2025, 10(10), 484; https://doi.org/10.3390/fishes10100484 - 29 Sep 2025
Viewed by 262
Abstract
Grass carp (Ctenopharyngodon idella), a key species in freshwater aquaculture, is particularly vulnerable to opportunistic pathogens, including Aeromonas hydrophila and Aeromonas veronii. While the pathogenic mechanisms of individual infections have been extensively characterized, the host immune responses during co-infection remain [...] Read more.
Grass carp (Ctenopharyngodon idella), a key species in freshwater aquaculture, is particularly vulnerable to opportunistic pathogens, including Aeromonas hydrophila and Aeromonas veronii. While the pathogenic mechanisms of individual infections have been extensively characterized, the host immune responses during co-infection remain poorly understood. This research explored the renal pathological alterations and transcriptomic shifts in grass carp subjected to simultaneous infection by A. hydrophila and A. veronii. Mortality occurred as early as 24 h post-challenge, ultimately reaching a cumulative death rate of 65%. Quantitative analysis of renal bacterial burden revealed a marked increase in colonization at 3 days post-infection (dpi). The histopathological assessment showed progressive kidney damage, including tubular collapse, epithelial necrosis, interstitial edema, and widespread epithelial desquamation, with the most severe lesions observed at 5 dpi and partial signs of recovery by 7 dpi. A total of 1106 and 472 genes were found to be differentially expressed at 1 and 5 dpi, respectively, based on transcriptome profiling. The functional enrichment analysis indicated that the differentially expressed genes (DEGs) were mainly involved in the complement and coagulation cascade pathways. Notably, the immune-related genes exhibited a biphasic trend, with predominant downregulation at 1 dpi followed by marked upregulation by 5 dpi, indicating dynamic changes in immune modulation during co-infection. These results provide new insights into host responses during dual bacterial infections in fish and may inform disease prevention strategies in aquaculture. Full article
(This article belongs to the Section Welfare, Health and Disease)
Show Figures

Figure 1

16 pages, 823 KB  
Review
Diverse Biological Processes Contribute to Transforming Growth Factor β-Mediated Cancer Drug Resistance
by James P. Heiserman and Rosemary J. Akhurst
Cells 2025, 14(19), 1518; https://doi.org/10.3390/cells14191518 - 28 Sep 2025
Viewed by 634
Abstract
Therapy resistance is a major obstacle to cancer treatment, and transforming growth factor-beta (TGF-β) signaling has emerged as a major instigator across many cancer types and therapeutic regimens. Solid tumors overexpress TGF-β ligands, and canonical and non-canonical TGF-β signaling pathways drive molecular changes [...] Read more.
Therapy resistance is a major obstacle to cancer treatment, and transforming growth factor-beta (TGF-β) signaling has emerged as a major instigator across many cancer types and therapeutic regimens. Solid tumors overexpress TGF-β ligands, and canonical and non-canonical TGF-β signaling pathways drive molecular changes in most cell types within the tumor to hijack therapeutic responses. Cancer therapies further stimulate TGF-β release to potentiate this problem. Molecular mechanisms of TGF-β action supporting resistance include upregulation of drug efflux pumps, enhanced DNA Damage Repair, elaboration of stiffened extracellular matrix, and decreased neoantigen presentation. TGF-β also activates pro-survival pathways, such as epidermal growth factor receptor, B-cell lymphoma-2 expression, and AKT-mTOR signaling. TGF-β-induced epithelial-to-mesenchymal transformation leads to tumor heterogeneity and acquisition of stem-like states. In the tumor microenvironment, TGF-β induces extracellular matrix production, contractility, and secretion of immunosuppressive cytokines by cancer-associated fibroblasts that contribute to drug resistance. TGF-β also blunts cytotoxic T and NK cell activities and stimulates recruitment and differentiation of immunosuppressive cells, including T-regulatory cells, M2 macrophages, and myeloid-derived suppressor cells. The importance of TGF-β signaling in development of drug resistance cannot be understated and should be further explored mechanistically to identify novel molecular approaches and combinatorial drug dosing strategies to prevent drug-resistance. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

8 pages, 233 KB  
Comment
BPC 157 Therapy: Targeting Angiogenesis and Nitric Oxide’s Cytotoxic and Damaging Actions, but Maintaining, Promoting, or Recovering Their Essential Protective Functions. Comment on Józwiak et al. Multifunctionality and Possible Medical Application of the BPC 157 Peptide—Literature and Patent Review. Pharmaceuticals 2025, 18, 185
by Predrag Sikiric, Sven Seiwerth, Anita Skrtic, Mario Staresinic, Sanja Strbe, Antonia Vuksic, Suncana Sikiric, Dinko Bekic, Dragan Soldo, Boris Grizelj, Luka Novosel, Lidija Beketic Oreskovic, Ivana Oreskovic, Mirjana Stupnisek, Alenka Boban Blagaic and Ivan Dobric
Pharmaceuticals 2025, 18(10), 1450; https://doi.org/10.3390/ph18101450 - 28 Sep 2025
Viewed by 869
Abstract
The healing issue is a central, not completely understood, problem in pharmacology, approached by many concepts. One of the most well-known is Robert’s and Szabo’s concept of cytoprotection, which holds innate cell (epithelial (Robert), endothelial (Szabo)) integrity, protection/maintenance/reestablishing in the stomach to be [...] Read more.
The healing issue is a central, not completely understood, problem in pharmacology, approached by many concepts. One of the most well-known is Robert’s and Szabo’s concept of cytoprotection, which holds innate cell (epithelial (Robert), endothelial (Szabo)) integrity, protection/maintenance/reestablishing in the stomach to be translated to other organ therapy (cytoprotection→organoprotection) via cytoprotection agent’s effect. Thereby, we defend stable gastric pentadecapeptide BPC 157 therapy, efficacy, pleiotropic beneficial effects along with high safety (LD1 not achieved) against Józwiak and collaborators’ review speculating its negative impact, speculation of angiogenesis toward tumorogenesis, increased NO and eNOS, toward damaging free radicals formation, and neurodegenerative diseases (Parkinson’s disease and Alzheimer’s disease). Contrarily, in wound healing and general healing capabilities as reviewed, as a cytoprotective agent, and native cytoprotection mediator, BPC 157 controls angiogenesis and the NO-system healing functions, and counteracts the pathological presentation of neurodegenerative diseases in acknowledged animal models (i.e., Parkinson’s disease and Alzheimer’s disease), and presents prominent anti-tumor potential, in vivo and in vitro. BPC 157 resolved cornea transparency maintenance, cornea healing “angiogenic privilege” (vs. angiogenesis/neovascularization/tumorogenesis), does not produce corneal neovascularization, but rather opposes it, and per Folkman’s concept, it demonstrates anti-tumor effect in vivo and in vitro. BPC 157 exhibits a distinctive effect on NO-level (increase vs. decrease), always combined with counteraction of free radicals formation, and in mice and rats, BPC 157 therapy counteracts Parkinson’s disease-like and Alzheimer’s disease-like disturbances. Thus, BPC 157 therapy means targeting angiogenesis and NO’s cytotoxic and damaging actions, but maintaining, promoting, or recovering their essential protective functions. Full article
(This article belongs to the Section Biopharmaceuticals)
17 pages, 3450 KB  
Article
A Constant Pressure-Driven Podocyte-on-Chip Model for Studying Hypertension-Induced Podocytopathy Pathomechanism and Drug Screening
by Yun-Jie Hao, Bo-Yi Yao, Qian-Ling Wang, Zong-Min Liu, Hao-Han Yu, Yi-Ching Ko, Hsiang-Hao Hsu and Fan-Gang Tseng
Micromachines 2025, 16(10), 1097; https://doi.org/10.3390/mi16101097 - 27 Sep 2025
Viewed by 246
Abstract
Podocytopathy, characterized by proteinuria, contributes significantly to kidney diseases, with hypertension playing a key role in damaging podocytes and the glomerular filtration barrier (GFB). The lack of functional in vitro models, however, impedes research and treatment development for hypertensive podocytopathy. We established a [...] Read more.
Podocytopathy, characterized by proteinuria, contributes significantly to kidney diseases, with hypertension playing a key role in damaging podocytes and the glomerular filtration barrier (GFB). The lack of functional in vitro models, however, impedes research and treatment development for hypertensive podocytopathy. We established a novel constant pressure-driven podocyte-on-chip model, utilizing our previously developed dynamic staining self-assembly cell array chip (SACA chip) and 3D printing. This platform features a differentiated podocyte monolayer under controlled hydrostatic pressures, mimicking the epithelial side of the GFB. Using this platform, we investigated mechanical force-dependent permeability to three sizes of fluorescent dextran under varying hydrostatic pressures, comparing the results with a puromycin aminonucleoside (PAN)-induced injury model. We observed that external pressures induced size-dependent permeability changes and altered cell morphology. Higher pressures led to greater macromolecule infiltration, especially for larger dextran (70 kDa, 500 kDa). Mature podocytes exhibited immediate, pressure-dependent cytoskeleton rearrangements, with better recovery at lower pressures (20 mmHg) but irreversible injury at higher pressures (40, 60 mmHg). These morphological changes were also corroborated by dynamic mRNA expression of cytoskeleton-associated proteins, Synaptopodin and ACTN4. This platform offers a promising in vitro tool for investigating the pathomechanisms of hypertension-induced podocytopathy, performing on-chip studies of the GFB, and conducting potential drug screening. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

8 pages, 191 KB  
Article
Assessment of Cervical Genotoxicity in Infertile Women Receiving IVF Therapy Using Micronucleus Test
by Fatma Kılıç Hamzaoğlu, Feyza Özçelik, Kaddafi Özçelik, Ayşe Gül Zamani and Kazım Gezginç
J. Clin. Med. 2025, 14(19), 6837; https://doi.org/10.3390/jcm14196837 - 26 Sep 2025
Viewed by 218
Abstract
Background: In vitro fertilization (IVF) has become a widely used method of assisted reproduction. However, concerns remain regarding the potential genotoxic effects of ovarian stimulation protocols used during IVF, especially in relation to cervical epithelial cells. The micronucleus (MN) assay is a validated [...] Read more.
Background: In vitro fertilization (IVF) has become a widely used method of assisted reproduction. However, concerns remain regarding the potential genotoxic effects of ovarian stimulation protocols used during IVF, especially in relation to cervical epithelial cells. The micronucleus (MN) assay is a validated cytogenetic biomarker of chromosomal damage and genome instability, increasingly utilized in cancer risk assessment. This study aimed to evaluate the genotoxic effect of IVF treatment on cervical epithelial cells in infertile women by comparing MN frequency before and after IVF cycles and with matched healthy controls. Methods: This prospective observational study included 15 women undergoing IVF and 15 age-matched healthy controls. All IVF participants had primary infertility and were undergoing their first IVF/ICSI cycle. Cervical smear samples were collected from the IVF group before and three months after treatment failure. MN assay was applied, and cytogenetic parameters (MN, binucleated cells, broken egg cells, and budding cells) were evaluated under light microscopy. Non-parametric statistical tests were used for analysis. Results: A statistically significant increase in MN frequency was found in the IVF group following treatment compared to pre-treatment samples and the control group (p = 0.001). HPV status was not assessed during the study period and is acknowledged as a key limitation. However, no significant differences were observed in other nuclear anomalies. Pre-treatment MN frequencies were not significantly different from those in controls. Conclusions: The findings suggest a potential cytogenetic impact of IVF-related hormonal stimulation on cervical epithelial cells, as evidenced by increased MN frequency. While no direct clinical implications were identified, these changes warrant further investigation into the long-term genomic safety of assisted reproductive technologies. Full article
(This article belongs to the Section Obstetrics & Gynecology)
19 pages, 3039 KB  
Article
A Sulfated Polysaccharide from Gelidium crinale Suppresses Oxidative Stress and Epithelial–Mesenchymal Transition in Cultured Retinal Pigment Epithelial Cells
by Yurong Fang, Haiyan Zheng, Yizhu Chen, Bomi Ryu and Zhong-Ji Qian
Mar. Drugs 2025, 23(10), 381; https://doi.org/10.3390/md23100381 - 26 Sep 2025
Viewed by 307
Abstract
Age-related macular degeneration (AMD) progresses to vision-threatening dry and wet forms, with no effective dry AMD treatments available. The sulfated polysaccharide (GNP, 25.8 kDa) derived from Gelidium crinale exhibits diverse biological activities and represents a potential source of novel therapeutic agents. This study [...] Read more.
Age-related macular degeneration (AMD) progresses to vision-threatening dry and wet forms, with no effective dry AMD treatments available. The sulfated polysaccharide (GNP, 25.8 kDa) derived from Gelidium crinale exhibits diverse biological activities and represents a potential source of novel therapeutic agents. This study employed a hydrogen peroxide (H2O2)-induced oxidative stress and epithelial–mesenchymal transition (EMT) model in retinal pigment epithelial (RPE) cells to investigate GNP’s protective mechanisms against both oxidative damage and EMT. The results demonstrated that GNP effectively suppressed oxidative stress, with the 600 μg/mL dose significantly inhibiting excessive reactive oxygen species (ROS) generation to levels comparable to untreated controls. Concurrently, at concentrations of 200–600 μg/mL, GNP inhibited NF-κB signaling and increased the Bax/Bcl-2 ratio, effectively counteracting H2O2-induced oxidative damage and cell apoptosis. Furthermore, in H2O2-treated ARPE-19 cells, 600 μg/mL GNP significantly reduced the secretion of N-cadherin (N-cad), Vimentin (Vim), and α-smooth muscle actin (α-SMA), while increasing E-cadherin (E-cad) expression, consequently inhibiting cell migration. Mechanistically, GNP activated the Nrf2/HO-1 pathway, thereby mitigating oxidative stress. These findings suggest that GNP may serve as a potential therapeutic agent for dry AMD. Full article
Show Figures

Figure 1

29 pages, 19035 KB  
Article
Resveratrol Alleviated Oxidative Damage of Bovine Mammary Epithelial Cells via Activating SIRT5-IDH2 Axis
by Hanlin Yang, Luya Liu, Xinyi Zhang, Shikai Gao, Anqi Li, Jinru Dong, Guangyang Lu, Qilong Yang, Xiaoxiao Liu, Shiang Sun, Heping Li, Yang Liu, Yueying Wang and Yingqian Han
Antioxidants 2025, 14(10), 1171; https://doi.org/10.3390/antiox14101171 - 26 Sep 2025
Viewed by 398
Abstract
Effective intervention on oxidative damage of bovine mammary epithelial cells (bMECs) is particularly important for reducing the incidence rate of mastitis. As a natural antioxidant, resveratrol (RES) can scavenge ROS, protecting cells from oxidative damage. However, the role of RES in bMECs and [...] Read more.
Effective intervention on oxidative damage of bovine mammary epithelial cells (bMECs) is particularly important for reducing the incidence rate of mastitis. As a natural antioxidant, resveratrol (RES) can scavenge ROS, protecting cells from oxidative damage. However, the role of RES in bMECs and its potential protective mechanism have not been fully elucidated. Our results indicated that RES alleviated oxidative damage and enhanced antioxidant capacity in bMECs. Furthermore, RES increased SIRT5 expression and interacted with SIRT5, which attenuated cellular oxidative stress, inflammatory response and autophagy activity. Interestingly, SIRT5 and RES further improved mitochondrial dysfunction by increasing intracellular NADPH and GSH levels. Meanwhile, RES activated SIRT5 to regulate enzymatic activity of SDH and IDH2, which were important enzymes for producing intracellular ATP and antioxidants. RES specifically activated SIRT5 to attenuate the succinylation levels of intracellular IDH2 associated with interacting with SIRT5. Collectively, these outcomes revealed that RES might function as an activator of SIRT5 to attenuate oxidative damage of bMECs via activating SIRT5-IDH2 axis, resulting in increased GSH and NADPH production. Therefore, RES may be useful to prevent and control bovine mastitis by relieving oxidative damage. Full article
Show Figures

Figure 1

17 pages, 3008 KB  
Article
Synthesis and Structure–Activity Relationship Study of 2-(amino)quinazolin-4(3H)-one Derivatives as Potential Inhibitors of Methicillin-Resistant Staphylococcus aureus (MRSA)
by Jun Young Lee, Hyunjung Lee, Sungmin Kim, Jihwan Gim, Yunmi Lee, Chae Jo Lim, Hyun-Seob Song, Hyeung-geun Park, Soojin Jang and Chul Min Park
Antibiotics 2025, 14(10), 967; https://doi.org/10.3390/antibiotics14100967 - 25 Sep 2025
Viewed by 317
Abstract
Background/Objectives: The rise in methicillin-resistant Staphylococcus aureus (MRSA) demands new therapeutic strategies. In this study, a series of 2-(amino)quinazolin-4(3H)-one derivatives were synthesized and evaluated for antistaphylococcal activity. Methods/Results: Through screening against S. aureus ATCC25923 and USA300 JE2, several submicromolar inhibitors were [...] Read more.
Background/Objectives: The rise in methicillin-resistant Staphylococcus aureus (MRSA) demands new therapeutic strategies. In this study, a series of 2-(amino)quinazolin-4(3H)-one derivatives were synthesized and evaluated for antistaphylococcal activity. Methods/Results: Through screening against S. aureus ATCC25923 and USA300 JE2, several submicromolar inhibitors were identified. Among them, compound 6l, which contains a 7-chloro substituent on the key parental scaffold, exhibited strong overall antibacterial activity (MIC50: 1.0 µM, ATCC25923; 0.6 µM, JE2) and served as a lead for further structural optimization. Structure–activity relationship analysis showed that substitution at the 2-position was critical, with its optimized analog 6y (3,4-difluorobenzylamine) exhibiting the highest potency (MIC50: 0.36 µM, ATCC25923; 0.02 µM, JE2). Cytotoxicity assays in HepG2 cells revealed six compounds with IC50 values above 20 µM, yielding efficacy windows greater than 10. Compound 6y exhibited an exceptional index (~885). Consistently, in an H460 lung epithelial infection model mimicking MRSA pneumonia, 6y significantly reduced intracellular bacterial loads with minimal host cell damage, outperforming comparator compounds. Conclusions: These findings highlight 2-(amino)quinazolin-4(3H)-one derivatives, particularly 6y, as promising leads for the development of new antistaphylococcal agents. Full article
Show Figures

Figure 1

49 pages, 1461 KB  
Review
Kidneys on the Frontline: Nephrologists Tackling the Wilds of Acute Kidney Injury in Trauma Patients—From Pathophysiology to Early Biomarkers
by Merita Rroji, Marsida Kasa, Nereida Spahia, Saimir Kuci, Alfred Ibrahimi and Hektor Sula
Diagnostics 2025, 15(19), 2438; https://doi.org/10.3390/diagnostics15192438 - 25 Sep 2025
Viewed by 1316
Abstract
Acute kidney injury (AKI) is a frequent and severe complication in trauma patients, affecting up to 28% of intensive care unit (ICU) admissions and contributing significantly to morbidity, mortality, and long-term renal impairment. Trauma-related AKI (TRAKI) arises from diverse mechanisms, including hemorrhagic shock, [...] Read more.
Acute kidney injury (AKI) is a frequent and severe complication in trauma patients, affecting up to 28% of intensive care unit (ICU) admissions and contributing significantly to morbidity, mortality, and long-term renal impairment. Trauma-related AKI (TRAKI) arises from diverse mechanisms, including hemorrhagic shock, ischemia–reperfusion injury, systemic inflammation, rhabdomyolysis, nephrotoxicity, and complex organ crosstalk involving the brain, lungs, and abdomen. Pathophysiologically, TRAKI involves early disruption of the glomerular filtration barrier, tubular epithelial injury, and renal microvascular dysfunction. Inflammatory cascades, oxidative stress, immune thrombosis, and maladaptive repair mechanisms mediate these injuries. Trauma-related rhabdomyolysis and exposure to contrast agents or nephrotoxic drugs further exacerbate renal stress, particularly in patients with pre-existing comorbidities. Traditional markers such as serum creatinine (sCr) are late indicators of kidney damage and lack specificity. Emerging structural and stress response biomarkers—such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), liver-type fatty acid-binding protein (L-FABP), interleukin-18 (IL-18), C-C motif chemokine ligand 14 (CCL14), Dickkopf-3 (DKK3), and the U.S. Food and Drug Administration (FDA)-approved tissue inhibitor of metalloproteinases-2 × insulin-like growth factor-binding protein 7 (TIMP-2 × IGFBP-7)—allow earlier detection of subclinical AKI and better predict progression and the need for renal replacement therapy. Together, functional indices like urinary sodium and fractional potassium excretion reflect early microcirculatory stress and add clinical value. In parallel, risk stratification tools, including the Renal Angina Index (RAI), the McMahon score, and the Haines model, enable the early identification of high-risk patients and help tailor nephroprotective strategies. Together, these biomarkers and risk models shift from passive AKI recognition to proactive, personalized management. A new paradigm that integrates biomarker-guided diagnostics and dynamic clinical scoring into trauma care promises to reduce AKI burden and improve renal outcomes in this critically ill population. Full article
(This article belongs to the Special Issue Advances in Nephrology)
Show Figures

Graphical abstract

Back to TopTop