Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = faster-than-Nyquist

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2901 KB  
Article
A Transformer-Based Approach for Joint Interference Cancellation and Signal Detection in FTN-RIS MIMO Systems
by Seong-Gyun Choi, Seung-Hwan Seo, Ji-Hee Yu, Yoon-Ju Choi, Ki-Chang Tong, Min-Hyeok Choi, Yeong-Gyun Jung, Myung-Sun Baek and Hyoung-Kyu Song
Mathematics 2025, 13(17), 2699; https://doi.org/10.3390/math13172699 - 22 Aug 2025
Viewed by 247
Abstract
Next-generation communication systems demand extreme spectral efficiency to handle ever-increasing data traffic. The combination of faster-than-Nyquist (FTN) signaling and reconfigurable intelligent surfaces (RISs) presents a promising solution to meet this demand. However, the aggressive time compression inherent to FTN signaling introduces severe and [...] Read more.
Next-generation communication systems demand extreme spectral efficiency to handle ever-increasing data traffic. The combination of faster-than-Nyquist (FTN) signaling and reconfigurable intelligent surfaces (RISs) presents a promising solution to meet this demand. However, the aggressive time compression inherent to FTN signaling introduces severe and highly non-linear inter-symbol interference (ISI). This complex distortion is challenging for conventional linear equalizers and even for recurrent neural network (RNN)-based detectors, which can struggle to model long-range dependencies within the signal sequence. To overcome this limitation, this paper proposes a novel signal detection framework based on the transformer model. By leveraging its core multi-head self-attention mechanism, the transformer globally analyzes the entire received signal sequence at once. This enables it to effectively model and reverse complex ISI patterns by identifying the most significant interfering symbols, regardless of their position, leading to superior signal recovery. The simulation results validate the outstanding performance of the proposed approach. To achieve a target bit error rate (BER) of 104, the transformer-based detector shows a significant signal-to-noise ratio (SNR) gain of approximately 1.5 dB over a Bi-LSTM detector over 4 dB compared to the conventional FTN-RIS system, while maintaining a high spectral efficiency of nearly 2 bps/s/Hz. Full article
Show Figures

Figure 1

14 pages, 4281 KB  
Article
Joint Rx IQ Imbalance Compensation and Timing Recovery for Faster-than-Nyquist WDM Systems
by Jialin You
Photonics 2025, 12(8), 825; https://doi.org/10.3390/photonics12080825 - 19 Aug 2025
Viewed by 217
Abstract
Faster-than-Nyquist (FTN) tight filtering introduces serious inter-symbol interference (ISI) impairment, leading to an insufficient compensation range for conventional IQ imbalance compensation algorithms. Furthermore, receiver (Rx) IQ imbalance and ISI impairments significantly increase the convergence cost required by the squared Gardner phase detector (SGPD) [...] Read more.
Faster-than-Nyquist (FTN) tight filtering introduces serious inter-symbol interference (ISI) impairment, leading to an insufficient compensation range for conventional IQ imbalance compensation algorithms. Furthermore, receiver (Rx) IQ imbalance and ISI impairments significantly increase the convergence cost required by the squared Gardner phase detector (SGPD) timing recovery algorithm to establish a timing synchronization loop. This paper proposes a joint Rx IQ compensation and timing recovery scheme. By embedding a two-stage IQ imbalance compensation algorithm into the timing recovery feedback loop, the proposed scheme could effectively estimate and compensate for Rx IQ imbalance. Meanwhile, thanks to the innovative scheme, which equalizes Rx IQ imbalance and ISI during the timing feedback loop, the convergence cost of timing recovery could be reduced compared with the conventional blind frequency domain (BFD) scheme. The simulation results of 128 GBaud polarization multiplexing (PM) 16-quadrature amplitude modulation (QAM) FTN wavelength division multiplexing (WDM) transmission systems demonstrate that the proposed scheme could bring about 14%, 12.5%, and 16.6% improvements in the compensation range for Rx IQ amplitude imbalance, phase imbalance, and skew, respectively, compared with the conventional one. Meanwhile, the convergence cost is reduced by at least 31% with a 0.9 acceleration factor. In addition, 40 GBaud PM-16QAM FTN experiment results show that the proposed scheme could bring about a 0.8 dB improvement in the optical signal noise ratio (OSNR) compared with the conventional BFD scheme. Full article
(This article belongs to the Special Issue Optical Communication Networks: Challenges and Opportunities)
Show Figures

Figure 1

20 pages, 3586 KB  
Article
Enhanced NiFe2O4 Catalyst Performance and Stability in Anion Exchange Membrane Water Electrolysis: Influence of Iron Content and Membrane Selection
by Khaja Wahab Ahmed, Aidan Dobson, Saeed Habibpour and Michael Fowler
Molecules 2025, 30(15), 3228; https://doi.org/10.3390/molecules30153228 - 1 Aug 2025
Viewed by 554
Abstract
Anion exchange membrane (AEM) water electrolysis is a potentially inexpensive and efficient source of hydrogen production as it uses effective low-cost catalysts. The catalytic activity and performance of nickel iron oxide (NiFeOx) catalysts for hydrogen production in AEM water electrolyzers were [...] Read more.
Anion exchange membrane (AEM) water electrolysis is a potentially inexpensive and efficient source of hydrogen production as it uses effective low-cost catalysts. The catalytic activity and performance of nickel iron oxide (NiFeOx) catalysts for hydrogen production in AEM water electrolyzers were investigated. The NiFeOx catalysts were synthesized with various iron content weight percentages, and at the stoichiometric ratio for nickel ferrite (NiFe2O4). The catalytic activity of NiFeOx catalyst was evaluated by linear sweep voltammetry (LSV) and chronoamperometry for the oxygen evolution reaction (OER). NiFe2O4 showed the highest activity for the OER in a three-electrode system, with 320 mA cm−2 at 2 V in 1 M KOH solution. NiFe2O4 displayed strong stability over a 600 h period at 50 mA cm−2 in a three-electrode setup, with a degradation rate of 15 μV/h. In single-cell electrolysis using a X-37 T membrane, at 2.2 V in 1 M KOH, the NiFe2O4 catalyst had the highest activity of 1100 mA cm−2 at 45 °C, which increased with the temperature to 1503 mA cm−2 at 55 °C. The performance of various membranes was examined, and the highest performance of the tested membranes was determined to be that of the Fumatech FAA-3-50 and FAS-50 membranes, implying that membrane performance is strongly correlated with membrane conductivity. The obtained Nyquist plots and equivalent circuit analysis were used to determine cell resistances. It was found that ohmic resistance decreases with an increase in temperature from 45 °C to 55 °C, implying the positive effect of temperature on AEM electrolysis. The FAA-3-50 and FAS-50 membranes were determined to have lower activation and ohmic resistances, indicative of higher conductivity and faster membrane charge transfer. NiFe2O4 in an AEM water electrolyzer displayed strong stability, with a voltage degradation rate of 0.833 mV/h over the 12 h durability test. Full article
(This article belongs to the Special Issue Water Electrolysis)
Show Figures

Figure 1

17 pages, 2347 KB  
Article
Adaptive Damping Log-Domain Message-Passing Algorithm for FTN-OTFS in V2X Communications
by Hui Xu, Chaorong Zhang, Qingying Wu, Benjamin K. Ng and Chan-Tong Lam
Sensors 2025, 25(12), 3692; https://doi.org/10.3390/s25123692 - 12 Jun 2025
Viewed by 517
Abstract
To enable highly reliable and spectrum-efficient vehicle-to-everything (V2X) communications under conditions with severe Doppler effects and rapidly time-varying channels, we propose a novel faster-than-Nyquist orthogonal time frequency space (FTN-OTFS) modulation scheme. In this scheme, FTN signaling is integrated with spectrally efficient frequency division [...] Read more.
To enable highly reliable and spectrum-efficient vehicle-to-everything (V2X) communications under conditions with severe Doppler effects and rapidly time-varying channels, we propose a novel faster-than-Nyquist orthogonal time frequency space (FTN-OTFS) modulation scheme. In this scheme, FTN signaling is integrated with spectrally efficient frequency division multiplexing (SEFDM) within the OTFS framework, enabling a higher symbol-transmission density within a fixed time–frequency resource block and thus enhancing spectral efficiency without increasing the occupied bandwidth. An analytical input–output model is derived in both the delay–Doppler and time–frequency domains. To further enhance numerical stability, an improved detection algorithm called adaptive damping log-domain message-passing (ADL-MP) is developed for the proposed scheme. Simulation results demonstrate that the proposed scheme achieves robust and reliable performance in high-mobility scenarios and that the proposed algorithm consistently outperforms conventional methods in terms of bit error rate (BER) under both the extended vehicular A (EVA) model and the high-speed train (HST) scenario, confirming its effectiveness and superiority for V2X communications. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

20 pages, 7435 KB  
Article
Portable Impedance Analyzer for FET-Based Biosensors with Embedded Analysis of Randles Circuits’ Spectra
by Norman Pfeiffer, Martin Bach, Alice Steiner, Anna-Elisabeth Gerhardt, Joan Bausells, Abdelhamid Errachid and Albert Heuberger
Sensors 2025, 25(11), 3497; https://doi.org/10.3390/s25113497 - 31 May 2025
Viewed by 938
Abstract
The electrochemical impedance spectroscopy (EIS) is a measurement method for characterizing bio-recognition events of a sensor, such as field-effect transistor-based biosensors (BioFETs). Due to the lack of portable impedance spectroscopes, EIS applies mainly in laboratories preventing application-oriented use in the field. This work [...] Read more.
The electrochemical impedance spectroscopy (EIS) is a measurement method for characterizing bio-recognition events of a sensor, such as field-effect transistor-based biosensors (BioFETs). Due to the lack of portable impedance spectroscopes, EIS applies mainly in laboratories preventing application-oriented use in the field. This work presents a portable impedance analyzer (PIA) providing a 4-channel EIS of BioFETs. It performs the analysis of the recorded spectra by determining the charge transfer resistance Rct with a power-saving algorithm. Therefore, a circle is fitted into the Nyquist representation of the Randles circuit, from whose zero crossings Rct can be determined. The introduced algorithm was evaluated on 100 simulated spectra of Randles circuits. To analyze the overall system, an adjustable reference circuit was developed that simulates configurable Randles circuits. Additional measurements with pH-sensitive ion-sensitive field-effect transistors (ISFETs) demonstrate the application of the measurement system with electrochemical sensors. Using simulated spectra, the circular fitting is able to detect Rct with a median accuracy of 1.2% at an average nominal power of 40 mW and 3054 µs computing time. The PIA with the embedded implementation of the circuit fitting achieves a median error for Rct of 4.2% using the introduced Randles circuit simulator (RCS). Measurements with ISFETs show deviations of 6.5 ± 2.8% compared to the complex non-linear least squares (CNLS), but is significantly faster and more efficient. The presented system allows a portable, power-saving performance of EIS. Future optimizations for a specific applications can improve the presented system and enable novel low-power and automated measurements of biosensors outside the laboratory. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

16 pages, 3467 KB  
Article
Decision Feedback Equalization-Based Low-Complexity Interference Cancellation and Signal Detection Technique Based for Non-Orthogonal Signaling
by Myung-Sun Baek and Hyoung-Kyu Song
Mathematics 2024, 12(23), 3853; https://doi.org/10.3390/math12233853 - 7 Dec 2024
Cited by 1 | Viewed by 771
Abstract
FTN signalling is an effective communication method that achieves a high spectral efficiency. However, employing a symbol rate faster than the Nyquist rate disrupts the orthogonality between symbols, leading to unavoidable inter-symbol interference (ISI). To mitigate the effects of ISI, interference cancellation and [...] Read more.
FTN signalling is an effective communication method that achieves a high spectral efficiency. However, employing a symbol rate faster than the Nyquist rate disrupts the orthogonality between symbols, leading to unavoidable inter-symbol interference (ISI). To mitigate the effects of ISI, interference cancellation and signal detection processes are essential for FTN receivers. Conventional ISI reduction techniques often utilize trellis-based algorithms. However, as the number of states increases due to additional interference symbols, the complexity of these algorithms grows exponentially. To address this challenge, this paper explores a matrix computation-based interference cancellation technique tailored for FTN communication systems, aiming to significantly reduce the complexity of the ISI mitigation process. To execute ISI cancellation and signal detection more precisely, the proposed technique includes iterative interference cancellation and a signal detection process. When six interference symbols are considered, the complexity of the proposed technique is reduced by 97% compared with that of the conventional Viterbi algorithm. Furthermore, in the case of τ = 0.85, the performance of the proposed technique is about 1 dB better than that of the Viterbi algorithm at BER = 104. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

14 pages, 4275 KB  
Article
Physical Layer Security Based on Non-Orthogonal Communication Technique with Coded FTN Signaling
by Myung-Sun Baek and Hyoung-Kyu Song
Mathematics 2024, 12(23), 3800; https://doi.org/10.3390/math12233800 - 30 Nov 2024
Cited by 1 | Viewed by 940
Abstract
In recent years, ensuring communication security at the physical layer has become increasingly important due to the transmission of sensitive information over various networks. Traditional approaches to physical layer security often rely on artificial noise generation, which may not offer robust solutions against [...] Read more.
In recent years, ensuring communication security at the physical layer has become increasingly important due to the transmission of sensitive information over various networks. Traditional approaches to physical layer security often rely on artificial noise generation, which may not offer robust solutions against advanced interception techniques. This study addresses these limitations by proposing a novel security technique based on non-orthogonal signaling using Faster-than-Nyquist (FTN) signaling. Unlike conventional FTN methods that utilize fixed symbol intervals, the proposed technique employs variable symbol intervals encoded as secure information, shared only with legitimate receivers. This encoding enables effective interference cancellation and symbol detection at the receiver, while preventing eavesdroppers from deciphering transmitted signals. The performance of the proposed technique was evaluated using the DVB-S2X system, a practical digital video broadcasting standard. Simulation results demonstrated that the proposed method maintains smooth communication with minimal performance degradation compared to traditional methods. Furthermore, eavesdroppers were unable to decode the transmitted signals, confirming the enhanced security. This research presents a new approach to physical layer security that does not depend on generating artificial noise, offering a path to more secure and efficient communication systems. Full article
Show Figures

Figure 1

16 pages, 5588 KB  
Article
Enhanced Carrier Phase Recovery Using Dual Pilot Tones in Faster-than-Nyquist Optical Transmission Systems
by Jialin You, Tao Yang, Yuchen Zhang and Xue Chen
Photonics 2024, 11(11), 1048; https://doi.org/10.3390/photonics11111048 - 7 Nov 2024
Cited by 1 | Viewed by 1196
Abstract
Compared with high spectrum efficiency faster-than-Nyquist (FTN) backbone network, an enhanced carrier phase recovery based on dual pilot tones is more sensitive to capital cost in FTN metropolitan areas as well as inter-datacenter optical networks. The use of distributed feedback (DFB) lasers is [...] Read more.
Compared with high spectrum efficiency faster-than-Nyquist (FTN) backbone network, an enhanced carrier phase recovery based on dual pilot tones is more sensitive to capital cost in FTN metropolitan areas as well as inter-datacenter optical networks. The use of distributed feedback (DFB) lasers is a way to effectively reduce the cost. However, under high symbol rate FTN systems, equalization-enhanced phase noise (EEPN) induced by a DFB laser with large linewidth will significantly deteriorate the system performance. What is worse, in FTN systems, tight filtering introduces inter-symbol interference so severe that the carrier phase estimation (CPE) algorithm of the FTN systems is more sensitive to EEPN, thus it will lead to a more serious cycle slip problem. In this paper, an enhanced carrier phase recovery based on dual pilot tones is proposed to mitigate EEPN and suppress cycle slip, in which the chromatic dispersion (CD)-aware Tx and LO laser phase noise is estimated, respectively. Offline experiments results under 40 Gbaud polarization multiplexing (PM) 16-quadrature amplitude modulation (QAM) FTN wavelength division multiplexing (FTN-WDM) systems at 0.9 acceleration factor, 5 MHz laser linewidth, and 500 km transmission demonstrate that the proposed algorithm could bring about 0.65 dB improvement of the required SNR for the normalized generalized mutual information of 0.9 compared with the training sequence-based cycle slip suppression carrier phase estimation (TS-CSS) algorithm. Full article
Show Figures

Figure 1

16 pages, 3824 KB  
Article
A Hybrid Network Integrating MHSA and 1D CNN–Bi-LSTM for Interference Mitigation in Faster-than-Nyquist MIMO Optical Wireless Communications
by Minghua Cao, Qing Yang, Genxue Zhou, Yue Zhang, Xia Zhang and Huiqin Wang
Photonics 2024, 11(10), 982; https://doi.org/10.3390/photonics11100982 - 19 Oct 2024
Cited by 1 | Viewed by 1707
Abstract
To mitigate inter-symbol interference (ISI) caused by Faster-than-Nyquist (FTN) technology in a multiple input multiple output (MIMO) optical wireless communication (OWC) system, we propose an ISI cancellation algorithm that combines multi-head self-attention (MHSA), a one-dimensional convolutional neural network (1D CNN), and bi-directional long [...] Read more.
To mitigate inter-symbol interference (ISI) caused by Faster-than-Nyquist (FTN) technology in a multiple input multiple output (MIMO) optical wireless communication (OWC) system, we propose an ISI cancellation algorithm that combines multi-head self-attention (MHSA), a one-dimensional convolutional neural network (1D CNN), and bi-directional long short-term memory (Bi-LSTM). This hybrid network extracts data features using 1D CNN and captures sequential information with Bi-LSTM, while incorporating MHSA to comprehensively reduce ISI. We analyze the impact of antenna numbers, acceleration factors, wavelength, and turbulence intensity on the system’s bit error rate (BER) performance. Additionally, we compare the waveform graphs and amplitude–frequency characteristics of FTN signals before and after processing, specifically comparing sampled values of four-pulse-amplitude modulation (4PAM) signals with those obtained after ISI cancellation. The simulation results demonstrate that within the Mazo limit for selecting acceleration factors, our proposal achieves a 7 dB improvement in BER compared to the conventional systems without deep learning (DL)-based ISI cancellation algorithms. Furthermore, compared to systems employing a point-by-point elimination adaptive pre-equalization algorithm, our proposal exhibits comparable BER performance to orthogonal transmission systems while reducing computational complexity by 31.15%. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

23 pages, 1202 KB  
Article
Energy Efficiency for Faster-than-Nyquist Data Transmission Using Processing Algorithms with Decision Feedback
by Wenjing Shang, Ilya Lavrenyuk, Sergey Makarov, Anna Ovsyannikova, Sergey Zavjalov, Dingfeng Yu and Wei Xue
Symmetry 2024, 16(8), 1001; https://doi.org/10.3390/sym16081001 - 6 Aug 2024
Cited by 1 | Viewed by 1263
Abstract
One of the ways to increase the volume of transmitted information is to increase the bit rate above the Nyquist barrier. However, an increase in bit rate in the case of FTN (Faster-Than-Nyquist) signals leads to an increase in energy costs for receiving [...] Read more.
One of the ways to increase the volume of transmitted information is to increase the bit rate above the Nyquist barrier. However, an increase in bit rate in the case of FTN (Faster-Than-Nyquist) signals leads to an increase in energy costs for receiving information on channels with limited bandwidth, for example, in Digital Video Broadcasting satellite systems like DVB-S2/S2X. It is possible to minimize energy losses by using the processing algorithm “maximum likelihood sequence estimation”. However, the computational complexity of this algorithm is extremely high, which limits its use, especially in terrestrial mobile satellite terminals. We propose a new bit-by-bit decision feedback algorithm with maximum likelihood ratio estimation of subsequent symbols in the observation interval. This algorithm provides minimal energy costs comparable to the method “maximum likelihood sequence estimation” at speeds 2–3 times higher than the Nyquist barrier. At the same time, the complexity is two orders of magnitude less. It is shown by simulation for a channel with additive noise that energy losses in relation to the potential bit error rate (BER) are less than 4.5 dB. In the presence of Rayleigh fading, the application of the proposed algorithm makes it possible to provide the processing of FTN signals for double bit rates in urban areas with energy costs equal to 12 dB when using an equalizer. We give numerical estimations of the increase in computational complexity for the proposed processing algorithm. It is shown that an increase in the bit rate by 1.5 times leads to an increase in the computational complexity by more than an order of magnitude. The same conclusion can be reformulated in another form: for the proposed algorithm, each decibel of energy gain is achieved by increasing the number of computational operations by 1.5×105. It is experimentally shown that additional energy losses due to non-ideal phase and timing synchronization are no more than 1 dB when the proposed algorithm is applied in a fading channel. The energy costs in fading channels relative to a stationary channel for twice the Nyquist rate are equal to 13.8 dB when using an equalizer. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

15 pages, 4586 KB  
Article
Improving the Conversion Ratio of QDSCs via the Passivation Effects of NiS
by Edson Leroy Meyer and Mojeed Adedoyin Agoro
Nanomaterials 2024, 14(11), 905; https://doi.org/10.3390/nano14110905 - 22 May 2024
Viewed by 1368
Abstract
To revolutionize the photochemical efficiency of quantum dots sensitized solar cells (QDSSCs) devices, herein, a passivation of the cells with multilayer material has been developed for heterojunctions TiO2/NiS/MnS/HI-30/Pt devices. In this study, NiS and MnS were deposited on a photoanode for [...] Read more.
To revolutionize the photochemical efficiency of quantum dots sensitized solar cells (QDSSCs) devices, herein, a passivation of the cells with multilayer material has been developed for heterojunctions TiO2/NiS/MnS/HI-30/Pt devices. In this study, NiS and MnS were deposited on a photoanode for the first time as passivated photon absorbers at room temperature. The adoption of NiS as a passisvative layer could tailor the active surface area and improve the photochemical properties of the newly modified cells. The vibrational shifts obtained from the Raman spectra imply that the energy change is influenced by the surface effect, giving rise to better electronic conductivity. The electrochemical stability and durability test for the N/M-3 device slows down and remains at 8.88% of its initial current after 3500 s, as compared to the N/M-1 device at 7.20%. The disparity in charge recombination implies that both the outer and inner parts of the nanoporous material are involved in the photogeneration reaction. The hybridized N/M-3 cell device reveals the highest current density with a low potential onset, indicating that power conversion occurs more easily because photons tend to be adsorbed easily on the surface of the MnS. The Nyquist plot for N/M-1 and N/M-3 promotes the faster transport of electrolytic ions across the TiO2/NiS/MnS, providing a good interaction for the electrolyte. The I-J Value of 9.94% shows that the passivation with the NiS layer promotes electron transport and enhances the performance of the modified cells. The passivation of the TiO2 layer with NiS attains a better power conversion efficiency among the scant studies so far on the surface passivation of QDSCs. Full article
Show Figures

Figure 1

16 pages, 643 KB  
Article
An LDPC-RS Concatenation and Decoding Scheme to Lower the Error Floor for FTN Signaling
by Honghao Shi, Zhiyong Luo and Congduan Li
Electronics 2024, 13(8), 1588; https://doi.org/10.3390/electronics13081588 - 22 Apr 2024
Cited by 3 | Viewed by 1613
Abstract
Faster-than-Nyquist (FTN) signaling has attracted increasing interest in the past two decades. However, when the fifth-generation (5G) communication low-density parity check (LDPC) code is applied to FTN signaling with low Bahl–Cock–Jelinek–Raviv (BCJR) states of detection and few turbo equalization iterations, an error floor [...] Read more.
Faster-than-Nyquist (FTN) signaling has attracted increasing interest in the past two decades. However, when the fifth-generation (5G) communication low-density parity check (LDPC) code is applied to FTN signaling with low Bahl–Cock–Jelinek–Raviv (BCJR) states of detection and few turbo equalization iterations, an error floor near 105 is found, which does not exist in the original LDPC used for orthogonal signaling. This can be eliminated through many detection and decoding iterations, but this is unacceptable considering the increase in latency and storage. To solve this problem, we propose an LDPC and Reed–Solomon (RS) concatenation code, shortening, and perturbation scheme to lower the error floor. We propose a parallel encoder architecture for RS component code and a concise algorithm to calculate its constant multiplier coefficients, leveraging a traditional serial encoder, which can also be used for other parallelisms, rates, and lengths. The simulation results show that the proposed concatenation and shortening scheme can lower the error floor to about 107. The proposed scheme has an error correction capability for coded FTN signaling and successfully lowers the error floor with the limitation of few turbo iterations and few BCJR states. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

10 pages, 4178 KB  
Communication
Look-Up-Table-Based Direct-Detection-Faster-Than-Nyquist-Algorithm-Enabled IM/DD Transmission with Severe Bandwidth Limitation
by Xiaoying Zhang, Jiahao Huo, Shaonan Liu, Wei Huangfu and Keping Long
Photonics 2023, 10(11), 1222; https://doi.org/10.3390/photonics10111222 - 31 Oct 2023
Viewed by 1513
Abstract
The emergence of new applications is driving a dramatic growth in the capacity of data center interconnects. Intensity modulation and direct detection (IM/DD) has the characteristics of low cost, low power consumption and a small footprint. Industry and academia have conducted much research [...] Read more.
The emergence of new applications is driving a dramatic growth in the capacity of data center interconnects. Intensity modulation and direct detection (IM/DD) has the characteristics of low cost, low power consumption and a small footprint. Industry and academia have conducted much research on IM/DD systems as a cost-effective solution. However, optical/electronic bandwidth and fiber dispersion are the restricting factors for the improvement of transmission capacity. Pattern-dependent distortion is an important aspect that affects system performance. In this paper, we propose a look-up table (LUT)-based direct-detection-faster-than-Nyquist (DDFTN) algorithm to compensate for pattern-dependent distortion. The performances of feedforward-equalization (FFE) only, the original DDFTN, least-squares (LS)-based DDFTN, and LUT-based DDFTN algorithms in IM/DD-based 112/140 Gbit/s four-level pulse-amplitude modulation (PAM-4) signal transmission were evaluated. The experimental results indicate that LUT-based DDFTN performs better with low computational complexity. Full article
(This article belongs to the Special Issue Optical Communication, Sensing and Network)
Show Figures

Figure 1

14 pages, 3244 KB  
Article
Frequency-Shift Monitoring of Optical Filter Based on Optical Labels over FTN-WDM Transmission Systems
by Kaixuan Li, Tao Yang, Xue Wang, Sheping Shi, Liqian Wang and Xue Chen
Photonics 2023, 10(10), 1166; https://doi.org/10.3390/photonics10101166 - 18 Oct 2023
Cited by 1 | Viewed by 1825
Abstract
Optical network monitoring and soft failure identification such as optical filter shifting and filter tightening are increasingly significant for the complex and dynamic optical networks of the future. Center frequency shift of optical filtering devices in optical networks has a serious impact on [...] Read more.
Optical network monitoring and soft failure identification such as optical filter shifting and filter tightening are increasingly significant for the complex and dynamic optical networks of the future. Center frequency shift of optical filtering devices in optical networks has a serious impact on the performance of multi-span transmission, especially in high spectrum efficiency faster-than-Nyquist (FTN) transmission systems with various optical switching and add/drop nodes. Existing monitoring schemes generally have the problems of high cost, high complexity, and inability to realize multi-channel online monitoring, which makes it difficult for them to be applied in a wavelength division multiplexing (WDM) system with numerous nodes. In this paper, a monitoring scheme of frequency shift of optical filtering devices based on optical label (OL) is proposed and demonstrated. The signal spectrum of each channel is intentionally divided into many sub-bands with corresponding optical labels loading. The characteristics of spectrum power changing caused by frequency shift can be reflected on labels power changing of each sub-band, which are used to monitor and estimate the value of frequency shift via DSP algorithm. Simulation results show that the monitoring errors of frequency shift can be kept reasonably below 0.5 GHz after 10-span WDM transmission in FTN polarization multiplexing m-ary quadrature amplitude modulation (PM-mQAM) systems. In addition, 250 km fiber transmission experiments are also carried out, and similar results are obtained, which further verify the feasibility of our proposed scheme. The characteristics of low cost, high reliability, and efficiency make it a better candidate for practical application in future FTN-WDM networks. Full article
(This article belongs to the Special Issue Optical Communication, Sensing and Network)
Show Figures

Figure 1

23 pages, 1364 KB  
Article
An Efficient Compressive Sensed Video Codec with Inter-Frame Decoding and Low-Complexity Intra-Frame Encoding
by Evgeny Belyaev
Sensors 2023, 23(3), 1368; https://doi.org/10.3390/s23031368 - 26 Jan 2023
Cited by 8 | Viewed by 3310
Abstract
This paper is dedicated to video coding based on a compressive sensing (CS) framework. In CS, it is assumed that if a video sequence is sparse in some transform domain, then it could be reconstructed from a much lower number of samples (called [...] Read more.
This paper is dedicated to video coding based on a compressive sensing (CS) framework. In CS, it is assumed that if a video sequence is sparse in some transform domain, then it could be reconstructed from a much lower number of samples (called measurements) than the Nyquist–Shannon theorem requires. Here, the performance of such a codec depends on how the measurements are acquired (or sensed) and compressed and how the video is reconstructed from the decoded measurements. Here, such a codec potentially could provide significantly faster encoding compared with traditional block-based intra-frame encoding via Motion JPEG (MJPEG), H.264/AVC or H.265/HEVC standards. However, existing video codecs based on CS are inferior to the traditional codecs in rate distortion performance, which makes them useless in practical scenarios. In this paper, we present a video codec based on CS called CS-JPEG. To the author’s knowledge, CS-JPEG is the first codec based on CS, combining fast encoding and high rate distortion results. Our performance evaluation shows that, compared with the optimized software implementations of MJPEG, H.264/AVC, and H.265/HEVC, the proposed CS-JPEG encoding is 2.2, 1.9, and 30.5 times faster, providing 2.33, 0.79, and 1.45 dB improvements in the peak signal-to-noise ratio, respectively. Therefore, it could be more attractive for video applications having critical limitations in computational resources or a battery lifetime of an upstreaming device. Full article
(This article belongs to the Special Issue Video Coding Based on Compressive Sensing)
Show Figures

Figure 1

Back to TopTop