Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = female gametogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1043 KiB  
Review
The Role of the Endocannabinoid System in Human Gametogenesis
by Nina Montik, Daniele Crescenzi, Carolina Marzocchini, Irene Lubinski, Linda Grementieri, Sonia Peruzzi, Marta Lombó, Andrea Ciavattini and Oliana Carnevali
Int. J. Mol. Sci. 2025, 26(9), 3996; https://doi.org/10.3390/ijms26093996 - 23 Apr 2025
Viewed by 502
Abstract
The endocannabinoid system (ECS) is a complex endocrine network involved in maintaining body homeostasis. It comprises endocannabinoids, their receptors (CB1 and CB2), and the enzymes and transporters responsible for their synthesis and degradation. While the ECS’s role in the nervous system is well [...] Read more.
The endocannabinoid system (ECS) is a complex endocrine network involved in maintaining body homeostasis. It comprises endocannabinoids, their receptors (CB1 and CB2), and the enzymes and transporters responsible for their synthesis and degradation. While the ECS’s role in the nervous system is well established, its functions in other organs and peripheral tissues, including the cardiovascular, gastrointestinal, and reproductive systems, remain incompletely understood. With the increasing use of marijuana, particularly among individuals of reproductive age, concerns have emerged regarding its potential impact on male and female fertility. Phytocannabinoids (∆9tethrahydrocannabinol and cannabidiol), as well as synthetic cannabimimetic drugs, interact with the ECS, influencing sperm and oocyte physiology and reproductive outcomes. Recent research has identified ECS-related biomarkers with potential applications in infertility diagnosis, particularly in assessing male fertility with greater precision. Furthermore, emerging evidence suggests that ECS signaling pathways are involved in epigenetic modifications, which may influence health maintenance, disease susceptibility, and transgenerational inheritance patterns. These findings highlight the therapeutic potential of ECS modulation in reproductive disorders and broader medical applications. This narrative review aims to elucidate the role of the ECS in human reproduction, with a particular focus on the influence of endocannabinoids on gametogenesis. While current research underscores the critical role of the ECS in fertility, further investigations are needed to fully elucidate its underlying mechanisms and its broader implications for reproductive health and therapeutic interventions. Full article
Show Figures

Figure 1

15 pages, 484 KiB  
Review
Evolutionary Loss of Acid-Secreting Stomach and Endoskeletal Ossification: A Phosphorus Perspective
by Shozo H. Sugiura
Fishes 2025, 10(2), 48; https://doi.org/10.3390/fishes10020048 - 27 Jan 2025
Viewed by 633
Abstract
Phosphorus is essential for all life forms on Earth, including eukaryotes (animals, plants, fungi, and protists), prokaryotes (bacteria and archaea), and even viruses. Its significance stems primarily from its presence in nucleic acids (DNA and RNA), where it forms a crucial part of [...] Read more.
Phosphorus is essential for all life forms on Earth, including eukaryotes (animals, plants, fungi, and protists), prokaryotes (bacteria and archaea), and even viruses. Its significance stems primarily from its presence in nucleic acids (DNA and RNA), where it forms a crucial part of the backbone structure. Beyond this, phosphorus plays a pivotal role in countless biological processes, supporting life at its core. In this article, the author explores the possible causes of stomach loss, focusing specifically on phosphorus absorption, vertebral calcification, and reproduction. Large gonads, characteristic of external fertilization, require substantial amounts of phosphorus for gametogenesis in both females and males, particularly in the latter. This demand has driven the evolutionary calcification of vertebrae, which serve as a phosphorus storage organ. Moreover, to efficiently absorb phosphorus from their diets, shellfish-eating fish have evolved to either lose their stomachs or reduce gastric acidity, minimizing the formation of calcium phosphate precipitates in the intestine. Full article
(This article belongs to the Section Taxonomy, Evolution, and Biogeography)
Show Figures

Figure 1

16 pages, 1672 KiB  
Review
From Germ Cells to Implantation: The Role of Extracellular Vesicles
by Anna Fazzio, Angela Caponnetto, Carmen Ferrara, Michele Purrello, Cinzia Di Pietro and Rosalia Battaglia
J. Dev. Biol. 2024, 12(3), 22; https://doi.org/10.3390/jdb12030022 - 23 Aug 2024
Cited by 1 | Viewed by 2666
Abstract
Extracellular vesicles represent a large heterogeneous class of near and long-distance intercellular communication mediators, released by both prokaryotic and eukaryotic cells. Specifically, the scientific community has shown growing interest in exosomes, which are nano-sized vesicles with an endosomal origin. Not so long ago, [...] Read more.
Extracellular vesicles represent a large heterogeneous class of near and long-distance intercellular communication mediators, released by both prokaryotic and eukaryotic cells. Specifically, the scientific community has shown growing interest in exosomes, which are nano-sized vesicles with an endosomal origin. Not so long ago, the physiological goal of exosome generation was largely unknown and required more investigation; at first, it was hypothesized that exosomes are able to remove excess, reject and unnecessary constituents from cells to preserve cellular homeostasis. However, thanks to recent studies, the central role of exosomes in regulating cellular communication has emerged. Exosomes act as vectors in cell–cell signaling by their cargo, proteins, lipids, and nucleic acids, and influence physiological and pathological processes. The findings on exosomes are widespread in a large spectrum of biomedical applications from diagnosis and prognosis to therapies. In this review, we describe exosome biogenesis and the current methods for their isolation and characterization, emphasizing the role of their cargo in female reproductive processes, from gametogenesis to implantation, and the potential involvement in human female disorders. Full article
Show Figures

Graphical abstract

21 pages, 26802 KiB  
Article
Reproductive Biology of Pearl Oyster (Pinctada radiata, Leach 1814) Based on Microscopic and Macroscopic Assessment of Both Sexes in the Eastern Mediterranean (South Evia Island)
by Dimitris Pafras, Chrysoula Apostologamvrou, Athina Balatsou, Alexandros Theocharis, Alexios Lolas, Marianthi Hatziioannou, Dimitris Vafidis and Dimitris Klaoudatos
J. Mar. Sci. Eng. 2024, 12(8), 1259; https://doi.org/10.3390/jmse12081259 - 25 Jul 2024
Cited by 1 | Viewed by 2320
Abstract
The Atlantic pearl oyster, Pinctada radiata (Leach, 1814), is an Indo-Pacific bivalve of the subtidal zone that has colonized habitats all over the Mediterranean. There is a lack of detailed information on the reproductive activity of P. radiata in Hellenic waters, especially following [...] Read more.
The Atlantic pearl oyster, Pinctada radiata (Leach, 1814), is an Indo-Pacific bivalve of the subtidal zone that has colonized habitats all over the Mediterranean. There is a lack of detailed information on the reproductive activity of P. radiata in Hellenic waters, especially following the recent amendment of national legislation aiming to regulate the fishery and prevent illegal fishing and trafficking as a substitute for indigenous oysters. A total of 703 individuals were collected by scuba diving from the southwest part of Evia Island. Gonad microscopic examination indicated that gametogenesis occurs from February to September, with a recovery stage in early autumn. Synchronicity occurs for both sexes, with temperature being the main controlling factor. The annual recruitment pattern indicated two prominent peaks of similar magnitude. Analysis of covariance indicated a significant temperature effect on gonad index above 22 degrees. Onset of sexual maturity (L50) was estimated at 47.2 mm in shell height and 27.09 gr in total weight for the entire population. The sex ratio was in favor of females at 1:1.70, with 7% and 19% of the individuals assessed macroscopically and microscopically identified as hermaphrodites, respectively. Results offer valuable information for the management and conservation of pearl oyster populations. Full article
(This article belongs to the Special Issue Biodiversity and Population Ecology of Marine Invertebrates)
Show Figures

Figure 1

15 pages, 3420 KiB  
Article
Gonadal Cycle of Corbicula largillierti (Bivalvia: Cyrenidae) in a Pampean Streams, Argentina
by Cristina Damborenea, Yeny Labaut, Pablo Penchaszadeh, Gonzalo A. Collado and Gustavo Darrigran
Diversity 2024, 16(6), 357; https://doi.org/10.3390/d16060357 - 20 Jun 2024
Viewed by 1523
Abstract
The reproductive cycle of non-native species is indicative of their capacity for dispersal, invasion, and competition, and the alteration in biodiversity. Corbicula spp. are successful invaders of aquatic ecosystems. We studied the reproductive cycle of Corbicula largillierti from a Pampean stream, Argentina, at [...] Read more.
The reproductive cycle of non-native species is indicative of their capacity for dispersal, invasion, and competition, and the alteration in biodiversity. Corbicula spp. are successful invaders of aquatic ecosystems. We studied the reproductive cycle of Corbicula largillierti from a Pampean stream, Argentina, at its southern distribution in South America. Specimens were collected monthly from January 2003 to April 2005 and processed using traditional histological techniques. Three gonadal stages (active gametogenesis, mature, and spawned) were recognized. In the studied population, most individuals were hermaphroditic with a dominant female gonadal portion. The three gonadal stages were observed during the whole sampling period with rapid gonadal recovery; no resting period was observed. Five oocyte spawning events were recognized, occurring in autumn and spring. Expanding the knowledge of reproductive features of the Corbicula largillierti allows the understanding of current distributions. The results highlight the difficulty of identifying patterns of gamete release and spawning behavior in this invasive species, as it is recorded for other Corbicula spp. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

14 pages, 2711 KiB  
Article
A Circular RNA Derived from the Pumilio 1 Gene Could Regulate PTEN in Human Cumulus Cells
by Angela Caponnetto, Carmen Ferrara, Anna Fazzio, Noemi Agosta, Marianna Scribano, Maria Elena Vento, Placido Borzì, Cristina Barbagallo, Michele Stella, Marco Ragusa, Paolo Scollo, Davide Barbagallo, Michele Purrello, Cinzia Di Pietro and Rosalia Battaglia
Genes 2024, 15(1), 124; https://doi.org/10.3390/genes15010124 - 19 Jan 2024
Cited by 2 | Viewed by 1984
Abstract
CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their [...] Read more.
CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their involvement in female reproduction. This study aims to identify circRNAs potentially involved in reproductive women’s health. Candidate circRNAs expressed in ovary and sponging miRNAs, already known to be expressed in the ovary, were selected by a computational approach. Using real time PCR, we verified their expression and identified circPUM1 as the most interesting candidate circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart in all the follicle compartments and, using a computational and experimental approach, identified circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in cumulus cells and point out the important role of circRNA inside the pathways related to follicle growth and oocyte maturation. Full article
(This article belongs to the Special Issue Genetics and Genomics of Female Reproduction)
Show Figures

Figure 1

17 pages, 3145 KiB  
Article
TFIIB-Related Protein BRP5/PTF2 Is Required for Both Male and Female Gametogenesis and for Grain Formation in Rice
by Guangna Chen, Hongliang Hu, Xinhui Chen, Jialuo Chen, Siyi Wang, He Ning, Cheng Zhu and Su Yang
Int. J. Mol. Sci. 2023, 24(22), 16473; https://doi.org/10.3390/ijms242216473 - 18 Nov 2023
Viewed by 1724
Abstract
Transcription factor IIB (TFIIB) is a general transcription factor for RNA polymerase II, exerting its influence across various biological contexts. In the majority of eukaryotes, TFIIB typically has two homologs, serving as general transcription factors for RNA polymerase I and III. In plants, [...] Read more.
Transcription factor IIB (TFIIB) is a general transcription factor for RNA polymerase II, exerting its influence across various biological contexts. In the majority of eukaryotes, TFIIB typically has two homologs, serving as general transcription factors for RNA polymerase I and III. In plants, however, the TFIIB-related protein family has expanded greatly, with 14 and 9 members in Arabidopsis and rice, respectively. BRP5/pollen-expressed transcription factor 2 (PTF2) proteins belong to a subfamily of TFIIB-related proteins found only in plants and algae. The prior analysis of an Arabidopsis atbrp5 mutant, characterized by a T-DNA insertion at the 5′ untranslated region, demonstrated the essential role of BRP5/PTF2 during the process of pollen germination and embryogenesis in Arabidopsis. Using a rice transformation system based on CRISPR/Cas9 technology, we have generated transgenic rice plants containing loss-of-function frameshift mutations in the BRP5/PTF2 gene. Unlike in the Arabidopsis atbrp5 mutant, the brp5/ptf2 frameshift mutations were not transmitted to progeny in rice, indicating an essential role of BRP5/PTF2 in both male and female gamete development or viability. The silencing of rice BRP5/PTF2 expression through RNA interference (RNAi) had little effect on vegetative growth and panicle formation but strongly affected pollen development and grain formation. Genetic analysis revealed that strong RNAi silencing of rice BRP5/PTF2 was still transmissible to progeny almost exclusively through female gametes, as found in the Arabidopsis atbrp5 knockdown mutant. Thus, reduced rice BRP5/PTF2 expression impacted pollen preferentially by interfering with male gamete development or viability. Drawing upon these findings, we posit that BRP5/PTF2 assumes a distinct and imperative function in the realm of plant sexual reproduction. Full article
(This article belongs to the Collection Genetics and Molecular Breeding in Plants)
Show Figures

Figure 1

23 pages, 3559 KiB  
Article
Impacts of Long-Term Exposure to Ocean Acidification and Warming on Three-Spined Stickleback (Gasterosteus aculeatus) Growth and Reproduction
by Jimmy Devergne, Véronique Loizeau, Christophe Lebigre, Anne Bado-Nilles, Sophie Collet, Olivier Mouchel, Ugo Iaria, Marie-Madeleine Le Gall, Lauriane Madec, Cyril Turiès and Arianna Servili
Fishes 2023, 8(10), 523; https://doi.org/10.3390/fishes8100523 - 21 Oct 2023
Cited by 3 | Viewed by 3229
Abstract
The warming and acidification of surface waters as predicted by the IPCC leads aquatic species to face major multifaceted changes in their environment. Although teleosts have efficient regulatory systems to cope with these changes, such changes clearly have the potential to impact their [...] Read more.
The warming and acidification of surface waters as predicted by the IPCC leads aquatic species to face major multifaceted changes in their environment. Although teleosts have efficient regulatory systems to cope with these changes, such changes clearly have the potential to impact their physiological functions. Hence, it is crucial to estimate the ability of teleost fishes to cope with multi-stresses to predict how they will deal with future environments. In this context, we investigated the joint effect of warming and acidification on three-spined stickleback (Gasterosteus aculeatus) from the juvenile stage to adulthood, focusing on parameters linked to growth, sexual maturation, and reproduction. Juvenile sticklebacks were split in 2 climate scenarios: a “Current” scenario corresponding to the current seasonal physico-chemical parameters of the water of the “Rade de Brest” in France, and a “RCP8.5” scenario with a warming of 3 °C and an acidification of 0.4 pH units. After 7 months, fish in the RCP8.5 scenario reached the same size and mass as those in the Current scenario, but they needed greater amounts of food to reach satiety. Furthermore, the mortality rate over the experiment was higher in the RCP8.5 scenario. Muscle lipid content, an indicator of energy reserves, was lower in females in the RCP8.5 scenario, suggesting an increased need for energy to maintain homeostasis and other physiological functions or a divergence in energy allocation strategy. Moreover, females exhibited lower sexual maturation and egg quality under the RCP8.5 scenario, which could have contributed to the lower fertilisation rate observed. Males were more resilient to the RCP8.5 scenario, exhibiting only a trend for lower kidney somatic index scores. Altogether, these results suggest a delay and/or an inhibition of gametogenesis and maturation in fish in warmed and acidified waters. The analysis of blood sex steroid concentrations, brain gene expression profiles, and physiological indexes did not allow us to discriminate between a delay and an inhibition of maturation in the RCP8.5 scenario. Overall, these findings clearly indicate that there is a long-term global impact of combined acidification and warming on the mortality and reproductive performance of three-spined stickleback. Full article
Show Figures

Graphical abstract

10 pages, 1793 KiB  
Communication
Nuclear Fusion in Yeast and Plant Reproduction
by Nanami Kobayashi and Shuh-ichi Nishikawa
Plants 2023, 12(20), 3608; https://doi.org/10.3390/plants12203608 - 18 Oct 2023
Viewed by 3033
Abstract
Nuclear fusion is essential for the sexual reproduction of various organisms, including plants, animals, and fungi. During the life cycle of flowering plants, nuclear fusion occurs three times: once during female gametogenesis and twice during double fertilization, when two sperm cells fertilize the [...] Read more.
Nuclear fusion is essential for the sexual reproduction of various organisms, including plants, animals, and fungi. During the life cycle of flowering plants, nuclear fusion occurs three times: once during female gametogenesis and twice during double fertilization, when two sperm cells fertilize the egg and the central cell. Haploid nuclei migrate in an actin filament-dependent manner to become in close contact and, then, two nuclei fuse. The nuclear fusion process in plant reproduction is achieved through sequential nuclear membrane fusion events. Recent molecular genetic analyses using Arabidopsis thaliana showed the conservation of nuclear membrane fusion machinery between plants and the budding yeast Saccharomyces cerevisiae. These include the heat-shock protein 70 in the endoplasmic reticulum and the conserved nuclear membrane proteins. Analyses of the A. thaliana mutants of these components show that the completion of the sperm nuclear fusion at fertilization is essential for proper embryo and endosperm development. Full article
Show Figures

Figure 1

19 pages, 3648 KiB  
Article
De Novo Assembly, Characterization and Comparative Transcriptome Analysis of the Gonads of Jade Perch (Scortum barcoo)
by Shiyan Liu, Yingying Lian, Yikun Song, Qinghua Chen and Jianrong Huang
Animals 2023, 13(14), 2254; https://doi.org/10.3390/ani13142254 - 10 Jul 2023
Cited by 2 | Viewed by 1789
Abstract
Due to the high meat yield and rich nutritional content, jade perch (Scortum barcoo) has become an important commercial aquaculture species in China. Jade perch has a slow growth rate, taking 3–4 years to reach sexual maturity, and has almost no [...] Read more.
Due to the high meat yield and rich nutritional content, jade perch (Scortum barcoo) has become an important commercial aquaculture species in China. Jade perch has a slow growth rate, taking 3–4 years to reach sexual maturity, and has almost no difference in body size between males and females. However, the study of its gonad development and reproduction regulation is still blank, which limited the yield increase. Herein, the gonad transcriptomes of juvenile males and females of S. barcoo were identified for the first time. A total of 107,060 unigenes were successfully annotated. By comparing male and female gonad transcriptomes, a total of 23,849 differentially expressed genes (DEGs) were identified, of which 9517 were downregulated, and 14,332 were upregulated in the testis. In addition, a large number of DEGs involved in sex differentiation, gonadal development and differentiation and gametogenesis were identified, and the differential expression patterns of some genes were further verified using real-time fluorescence quantitative PCR. The results of this study will provide a valuable resource for further studies on sex determination and gonadal development of S. barcoo. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 2246 KiB  
Review
Cryopreservation of Ovarian and Testicular Tissue and the Influence on Epigenetic Pattern
by Tom Trapphoff and Stefan Dieterle
Int. J. Mol. Sci. 2023, 24(13), 11061; https://doi.org/10.3390/ijms241311061 - 4 Jul 2023
Cited by 8 | Viewed by 3627
Abstract
Ovarian tissue cryopreservation (OTC) or testicular tissue cryopreservation (TTC) are effective and often the only options for fertility preservation in female or male patients due to oncological, medical, or social aspects. While TTC and resumption of spermatogenesis, either in vivo or in vitro, [...] Read more.
Ovarian tissue cryopreservation (OTC) or testicular tissue cryopreservation (TTC) are effective and often the only options for fertility preservation in female or male patients due to oncological, medical, or social aspects. While TTC and resumption of spermatogenesis, either in vivo or in vitro, has still be considered an experimental approach in humans, OTC and autotransplantation has been applied increasingly to preserve fertility, with more than 200 live births worldwide. However, the cryopreservation of reproductive cells followed by the resumption of gametogenesis, either in vivo or in vitro, may interfere with sensitive and highly regulated cellular processes. In particular, the epigenetic profile, which includes not just reversible modifications of the DNA itself but also post-translational histone modifications, small non-coding RNAs, gene expression and availability, and storage of related proteins or transcripts, have to be considered in this context. Due to complex reprogramming and maintenance mechanisms of the epigenome in germ cells, growing embryos, and offspring, OTC and TTC are carried out at very critical moments early in the life cycle. Given this background, the safety of OTC and TTC, taking into account the epigenetic profile, has to be clarified. Cryopreservation of mature germ cells (including metaphase II oocytes and mature spermatozoa collected via ejaculation or more invasively after testicular biopsy) or embryos has been used successfully for many years in medically assisted reproduction (MAR). However, tissue freezing followed by in vitro or in vivo gametogenesis has become more attractive in the past, while few human studies have analysed the epigenetic effects, with most data deriving from animal studies. In this review, we highlight the potential influence of the cryopreservation of immature germ cells and subsequent in vivo or in vitro growth and differentiation on the epigenetic profile (including DNA methylation, post-translational histone modifications, and the abundance and availability of relevant transcripts and proteins) in humans and animals. Full article
(This article belongs to the Special Issue Ovary and Testis: Molecular Biological Insights)
Show Figures

Figure 1

14 pages, 1619 KiB  
Review
Sperm and Oocyte Chromosomal Abnormalities
by Osamu Samura, Yoshiharu Nakaoka and Norio Miharu
Biomolecules 2023, 13(6), 1010; https://doi.org/10.3390/biom13061010 - 17 Jun 2023
Cited by 6 | Viewed by 5557
Abstract
Gametogenesis, the process of producing gametes, differs significantly between oocytes and sperm. Most oocytes have chromosomal aneuploidies, indicating that chromosomal aberrations in miscarried and newborn infants are of oocyte origin. Conversely, most structural anomalies are of sperm origin. A prolonged meiotic period caused [...] Read more.
Gametogenesis, the process of producing gametes, differs significantly between oocytes and sperm. Most oocytes have chromosomal aneuploidies, indicating that chromosomal aberrations in miscarried and newborn infants are of oocyte origin. Conversely, most structural anomalies are of sperm origin. A prolonged meiotic period caused by increasing female age is responsible for an increased number of chromosomal aberrations. Sperm chromosomes are difficult to analyze because they cannot be evaluated using somatic cell chromosome analysis methods. Nevertheless, researchers have developed methods for chromosome analysis of sperm using the fluorescence in situ hybridization method, hamster eggs, and mouse eggs, allowing for the cytogenetic evaluation of individual sperm. Reproductive medicine has allowed men with severe spermatogenic defects or chromosomal abnormalities to have children. However, using these techniques to achieve successful pregnancies results in higher rates of miscarriages and embryos with chromosomal abnormalities. This raises questions regarding which cases should undergo sperm chromosome analysis and how the results should be interpreted. Here, we reviewed clinical trials that have been reported on oocyte and sperm chromosome analyses. Examination of chromosomal abnormalities in gametes is critical in assisted reproductive technology. Therefore, it is necessary to continue to study the mechanism underlying gametic chromosomal abnormalities. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Reproduction in Japan)
Show Figures

Figure 1

19 pages, 1292 KiB  
Review
Genetic and Epigenetic Regulation of Drosophila Oocyte Determination
by Brigite Cabrita and Rui Gonçalo Martinho
J. Dev. Biol. 2023, 11(2), 21; https://doi.org/10.3390/jdb11020021 - 24 May 2023
Cited by 2 | Viewed by 3444
Abstract
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for [...] Read more.
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for female gametogenesis. Drosophila melanogaster is a well-studied model for female gametogenesis, and numerous genes and pathways critical for the determination and differentiation of a viable female gamete have been identified. This review provides an up-to-date overview of Drosophila oocyte determination, with a particular emphasis on the mechanisms that regulate germ line gene expression. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

16 pages, 4398 KiB  
Article
Combination of CNP, MT and FLI during IVM Significantly Improved the Quality and Development Abilities of Bovine Oocytes and IVF-Derived Embryos
by Peipei Zhang, Baigao Yang, Xi Xu, Hang Zhang, Xiaoyi Feng, Haisheng Hao, Weihua Du, Huabin Zhu, Shujing Li, Wenli Yu, Adnan Khan, Saqib Umer and Xueming Zhao
Antioxidants 2023, 12(4), 897; https://doi.org/10.3390/antiox12040897 - 7 Apr 2023
Cited by 2 | Viewed by 2892
Abstract
Oocyte maturation is a critical step in the completion of female gametogenesis in the ovary; thus, for subsequent fertilization and embryogenesis. Vitrification of embryo also has been shown to be closely associated with oocyte maturation. To improve the quality and developmental potential of [...] Read more.
Oocyte maturation is a critical step in the completion of female gametogenesis in the ovary; thus, for subsequent fertilization and embryogenesis. Vitrification of embryo also has been shown to be closely associated with oocyte maturation. To improve the quality and developmental potential of bovine oocytes derived from in vitro maturation (IVM), Pre-IVM with C-type natriuretic peptide (CNP), melatonin (MT) and in combination, IGF1, FGF2, LIF (FLI) were supplemented in the IVM medium. In this current study, we cultured bovine oocytes in Pre-IVM with CNP for 6 h before transferring them to the IVM medium supplemented with MT and FLI. The developmental potential of bovine oocytes was then investigated by measuring the reactive oxygen species (ROS), the intracellular glutathione (GSH) and ATP levels, the transzonal projections (TZP), the mitochondrial membrane potential (ΔΨm), cacline-AM, and the expression of related genes (cumulus cells (CCs), oocytes, blastocysts). The results revealed that oocytes treated with a combination of CNP, MT, and FLI had dramatically improved the percentage of oocytes developed to blastocyst, ATP content, GSH levels, TZP intensity, the ΔΨm, cacline-AM fluorescence intensity, and considerably reduced ROS levels of oocytes. Furthermore, the survival rate and the hatched rate after vitrification of the CNP+MT+FLI group were significantly higher than those other groups. Thus, we speculated that CNP+MT+FLI increases the IVM of bovine oocytes. In conclusion, our findings deepen our understanding and provide new perspectives on targeting the combination of CNP, MT and FLI to enhance the quality and developmental potential of bovine oocytes. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 6253 KiB  
Article
Irregularities in Meiotic Prophase I as Prerequisites for Reproductive Isolation in Experimental Hybrids Carrying Robertsonian Translocations
by Oxana Kolomiets, Irina Bakloushinskaya, Mark Pankin, Valentina Tambovtseva and Sergey Matveevsky
Diversity 2023, 15(3), 364; https://doi.org/10.3390/d15030364 - 2 Mar 2023
Cited by 4 | Viewed by 2230
Abstract
The basic causes of postzygotic isolation can be elucidated if gametogenesis is studied, which is a drastically different process in males and females. As a step toward clarifying this problem, we obtained an experimental inbred lineage of the eastern mole vole Ellobius tancrei [...] Read more.
The basic causes of postzygotic isolation can be elucidated if gametogenesis is studied, which is a drastically different process in males and females. As a step toward clarifying this problem, we obtained an experimental inbred lineage of the eastern mole vole Ellobius tancrei, whose founder animals were animals with identical diploid numbers 2n = 50 but with different Robertsonian translocations (Rb), namely 2Rb4.12 and 2Rb9.13 in the female and 2Rb.2.18 and 2Rb5.9 in the male. Here, we analyzed strictly inbred hybrids (F1, fertile and F10, sterile) using immunocytochemical methods in order to study spermatocytes during the meiotic prophase I. Previously, the presence of trivalents was assumed to have no significant effect on spermatogenesis and fertility in hybrids, but we demonstrated that spermatogenesis might be disturbed due to the cumulative effects of the retarded synapses of Rb bivalents as well as trivalents and their associations with XX sex bivalents. Alterations in the number of gametes due to the described processes led to a decrease in reproductive capacity up to sterility and can be examined as a mechanism for reproductive isolation, thus starting speciation. Full article
(This article belongs to the Special Issue Diversity in 2022)
Show Figures

Figure 1

Back to TopTop