Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (938)

Search Parameters:
Keywords = feedforward control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 10607 KB  
Article
RRT*-APF Path Planning and MA-AADRC-SMC Control for Cooperative 3-D Obstacle Avoidance in Multi-UAV Formations
by Yuehao Yan, Songlin Liu and Rui Hao
Drones 2025, 9(9), 611; https://doi.org/10.3390/drones9090611 (registering DOI) - 29 Aug 2025
Abstract
To enable safe cooperative flight of multi-UAV formations in urban 3-D airspace with wind-field disturbances, we develop an integrated planning-control framework.The planning layer uses an APF-guided RRT* with continuous collision prediction and explicit velocity/acceleration limits, and compensates wind online.The control layer adopts a [...] Read more.
To enable safe cooperative flight of multi-UAV formations in urban 3-D airspace with wind-field disturbances, we develop an integrated planning-control framework.The planning layer uses an APF-guided RRT* with continuous collision prediction and explicit velocity/acceleration limits, and compensates wind online.The control layer adopts a dual-loop MA-AADRC-SMC design. An adaptive ESO estimates disturbances for feed-forward cancellation, and an SMC term improves robustness and tracking accuracy. By coupling the planned trajectory with speed-weighted repulsive fields, the framework coordinates path and attitude in closed loop, enabling collision-free and overshoot-free formation flight in wind and clutter. Simulations show higher tracking accuracy and better formation stability than ADRC, PID and SMC. A Lyapunov analysis proves uniform boundedness and asymptotic stability. The framework is scalable to applications such as disaster assessment and urban air transport. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

23 pages, 7960 KB  
Article
High-Precision Dynamic Tracking Control Method Based on Parallel GRU–Transformer Prediction and Nonlinear PD Feedforward Compensation Fusion
by Yimin Wang, Junjie Wang, Kaina Gao, Jianping Xing and Bin Liu
Mathematics 2025, 13(17), 2759; https://doi.org/10.3390/math13172759 - 27 Aug 2025
Viewed by 207
Abstract
In high-precision fields such as advanced manufacturing, semiconductor processing, aerospace assembly, and precision machining, motion control systems often face challenges such as large tracking errors and low control efficiency due to complex dynamic environments. To address this, this paper innovatively proposes a data-driven [...] Read more.
In high-precision fields such as advanced manufacturing, semiconductor processing, aerospace assembly, and precision machining, motion control systems often face challenges such as large tracking errors and low control efficiency due to complex dynamic environments. To address this, this paper innovatively proposes a data-driven feedforward compensation control strategy based on a Parallel Gated Recurrent Unit (GRU)–Transformer. This method does not require an accurate model of the controlled object but instead uses motion error data and controller output data collected from actual operating conditions to complete network training and real-time prediction, thereby reducing data requirements. The proposed feedforward control strategy consists of three main parts: first, a Parallel GRU–Transformer prediction model is constructed using real-world data collected from high-precision sensors, enabling precise prediction of system motion errors after a single training session; second, a nonlinear PD controller is introduced, using the prediction errors output by the Parallel GRU–Transformer network as input to generate the primary correction force, thereby significantly reducing reliance on the main controller; and finally, the output of the nonlinear PD controller is combined with the output of the main controller to jointly drive the precision motion platform. Verification on a permanent magnet synchronous linear motor motion platform demonstrates that the control strategy integrating Parallel GRU–Transformer feedforward compensation significantly reduces the tracking error and fluctuations under different trajectories while minimizing moving average (MA) and moving standard deviation (MSD), enhancing the system’s robustness against environmental disturbances and effectively alleviating the load on the main controller. The proposed method provides innovative insights and reliable guarantees for the widespread application of precision motion control in industrial and research fields. Full article
Show Figures

Figure 1

21 pages, 1549 KB  
Article
Dynamical Neural Models in Experimental Identification of Helicopter Educational Model—Methodology Proposal
by Tomáš Tkáčik and Anna Jadlovská
Appl. Sci. 2025, 15(17), 9342; https://doi.org/10.3390/app15179342 - 26 Aug 2025
Viewed by 386
Abstract
A design of methodology for experimental identification of nonlinear dynamical systems using feed-forward MLP neural networks as dynamical neural models is presented in this paper. The proposed methodology consists of four modules and makes use of already existing models of the nonlinear dynamical [...] Read more.
A design of methodology for experimental identification of nonlinear dynamical systems using feed-forward MLP neural networks as dynamical neural models is presented in this paper. The proposed methodology consists of four modules and makes use of already existing models of the nonlinear dynamical system. The methodology is verified in the case study, which is dedicated to the experimental identification of the modified helicopter educational plant CE 150 from Humusoft company. The previously created gray-box model of the helicopter educational model is used to estimate optimal neural network structure. The obtained black-box helicopter model, represented by a dynamical neural model, captures interactions between elevation and azimuth subsystems. The dynamical neural model is used to design three control algorithms without subsystem decoupling that are verified in the simulation environment and on the real helicopter educational model. Full article
Show Figures

Figure 1

15 pages, 1993 KB  
Article
AI-Driven Firmness Prediction of Kiwifruit Using Image-Based Vibration Response Analysis
by Seyedeh Fatemeh Nouri, Saman Abdanan Mehdizadeh and Yiannis Ampatzidis
Sensors 2025, 25(17), 5279; https://doi.org/10.3390/s25175279 - 25 Aug 2025
Viewed by 437
Abstract
Accurate and non-destructive assessment of fruit firmness is critical for evaluating quality and ripeness, particularly in postharvest handling and supply chain management. This study presents the development of an image-based vibration analysis system for evaluating the firmness of kiwifruit using computer vision and [...] Read more.
Accurate and non-destructive assessment of fruit firmness is critical for evaluating quality and ripeness, particularly in postharvest handling and supply chain management. This study presents the development of an image-based vibration analysis system for evaluating the firmness of kiwifruit using computer vision and machine learning. In the proposed setup, 120 kiwifruits were subjected to controlled excitation in the frequency range of 200–300 Hz using a vibration motor. A digital camera captured surface displacement over time (for 20 s), enabling the extraction of key dynamic features, namely, the damping coefficient (damping is a measure of a material’s ability to dissipate energy) and natural frequency (the first peak in the frequency spectrum), through image processing techniques. Results showed that firmer fruits exhibited higher natural frequencies and lower damping, while softer, more ripened fruits showed the opposite trend. These vibration-based features were then used as inputs to a feed-forward backpropagation neural network to predict fruit firmness. The neural network consisted of an input layer with two neurons (damping coefficient and natural frequency), a hidden layer with ten neurons, and an output layer representing firmness. The model demonstrated strong predictive performance, with a correlation coefficient (R2) of 0.9951 and a root mean square error (RMSE) of 0.0185, confirming its high accuracy. This study confirms the feasibility of using vibration-induced image data combined with machine learning for non-destructive firmness evaluation. The proposed method provides a reliable and efficient alternative to traditional firmness testing techniques and offers potential for real-time implementation in automated grading and quality control systems for kiwi and other fruit types. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

16 pages, 1362 KB  
Article
A Robust Fuzzy Adaptive Control Scheme for PMSM with Sliding Mode Dynamics
by Guangyu Cao, Zhihan Chen, Daoyuan Wang, Xiujing Zhao and Fanwei Meng
Processes 2025, 13(8), 2635; https://doi.org/10.3390/pr13082635 - 20 Aug 2025
Viewed by 266
Abstract
A key trade-off persists in the control of permanent magnet synchronous motors (PMSMs): achieving fast finite-time convergence often exacerbates control chattering, while conventional chattering-suppression methods can compromise the system’s dynamic response. The existing literature often addresses these challenges in isolation. The core original [...] Read more.
A key trade-off persists in the control of permanent magnet synchronous motors (PMSMs): achieving fast finite-time convergence often exacerbates control chattering, while conventional chattering-suppression methods can compromise the system’s dynamic response. The existing literature often addresses these challenges in isolation. The core original contribution of this research lies in proposing a novel robust fuzzy adaptive control scheme that effectively resolves this trade-off through a synergistic design. The contributions are as follows: (1) A novel reaching law is formulated to significantly accelerate error convergence, achieving finite-time stability and improving upon conventional reaching law designs. (2) A super-twisting sliding mode observer is integrated into the control loop, providing accurate real-time estimation of load torque disturbances, which is used for feedforward compensation to drastically improve the system’s disturbance rejection capability. (3) A fuzzy adaptive mechanism is developed to dynamically tune key gains in the sliding mode law. This approach effectively suppresses chattering without sacrificing response speed, enhancing system robustness. (4) The stability and convergence of the proposed controller are rigorously analyzed. Simulations, comparing the proposed method with conventional adaptive sliding mode control (ASMC), demonstrate its marked superiority in control accuracy, transient behavior, and disturbance rejection. This work provides an integrated solution that balances rapidity and smoothness for high-performance motor control, offering significant theoretical and engineering value. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

24 pages, 14222 KB  
Article
Integrated Assessment of Groundwater Quality Using Water Quality Indices, Geospatial Analysis, and Neural Networks in a Rural Hungarian Settlement
by Dániel Balla, Levente Tari, András Hajdu, Emőke Kiss, Marianna Zichar and Tamás Mester
Water 2025, 17(16), 2371; https://doi.org/10.3390/w17162371 - 10 Aug 2025
Viewed by 582
Abstract
In the present study, the changes in the groundwater quality in a Hungarian settlement, Báránd, were examined, nine years after the construction of a sewerage network. The sewerage network in the study area was completed in 2014, with a household connection rate exceeding [...] Read more.
In the present study, the changes in the groundwater quality in a Hungarian settlement, Báránd, were examined, nine years after the construction of a sewerage network. The sewerage network in the study area was completed in 2014, with a household connection rate exceeding 97% in 2023. In the summer of 2023, water samples were taken from 37 dug groundwater wells. Changes in the water quality were assessed using three water quality indicators (the Water Quality Index (WQI), Contamination degree (Cd), and Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI)) and geographic information (GIS), data visualization systems, and artificial intelligence (AI). During the evaluation of the quality of the groundwater, eight water chemical parameters were used (pH, EC, NH4+, NO2, NO3, PO43−, COD, Na+). Based on interpolated maps and water quality indices, it was established that while an increasing portion of the area exhibits adequate or good water quality compared to the pre-sewerage period, a deterioration has occurred relative to recent years. Even nine years after the sewerage network construction, elevated concentrations of inorganic nitrogen forms and organic matter persist, indicating the continued presence of accumulated pollutants, as confirmed by all three water quality indicators to varying degrees and spatial patterns. The interactive data visualization and cloud-based sharing of the data of the water quality geodatabase were made freely available with the help of Tableau Public. A Feed-Forward Neural Network (FFNN) was developed to predict the groundwater quality, estimating the water quality statuses of three water quality indicators based on water chemistry parameters. The results showed that the applied training algorithms and activation functions proved to be the most effective in the case of different network structures. The most accurate prediction of the WQI and CCME WQI indicators was provided by the Bayesian control algorithm (trainbr), which achieved the lowest mean-squared error (RMSEWQI = 0.1205, RMSECCME WQI = 0.1305) and the highest determination coefficient (R2WQI = 0.9916, R2CCME WQI = 0.9838). For the Cd index, the accuracy of the model was lower (RMSE = 0.1621, R2 = 0.9714), suggesting that this indicator is more difficult to predict. With regard to our study, it should be emphasized that data visualization is a particularly practical tool for the post-processing of spatial monitoring data, as it is suitable for displaying information in an intuitive, visual form, for discovering spatial patterns and relationships, and for performing real-time analyses. AI is expected to further increase visualization efficiency in the future, enabling the rapid processing of large amounts of data and spatial databases, as well as the identification of complex patterns. Full article
(This article belongs to the Special Issue Urban Water Pollution Control: Theory and Technology)
Show Figures

Figure 1

42 pages, 3822 KB  
Article
The Criticality of Consciousness: Excitatory–Inhibitory Balance and Dual Memory Systems in Active Inference
by Don M. Tucker, Phan Luu and Karl J. Friston
Entropy 2025, 27(8), 829; https://doi.org/10.3390/e27080829 - 4 Aug 2025
Viewed by 1374
Abstract
The organization of consciousness is described through increasingly rich theoretical models. We review evidence that working memory capacity—essential to generating consciousness in the cerebral cortex—is supported by dual limbic memory systems. These dorsal (Papez) and ventral (Yakovlev) limbic networks provide the basis for [...] Read more.
The organization of consciousness is described through increasingly rich theoretical models. We review evidence that working memory capacity—essential to generating consciousness in the cerebral cortex—is supported by dual limbic memory systems. These dorsal (Papez) and ventral (Yakovlev) limbic networks provide the basis for mnemonic processing and prediction in the dorsal and ventral divisions of the human neocortex. Empirical evidence suggests that the dorsal limbic division is (i) regulated preferentially by excitatory feedforward control, (ii) consolidated by REM sleep, and (iii) controlled in waking by phasic arousal through lemnothalamic projections from the pontine brainstem reticular activating system. The ventral limbic division and striatum, (i) organizes the inhibitory neurophysiology of NREM to (ii) consolidate explicit memory in sleep, (iii) operating in waking cognition under the same inhibitory feedback control supported by collothalamic tonic activation from the midbrain. We propose that (i) these dual (excitatory and inhibitory) systems alternate in the stages of sleep, and (ii) in waking they must be balanced—at criticality—to optimize the active inference that generates conscious experiences. Optimal Bayesian belief updating rests on balanced feedforward (excitatory predictive) and feedback (inhibitory corrective) control biases that play the role of prior and likelihood (i.e., sensory) precision. Because the excitatory (E) phasic arousal and inhibitory (I) tonic activation systems that regulate these dual limbic divisions have distinct affective properties, varying levels of elation for phasic arousal (E) and anxiety for tonic activation (I), the dual control systems regulate sleep and consciousness in ways that are adaptively balanced—around the entropic nadir of EI criticality—for optimal self-regulation of consciousness and psychological health. Because they are emotive as well as motive control systems, these dual systems have unique qualities of feeling that may be registered as subjective experience. Full article
(This article belongs to the Special Issue Active Inference in Cognitive Neuroscience)
Show Figures

Figure 1

16 pages, 3838 KB  
Article
Model-Free Cooperative Control for Volt-Var Optimization in Power Distribution Systems
by Gaurav Yadav, Yuan Liao and Aaron M. Cramer
Energies 2025, 18(15), 4061; https://doi.org/10.3390/en18154061 - 31 Jul 2025
Viewed by 416
Abstract
Power distribution systems are witnessing a growing deployment of distributed, inverter-based renewable resources such as solar generation. This poses certain challenges such as rapid voltage fluctuations due to the intermittent nature of renewables. Volt-Var control (VVC) methods have been proposed to utilize the [...] Read more.
Power distribution systems are witnessing a growing deployment of distributed, inverter-based renewable resources such as solar generation. This poses certain challenges such as rapid voltage fluctuations due to the intermittent nature of renewables. Volt-Var control (VVC) methods have been proposed to utilize the ability of inverters to supply or consume reactive power to mitigate fast voltage fluctuations. These methods usually require a detailed power network model including topology and impedance data. However, network models may be difficult to obtain. Thus, it is desirable to develop a model-free method that obviates the need for the network model. This paper proposes a novel model-free cooperative control method to perform voltage regulation and reduce inverter aging in power distribution systems. This method assumes the existence of time-series voltage and load data, from which the relationship between voltage and nodal power injection is derived using a feedforward artificial neural network (ANN). The node voltage sensitivity versus reactive power injection can then be calculated, based on which a cooperative control approach is proposed for mitigating voltage fluctuation. The results obtained for a modified IEEE 13-bus system using the proposed method have shown its effectiveness in mitigating fast voltage variation due to PV intermittency. Moreover, a comparative analysis between model-free and model-based methods is provided to demonstrate the feasibility of the proposed method. Full article
Show Figures

Figure 1

27 pages, 3529 KB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 327
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

26 pages, 12786 KB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 541
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

18 pages, 4221 KB  
Article
Dynamics Modeling and Control Method for Non-Cooperative Target Capture with a Space Netted Pocket System
by Wenyu Wang, Huibo Zhang, Jinming Yao, Wenbo Li, Zhuoran Huang, Chao Tang and Yang Zhao
Actuators 2025, 14(7), 358; https://doi.org/10.3390/act14070358 - 21 Jul 2025
Viewed by 241
Abstract
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on [...] Read more.
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on the absolute nodal coordinate formulation (ANCF) and equivalent plate–shell theory. A contact collision force model is developed using a spring–damper model. Subsequently, a feedforward controller is designed based on the estimated collision force from the dynamic model, aiming to compensate for the collision effects between the target and the net. By incorporating the collision estimation data, an extended state observer is designed, taking into account the collision estimation errors and the flexible uncertainties. A sliding mode feedback controller is then designed using the fast terminal sliding mode control method. Finally, simulation analysis of target capture under different motion states is conducted. The results demonstrate that the spacecraft system’s position and attitude average flutter amplitudes are less than 102 m and 102 deg. In comparison to standard sliding mode control, the designed controller reduces the attitude jitter amplitude by an order of magnitude, thus demonstrating its effectiveness and superiority. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

32 pages, 10857 KB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 639
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

15 pages, 2113 KB  
Article
Improved Segmented Control Strategy for Continuous Fault Ride-Through of Doubly-Fed Wind Turbines
by Tie Chen, Yifan Xu, Yue Liu, Junlin Ren and Youyuan Fan
Energies 2025, 18(14), 3845; https://doi.org/10.3390/en18143845 - 19 Jul 2025
Viewed by 266
Abstract
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced [...] Read more.
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced electromotive force (EMF) in each stage of continuous faults, a feedforward control strategy based on the transient component of stator current is proposed. The observable stator current is extracted for its transient component, which is used as a rotor voltage compensation term to effectively counteract the influence of transient EMF. Meanwhile, a fuzzy control algorithm is introduced during the low voltage ride-through (LVRT) stage to dynamically adjust the virtual resistance value, enhancing the system’s damping characteristics. Studies show that this strategy significantly suppresses rotor current spikes in all stages of voltage ride-through. Finally, simulation results verify that the proposed method improves the ride-through performance of DFIG under continuous voltage faults. Full article
Show Figures

Figure 1

16 pages, 2975 KB  
Article
Control Strategy of Distributed Photovoltaic Storage Charging Pile Under Weak Grid
by Yan Zhang, Shuangting Xu, Yan Lin, Xiaoling Fang, Yang Wang and Jiaqi Duan
Processes 2025, 13(7), 2299; https://doi.org/10.3390/pr13072299 - 19 Jul 2025
Viewed by 359
Abstract
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance [...] Read more.
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance in the system under weak grid conditions. Firstly, the topology of a photovoltaic storage charging pile is introduced, including a bidirectional DC/DC converter, unidirectional DC/DC converter, and single-phase grid-connected inverter. Then, the maximum power tracking control strategy based on improved conductance micro-increment is derived for a photovoltaic power generation system, and a constant voltage and constant current charge–discharge control strategy is derived for energy storage equipment. Additionally, a segmented reflective charging control strategy is introduced for charging piles, and the quasi-PR controller is introduced for single-phase grid-connected inverters. In addition, an improved second-order general integrator phase-locked loop (SOGI-PLL) based on feed-forward of the grid current is derived. Finally, a simulation model is built to verify the performance of the solar–storage charging pile and lay the technical groundwork for future integrated control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 6248 KB  
Article
Low-Cost Strain-Gauge Force-Sensing Sidestick for 6-DoF Flight Simulation: Design and Human-in-the-Loop Evaluation
by Patrik Rožić, Milan Vrdoljak, Karolina Krajček Nikolić and Jurica Ivošević
Sensors 2025, 25(14), 4476; https://doi.org/10.3390/s25144476 - 18 Jul 2025
Viewed by 461
Abstract
Modern fly-by-wire (FBW) aircraft demand high-fidelity simulation systems for research and training, yet existing force-sensing solutions are often prohibitively expensive. This study presents the design, development, and validation of a low-cost, reconfigurable force-sensing sidestick. The system utilizes four strain-gauge load cells to capture [...] Read more.
Modern fly-by-wire (FBW) aircraft demand high-fidelity simulation systems for research and training, yet existing force-sensing solutions are often prohibitively expensive. This study presents the design, development, and validation of a low-cost, reconfigurable force-sensing sidestick. The system utilizes four strain-gauge load cells to capture pure pilot force inputs, integrated with a 6-DoF non-linear flight model. To evaluate its performance, a pitch-angle tracking task was conducted with 16 participants (pilots and non-pilots). Objective metrics revealed that the control strategy was a primary determinant of performance. Participants employing a proactive feedforward control strategy exhibited roughly an order of magnitude lower tracking-error variance than those relying on reactive corrections. Subjective assessments using the Cooper-Harper scale and NASA-TLX corroborated the objective data, confirming the sidestick’s ability to differentiate control techniques. This work demonstrates an open-source platform that makes high-fidelity FBW simulation accessible for academic research, pilot training, and human factors analysis at a fraction of the cost of commercial systems. Full article
Show Figures

Figure 1

Back to TopTop