Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = erinacine A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2312 KB  
Review
Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review
by Damian Duda, Klaudia Jaszcza and Emilia Bernaś
Molecules 2025, 30(15), 3241; https://doi.org/10.3390/molecules30153241 - 1 Aug 2025
Viewed by 656
Abstract
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina [...] Read more.
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina velutipes, and Inonotus obliquus. These species contain many bioactive compounds, including β-glucans, endo- and exogenous amino acids, polyphenols, terpenoids, sterols, B vitamins, minerals, and lovastatin. The level of some biologically active substances is species-specific, e.g., hericenones and erinacines, which have neuroprotective properties, and supporting the production of nerve growth factor in the brain for Hericium erinaceus. Due to their high health-promoting potential, mushrooms and substances isolated from them have found applications in livestock nutrition, improving their welfare and productivity. This phenomenon may be of particular importance in the nutrition of laying hens and broiler chickens, where an increase in pathogen resistance to antibiotics has been observed in recent years. Gallus gallus domesticus is a key farm animal for meat and egg production, so the search for new compounds to support bird health is important for food safety. Studies conducted to date indicate that feed supplementation with mushrooms has a beneficial effect on, among other things, bird weight gain; bone mineralisation; and meat and egg quality, including the lipid profile and protein content and shell thickness, and promotes the development of beneficial microbiota, thereby increasing immunity. Full article
Show Figures

Figure 1

22 pages, 3278 KB  
Article
Polysorbate 80 Differentially Impacts Erinacine Production Profiles in Submerged Cultures of Hericium
by Abigail Veronica Smith, Honghui Zhu, Lili Mats and Gale Bozzo
Molecules 2025, 30(13), 2823; https://doi.org/10.3390/molecules30132823 - 30 Jun 2025
Viewed by 608
Abstract
The mycelia of Hericium erinaceus contain neuroprotective cyathane diterpenoids (e.g., erinacine A). There is evidence that cultivation of submerged mycelia with surfactants increases glucose uptake and biomass, but the impact on erinacine production is unknown. Here, we tested the impact of glucose and [...] Read more.
The mycelia of Hericium erinaceus contain neuroprotective cyathane diterpenoids (e.g., erinacine A). There is evidence that cultivation of submerged mycelia with surfactants increases glucose uptake and biomass, but the impact on erinacine production is unknown. Here, we tested the impact of glucose and polysorbate 80 on the mycelial erinacine profiles of five Hericium strains cultivated under submergence, including those of Hericium erinaceus, Hericium americanum, and Hericium coralloides. Metabolite profiling confirmed that mycelial extracts contained 13% to 91% of the erinacines A, C and P in additive-free cultures of all strains, with the remainder secreted to the culture medium. Overall, erinacine P production was several orders of magnitude greater than that of the other erinacines, except for H. erinaceus (DAOMC 251029), where erinacine C was most evident. H. coralloides (DAOMC 251017) produced the greatest concentrations of erinacines A and P. For the most part mycelial erinacine concentrations were reduced in cultures co-supplemented with glucose and polysorbate 80. This treatment caused an 83–100% reduction in the concentrations of erinacines A, C, and P in the mycelial extracts of most strains. By contrast, there was evidence that glucose and polysorbate 80 had no effect on erinacine A production within mycelia of H. americanum, and erinacine P concentrations in H. erinaceus (DAOMC 251029) and H. americanum (DAOMC 251011). In most strains, the secretion of erinacines to the culture medium declined with glucose and polysorbate 80. Conversely, these additives increased the concentrations of erinacines C and P in the culture medium filtrate of H. americanum (DAOMC 21467) and yielded more secreted erinacine P in H. erinaceus (DAOMC 251029). The information provides feasible strategies to produce mycelia with unique erinacine profiles including those rich in erinacine P. Full article
Show Figures

Figure 1

14 pages, 2177 KB  
Article
Yamabushitake Mushroom (Hericium erinaceus (Bull.) Pers. 1797) Mycelium Improves Reproductive System Dysfunction in Male Rats Induced by Polystyrene Microplastics
by Yi-Yuh Hwang, Sabri Sudirman, En-Yu Wei, Ruei-Feng Shiu, Zwe-Ling Kong and Deng-Fwu Hwang
Int. J. Mol. Sci. 2025, 26(12), 5735; https://doi.org/10.3390/ijms26125735 - 15 Jun 2025
Viewed by 991
Abstract
The use of plastic products has increased, leading to higher levels of plastic pollution, and it is becoming a major public health concern. Health risks—especially those related to reproductive system dysfunction caused by polystyrene microplastics (PS-MPs)—are emerging issues that require urgent attention. This [...] Read more.
The use of plastic products has increased, leading to higher levels of plastic pollution, and it is becoming a major public health concern. Health risks—especially those related to reproductive system dysfunction caused by polystyrene microplastics (PS-MPs)—are emerging issues that require urgent attention. This study aimed to investigate the effects of erinacine A-enriched Hericium erinaceus mycelium (HE) on high-fat-diet- and PS-MP-induced reproductive system dysfunction in male rats. Reproductive dysfunction was induced by administering a high-fat diet followed by exposure to PS-MPs for six weeks. The results showed that HE treatment significantly reduced nitric oxide levels and enhanced glutathione peroxidase activity. Furthermore, HE supplementation significantly downregulated pro-inflammatory cytokines such as interleukin (IL)-6 and IL-1β. Additionally, HE treatment significantly increased Kiss1 concentration, upregulated follicle-stimulating hormone and testosterone levels, reduced the area of the seminiferous tubule lumen, and prevented a reduction in epithelial thickness. HE treatment also significantly increased sperm count and reduced sperm abnormalities. Based on these findings, HE supplementation helps prevent reproductive system dysfunction by reducing oxidative stress and pro-inflammatory cytokines. Therefore, erinacine A-enriched H. erinaceus mycelium could be considered a potential food supplement or functional food ingredient for the treatment of reproductive or testicular dysfunction. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

23 pages, 4959 KB  
Article
Characterization of Key Metabolic Markers in Hongqujiu Across Different Aging Years Using Metabolomics
by Yiyang Cai, Sunan Yan, Simei Huang, Bin Yang, Wenlan Mo, Lishi Xiao, Xiangyou Li and Zhiwei Huang
J. Fungi 2025, 11(5), 353; https://doi.org/10.3390/jof11050353 - 2 May 2025
Viewed by 623
Abstract
Hongqujiu, one of the three principal varieties of yellow wine, is a traditional fermented beverage originating from China that employs Hongqu as the fermentation agent. In this study, an untargeted metabolomics approach based on gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) [...] Read more.
Hongqujiu, one of the three principal varieties of yellow wine, is a traditional fermented beverage originating from China that employs Hongqu as the fermentation agent. In this study, an untargeted metabolomics approach based on gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) was applied to systematically analyze the volatile compounds (VOCs) and non-volatile compounds (NVCs) in Hongqujiu across different aging years for the first time. The analysis identified a total of 262 VOCs and 2564 NVCs in samples of Hongqujiu aged for six distinct years. Based on metabolic differences, the samples were categorized into two groups: the low-year group (5-year, 6-year) and the high-year group (8-year, 10-year, 15-year, 20-year). Nineteen VOCs (e.g., 4-amino-butyric acid and diethanolamine) and thirty NVCs (e.g., palmitoylethanolamide and erinacine D) were identified as key differential metabolites distinguishing the low-year group from the high-year group. The higher-year group is enriched with a variety of substances with different flavors or biological activities, such as sugar derivatives, amino acids and their complexes, organic acids and their intermediate metabolites, steroids and terpenoid compounds, lipids and their derivatives, nitrogen-containing heterocycles, and aromatic compounds. The accumulation of these substances not only shapes the unique and rich flavor characteristics of aged red rice wine (such as the caramel aroma and umami peptide flavor), but also endows red rice wine with potential health benefits due to the physiological regulatory functions of some active ingredients. This study contributes to a deeper understanding of the composition and dynamic variations in metabolites in Hongqujiu, offering a scientific foundation for identifying aged Hongqujiu and conducting further research to enhance its quality. Full article
(This article belongs to the Special Issue Monascus spp. and Their Relative Products)
Show Figures

Figure 1

28 pages, 2038 KB  
Review
Lion’s Mane Mushroom (Hericium erinaceus): A Neuroprotective Fungus with Antioxidant, Anti-Inflammatory, and Antimicrobial Potential—A Narrative Review
by Alex Graça Contato and Carlos Adam Conte-Junior
Nutrients 2025, 17(8), 1307; https://doi.org/10.3390/nu17081307 - 9 Apr 2025
Cited by 3 | Viewed by 25339
Abstract
Hericium erinaceus, commonly known as lion’s mane mushroom, has gained increasing scientific interest due to its rich composition of bioactive compounds and diverse health-promoting properties. This narrative review provides a comprehensive overview of the nutritional and therapeutic potential of H. erinaceus, [...] Read more.
Hericium erinaceus, commonly known as lion’s mane mushroom, has gained increasing scientific interest due to its rich composition of bioactive compounds and diverse health-promoting properties. This narrative review provides a comprehensive overview of the nutritional and therapeutic potential of H. erinaceus, with a particular focus on its anti-inflammatory, antioxidant, and antimicrobial activities. A structured literature search was performed using databases such as PubMed, Scopus, Science Direct, Web of Science, Science Direct, and Google Scholar. Studies published in the last two decades focusing on H. erinaceus’ bioactive compounds were included. The chemical composition of H. erinaceus includes polysaccharides, terpenoids (hericenones and erinacines), and phenolic compounds, which exhibit potent antioxidant effects by scavenging reactive oxygen species (ROS) and inducing endogenous antioxidant enzymes. Additionally, H. erinaceus shows promising antimicrobial activity against bacterial and fungal pathogens, with potential applications in combating antibiotic-resistant infections. The mushroom’s capacity to stimulate nerve growth factor (NGF) synthesis has highlighted its potential in preventing and managing neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. Advances in biotechnological methods, including optimized cultivation techniques and novel extraction methods, may further enhance the bioavailability and pharmacological effects of H. erinaceus. Despite promising findings, clinical validation remains limited. Future research should prioritize large-scale clinical trials, the standardization of extraction methods, and the elucidation of pharmacokinetics to facilitate its integration into evidence-based medicine. The potential of H. erinaceus as a functional food, nutraceutical, and adjunct therapeutic agent highlights the need for interdisciplinary collaboration between researchers, clinicians, and regulatory bodies. Full article
Show Figures

Figure 1

16 pages, 3047 KB  
Article
Two-Dimensional Chromatographic Isolation of High Purity Erinacine A from Hericium erinaceus
by Katerina Naumoska, Andrej Gregori and Alen Albreht
J. Fungi 2025, 11(2), 150; https://doi.org/10.3390/jof11020150 - 15 Feb 2025
Cited by 2 | Viewed by 1926
Abstract
A simple and robust two-dimensional chromatographic fractionation protocol for the isolation of the neuroprotective compound erinacine A from Hericium erinaceus is proposed. This production platform yielded 19.4 mg of erinacine A from approximately 130 g of mushroom material, with a chromatographic purity of [...] Read more.
A simple and robust two-dimensional chromatographic fractionation protocol for the isolation of the neuroprotective compound erinacine A from Hericium erinaceus is proposed. This production platform yielded 19.4 mg of erinacine A from approximately 130 g of mushroom material, with a chromatographic purity of 97.4%. The procedure includes extraction, concentration, fractionation, purification, and characterisation of the bioactive compound. The crude H. erinaceus extract was fractionated in the first dimension by normal-phase flash chromatography, and the fraction containing erinacine A was further purified in the second dimension by semi-preparative reversed-phase chromatography. This strategy utilises the orthogonality of the two chromatographic modes to effectively eliminate difficult impurities, including structural isomers and analogues of erinacine A. Complementary analytical approaches such as high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography with ultraviolet and tandem mass spectrometric detection (HPLC–UV–MS/MS) were employed to unambiguously confirm erinacine A in the isolated fractions, while HPLC with a charged aerosol detector (CAD) was used to determine its purity. Given the limited commercial availability and the high price of erinacine A, the described method offers a straightforward and cost-effective alternative to obtain this valuable compound for further research and applications. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

17 pages, 5325 KB  
Article
Erinacine A-Enriched Hericium erinaceus Mycelium Ethanol Extract Lessens Cellular Damage in Cell and Drosophila Models of Spinocerebellar Ataxia Type 3 by Improvement of Nrf2 Activation
by Yu-Ling Wu, Hai-Lun Sun, Jui-Chih Chang, Wei-Yong Lin, Pei-Yin Chen, Chin-Chu Chen, Li-Ya Lee, Chien-Chun Li, Mingli Hsieh, Haw-Wen Chen, Ya-Chen Yang, Chin-San Liu and Kai-Li Liu
Antioxidants 2024, 13(12), 1495; https://doi.org/10.3390/antiox13121495 - 7 Dec 2024
Cited by 6 | Viewed by 3426
Abstract
Spinocerebellar ataxia type 3 (SCA3), caused by the abnormal expansion of polyglutamine (polyQ) in the ataxin-3 protein, is one of the inherited polyQ neurodegenerative diseases that share similar genetic and molecular features. Mutant polyQ-expanded ataxin-3 protein is prone to aggregation in affected neurons [...] Read more.
Spinocerebellar ataxia type 3 (SCA3), caused by the abnormal expansion of polyglutamine (polyQ) in the ataxin-3 protein, is one of the inherited polyQ neurodegenerative diseases that share similar genetic and molecular features. Mutant polyQ-expanded ataxin-3 protein is prone to aggregation in affected neurons and is predominantly degraded by autophagy, which is beneficial for neurodegenerative disease treatment. Not only does mutant polyQ-expanded ataxin-3 increase susceptibility to oxidative cytotoxicity, but it also hampers antioxidant potency in neuronal cells. Nuclear factor erythroid-derived 2-like 2 (Nrf2), a master transcription factor that controls antioxidant and detoxification gene expression, plays a crucial role in neuroprotection in SCA3 and other neurodegenerative diseases. The present data showed that treatment with erinacine A-enriched Hericium erinaceus mycelium ethanol extract (HEME) extended longevity and improved locomotor activity in ELAV-SCA3tr-Q78 transgenic Drosophila. Moreover, HEME treatment enhanced antioxidant potency and autophagy, which, in turn, corrected levels of mutant polyQ-expanded ataxin-3 and restrained protein aggregation in both cell and Drosophila models of SCA3. Markedly, HEME increased the activation of Nrf2. Silencing Nrf2 protein expression negated most of the promising effects of HEME on SK-N-SH-MJD78 cells, highlighting the critical role of increased Nrf2 activation in the efficacy of HEME treatment. These findings suggest that HEME has therapeutic potential in SCA3 by enhancing autophagic and Nrf2-mediated antioxidant pathways, which may also influence neurodegenerative progression in other polyQ diseases. Full article
Show Figures

Graphical abstract

23 pages, 2547 KB  
Review
Unveiling the Chemical Composition and Biofunctionality of Hericium spp. Fungi: A Comprehensive Overview
by Elizabeth Kostanda, Sanaa Musa and Idan Pereman
Int. J. Mol. Sci. 2024, 25(11), 5949; https://doi.org/10.3390/ijms25115949 - 29 May 2024
Cited by 7 | Viewed by 4108
Abstract
In recent years, research on mushrooms belonging to the Hericium genus has attracted considerable attention due to their unique appearance and well-known medicinal properties. These mushrooms are abundant in bioactive chemicals like polysaccharides, hericenones, erinacines, hericerins, resorcinols, steroids, mono- and diterpenes, and corallocins, [...] Read more.
In recent years, research on mushrooms belonging to the Hericium genus has attracted considerable attention due to their unique appearance and well-known medicinal properties. These mushrooms are abundant in bioactive chemicals like polysaccharides, hericenones, erinacines, hericerins, resorcinols, steroids, mono- and diterpenes, and corallocins, alongside essential nutrients. These compounds demonstrate beneficial bioactivities which are related to various physiological systems of the body, including the digestive, immune, and nervous systems. Extensive research has been conducted on the isolation and identification of numerous bioactive chemicals, and both in vitro and in vivo studies have confirmed their antimicrobial, antioxidant, immunomodulatory, antidiabetic, anticholesterolemic, anticancer, and neuroprotective properties. Therefore, this review aims to provide a comprehensive summary of the latest scientific literature on the chemical composition and secondary metabolites profile of Hericium spp. through an introduction to their chemical characteristics, speculated biosynthesis pathways for key chemical families, potential toxicological aspects, and a detailed description of the recent updates regarding the bioactivity of these metabolites. Full article
(This article belongs to the Special Issue Investigation of Natural Products as Sources of Bioactive Molecules)
Show Figures

Graphical abstract

11 pages, 1314 KB  
Article
Isolation and Evaluation of Erinacine A Contents in Mycelia of Hericium erinaceus Strains
by Mengchen Liu, Liangliang Liu, Xiaoya Song, Yingjun Zhou, Yuande Peng, Chunliang Xie and Wenbing Gong
Foods 2024, 13(11), 1649; https://doi.org/10.3390/foods13111649 - 24 May 2024
Cited by 4 | Viewed by 7325
Abstract
Hericium erinaceus has long been favored for its remarkable nutritional and health-promoting benefits, and erinacine A is the key component responsible for the neuroprotective properties of H. erinaceus. Establishing an efficient method for separating erinacine A from H. erinaceus and screening the [...] Read more.
Hericium erinaceus has long been favored for its remarkable nutritional and health-promoting benefits, and erinacine A is the key component responsible for the neuroprotective properties of H. erinaceus. Establishing an efficient method for separating erinacine A from H. erinaceus and screening the erinacine A-enriched strains is crucial to maximizing its benefits. Herein, we first reported that high-speed counter current chromatography (HSCCC) is an effective method for separating high-purity erinacine A. Using a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/water (4.5:5:4.5:5, v/v/v/v), erinacine A with a purity of over 95% was separated. Then, we evaluated the content and yield of erinacine A in the liquid-fermented mycelia of Hericium germplasms. Both the content and yield of erinacine A varied greatly among the surveyed strains. The significant effect of the strain on the erinacine A content and yield was revealed by an analysis of variance. The highest erinacine A content and yield were observed in the mycelia of a wild strain HeG, reaching 42.16 mg/g and 358.78 mg/L, which is superior to the current highest outcomes achieved using submerged cultivation. The isolation method established and the strains screened in this study can be beneficial for the scaling up of erinacine A extraction and nutraceutical development to industrial levels. Full article
Show Figures

Graphical abstract

21 pages, 10339 KB  
Article
The Cerebral Protective Effect of Novel Erinacines from Hericium erinaceus Mycelium on In Vivo Mild Traumatic Brain Injury Animal Model and Primary Mixed Glial Cells via Nrf2-Dependent Pathways
by Kam-Fai Lee, Yung-Yu Hsieh, Shui-Yi Tung, Chih-Chuan Teng, Kung-Chuan Cheng, Meng-Chiao Hsieh, Cheng-Yi Huang, Ko-Chao Lee, Li-Ya Lee, Wan-Ping Chen, Chin-Chu Chen and Hsing-Chun Kuo
Antioxidants 2024, 13(3), 371; https://doi.org/10.3390/antiox13030371 - 19 Mar 2024
Cited by 10 | Viewed by 6756
Abstract
Hericium erinaceus, a consumable mushroom, has shown a potential to enhance the production of neuroprotective bioactive metabolites. Traumatic brain injury (TBI) often leads to cognitive, physical, and psychosocial impairments, resulting in neuroinflammation and the loss of cortical neurons. In this research, the [...] Read more.
Hericium erinaceus, a consumable mushroom, has shown a potential to enhance the production of neuroprotective bioactive metabolites. Traumatic brain injury (TBI) often leads to cognitive, physical, and psychosocial impairments, resulting in neuroinflammation and the loss of cortical neurons. In this research, the effects of H. erinaceus mycelium, its derivative erinacine C, along with the underlying mechanisms, were examined in terms of oxidative stress modulation and neurological improvement in a rat model of mild traumatic brain injury (mTBI). Male Sprague-Dawley rats were administered diets containing H. erinaceus mycelium and erinacine C following experimental brain injury; these supplements were continued throughout the recovery phase. The binding activity of NF-E2-related factor 2 (Nrf2) near antioxidant genes in mixed glial cells was measured by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR). The motor beam walking test revealed that dietary supplementation of H. erinaceus mycelium resulted in modest improvements in spatial memory while inhibiting neuron cell death and microglial activation according to brain histological examination. These findings were further corroborated by the upregulation of several antioxidant enzymes (catalase, glutathione reductase, thioredoxin reductase, and superoxide dismutase) and phospho-CAMP-response element-binding (p-CREB) levels in the mTBI model treated with H. erinaceus mycelium. Erinacine C treatment led to significantly reduced brain inflammation and normalization of mTBI-induced deficits through the modulation of the Nrf2 activation pathway and upregulated expression of numerous Nrf2-binding antioxidant genes such as catalase, thioredoxin reductase, superoxide dismutase, and brain-derived neurotrophic factor. This study demonstrates the potential of H. erinaceus mycelium and erinacine C in facilitating recovery following mTBI, including the prevention of neuronal injury and inactivation of microglia through the Nrf2-mediated antioxidant pathway in vivo. Full article
(This article belongs to the Special Issue The Role of Antioxidant Foods and Nutraceuticals in Ageing)
Show Figures

Figure 1

11 pages, 2380 KB  
Communication
Discovery of a New Compound, Erinacerin W, from the Mycelia of Hericium erinaceus, with Immunomodulatory and Neuroprotective Effects
by Jing-Yi Lin, Yen-Po Chen, Ting-Wei Lin, Tsung-Ju Li, Yu-Wen Chen, I-Chen Li and Chin-Chu Chen
Molecules 2024, 29(4), 812; https://doi.org/10.3390/molecules29040812 - 9 Feb 2024
Cited by 4 | Viewed by 2742
Abstract
One new compound with an isoindolinone skeleton, along with erinacines A, C, and S, was isolated from the mycelia of Hericium erinaceus, an edible fungus with a long history of use in traditional Chinese medicine. Based on analysis of MS and NMR [...] Read more.
One new compound with an isoindolinone skeleton, along with erinacines A, C, and S, was isolated from the mycelia of Hericium erinaceus, an edible fungus with a long history of use in traditional Chinese medicine. Based on analysis of MS and NMR spectral data, the structure of the compound was identified as (2E,6E)-8-(2-(1-carboxy-3-methylbutyl)-4,6-dihydroxy-1-oxoisoindolin-5-yl)-2,6-dimethylocta-2,6-dienoic acid. In light of this discovery, we have given this compound the name erinacerin W. Using a co-culture in vitro LPS-activated BV2 microglia-induced SH-SY5Y neuroinflammation model, the results showed that erinacerin W demonstrated protection against the LPS-activated BV-2 cell-induced overexpression of IL-6, IL-1β, and TNF-α on SH-SY5Y cells. This finding may provide potential therapeutic approaches for central nervous disorders. Full article
(This article belongs to the Special Issue Functional Evaluation of Bioactive Compounds from Natural Sources)
Show Figures

Graphical abstract

29 pages, 2677 KB  
Review
Neurotrophic and Neuroprotective Effects of Hericium erinaceus
by Izabela Szućko-Kociuba, Alicja Trzeciak-Ryczek, Patrycja Kupnicka and Dariusz Chlubek
Int. J. Mol. Sci. 2023, 24(21), 15960; https://doi.org/10.3390/ijms242115960 - 3 Nov 2023
Cited by 45 | Viewed by 32539
Abstract
Hericium erinaceus is a valuable mushroom known for its strong bioactive properties. It shows promising potential as an excellent neuroprotective agent, capable of stimulating nerve growth factor release, regulating inflammatory processes, reducing oxidative stress, and safeguarding nerve cells from apoptosis. The active compounds [...] Read more.
Hericium erinaceus is a valuable mushroom known for its strong bioactive properties. It shows promising potential as an excellent neuroprotective agent, capable of stimulating nerve growth factor release, regulating inflammatory processes, reducing oxidative stress, and safeguarding nerve cells from apoptosis. The active compounds in the mushroom, such as erinacines and hericenones, have been the subject of research, providing evidence of their neuroprotective effects. Further research and standardization processes for dietary supplements focused on H. erinaceus are essential to ensuring effectiveness and safety in protecting the nervous system. Advancements in isolation and characterization techniques, along with improved access to pure analytical standards, will play a critical role in achieving standardized, high-quality dietary supplements based on H. erinaceus. The aim of this study is to analyze the protective and nourishing effects of H. erinaceus on the nervous system and present the most up-to-date research findings related to this topic. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 9897 KB  
Article
Comparative Genomic Analysis and Metabolic Potential Profiling of a Novel Culinary-Medicinal Mushroom, Hericium rajendrae (Basidiomycota)
by Jing Wei, Min Cheng, Jian-fang Zhu, Yilin Zhang, Kun Cui, Xuejun Wang and Jianzhao Qi
J. Fungi 2023, 9(10), 1018; https://doi.org/10.3390/jof9101018 - 15 Oct 2023
Cited by 18 | Viewed by 3731
Abstract
Hericium rajendrae is an emerging species in the genus Hericium with few members. Despite being highly regarded due to its rarity, knowledge about H. rajendrae remains limited. In this study, we sequenced, de novo assembled, and annotated the complete genome of H. rajendrae [...] Read more.
Hericium rajendrae is an emerging species in the genus Hericium with few members. Despite being highly regarded due to its rarity, knowledge about H. rajendrae remains limited. In this study, we sequenced, de novo assembled, and annotated the complete genome of H. rajendrae NPCB A08, isolated from the Qinling Mountains in Shaanxi, China, using the Illumina NovaSeq and Nanopore PromethION technologies. Comparative genomic analysis revealed similarities and differences among the genomes of H. rajendrae, H. erinaceus, and H. coralloides. Phylogenomic analysis revealed the divergence time of the Hericium genus, while transposon analysis revealed evolutionary characteristics of the genus. Gene family variation reflected the expansion and contraction of orthologous genes among Hericium species. Based on genomic bioinformation, we identified the candidate genes associated with the mating system, carbohydrate-active enzymes, and secondary metabolite biosynthesis. Furthermore, metabolite profiling and comparative gene clusters analysis provided strong evidence for the biosynthetic pathway of erinacines in H. rajendrae. This work provides the genome of H. rajendrae for the first time, and enriches the genomic content of the genus Hericium. These findings also facilitate the application of H. rajendrae in complementary drug research and functional food manufacturing, advancing the field of pharmaceutical and functional food production involving H. rajendrae. Full article
Show Figures

Figure 1

18 pages, 3253 KB  
Article
Unprecedented Neoverrucosane and Cyathane Diterpenoids with Anti-Neuroinflammatory Activity from Cultures of the Culinary-Medicinal Mushroom Hericium erinaceus
by Jing Wei, Jia-yao Li, Xi-long Feng, Yilin Zhang, Xuansheng Hu, Heping Hui, Xiaodong Xue and Jianzhao Qi
Molecules 2023, 28(17), 6380; https://doi.org/10.3390/molecules28176380 - 31 Aug 2023
Cited by 17 | Viewed by 3377
Abstract
The culinary medicinal mushroom Hericium erinaceus holds significant global esteem and has garnered heightened interest within increasingly ageing societies due to its pronounced neuroprotective and anti-neuroinflammatory properties. Within this study, two novel diterpenes, 16-carboxy-13-epi-neoverrucosane (1) and Erinacine L ( [...] Read more.
The culinary medicinal mushroom Hericium erinaceus holds significant global esteem and has garnered heightened interest within increasingly ageing societies due to its pronounced neuroprotective and anti-neuroinflammatory properties. Within this study, two novel diterpenes, 16-carboxy-13-epi-neoverrucosane (1) and Erinacine L (2); three known xylosyl cyathane diterpenoids, Erinacine A (3), Erinacine C (4), and Erinacine F (5); and four lanostane-type triterpenoids, and three cyclic dipeptides (1012), in addition to orcinol (13), were isolated from the rice-based cultivation medium of H. erinaceus. Their structures were determined by NMR, HR-ESI-MS, ECD, and calculated NMR. Compound 1 marks a pioneering discovery as the first verrucosane diterpene originating from basidiomycetes, amplifying the scope of fungal natural product chemistry, and the intricate stereochemistry of Compound 5 has been comprehensively assessed for the first time. Compounds 25 not only showed encouraging neurotrophic activity in rat adrenal pheochromocytoma PC-12 cells, but also significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglia cell cultures with IC50 values as low as 5.82 ± 0.18 μM. To elucidate the mechanistic underpinnings of these bioactivities, molecular docking simulation was used to analyze and support the interaction of 1 and 2 with inducible NO synthase (iNOS), respectively. In particular, compound 2, a cyathane-xyloside containing an unconventional hemiacetal moiety, is a compelling candidate for the prevention of neurodegenerative diseases. In summation, this investigation contributes substantively to the panorama of fungal diterpene structural diversity, concurrently furnishing additional empirical substantiation for the role of cyathane diterpenes in the amelioration of neurodegenerative afflictions. Full article
(This article belongs to the Special Issue Structural Analysis and Biological Evaluation of Compounds from Fungi)
Show Figures

Figure 1

18 pages, 2947 KB  
Review
Unveiling the Therapeutic Potentials of Mushroom Bioactive Compounds in Alzheimer’s Disease
by Na Li, Hongbo Li, Zhenbin Liu, Gao Feng, Chunyang Shi and Yue Wu
Foods 2023, 12(15), 2972; https://doi.org/10.3390/foods12152972 - 7 Aug 2023
Cited by 15 | Viewed by 8785
Abstract
Alzheimer’s disease (AD) stands as a prevailing neurodegenerative condition (NDs), leading to the gradual deterioration of brain cells and subsequent declines in memory, thinking, behavior, and emotion. Despite the intensive research efforts and advances, an effective curative treatment for the disease has not [...] Read more.
Alzheimer’s disease (AD) stands as a prevailing neurodegenerative condition (NDs), leading to the gradual deterioration of brain cells and subsequent declines in memory, thinking, behavior, and emotion. Despite the intensive research efforts and advances, an effective curative treatment for the disease has not yet been found. Mushrooms, esteemed globally for their exquisite flavors and abundant nutritional benefits, also hold a wealth of health-promoting compounds that contribute to improving AD health. These compounds encompass polysaccharides, proteins, lipids, terpenoids, phenols, and various other bioactive substances. Particularly noteworthy are the potent neuroprotective small molecules found in mushrooms, such as ergothioneine, erinacine, flavonoids, alkaloids, ergosterol, and melanin, which warrant dedicated scrutiny for their therapeutic potential in combating AD. This review summarizes such positive effects of mushroom bioactive compounds on AD, with a hope to contribute to the development of functional foods as an early dietary intervention for this neurodegenerative disease. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

Back to TopTop