Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = fiber formability ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8320 KB  
Article
Optimization of SA-Gel Hydrogel Printing Parameters for Extrusion-Based 3D Bioprinting
by Weihong Chai, Yalong An, Xingli Wang, Zhe Yang and Qinghua Wei
Gels 2025, 11(7), 552; https://doi.org/10.3390/gels11070552 - 17 Jul 2025
Viewed by 468
Abstract
Extrusion-based 3D bioprinting is prevalent in tissue engineering, but enhancing precision is critical as demands for functionality and accuracy escalate. Process parameters (nozzle diameter d, layer height h, printing speed v1, extrusion speed v2) significantly influence hydrogel [...] Read more.
Extrusion-based 3D bioprinting is prevalent in tissue engineering, but enhancing precision is critical as demands for functionality and accuracy escalate. Process parameters (nozzle diameter d, layer height h, printing speed v1, extrusion speed v2) significantly influence hydrogel deposition and structure formation. This study optimizes these parameters using an orthogonal experimental design and grey relational analysis. Hydrogel filament formability and the die swell ratio served as optimization objectives. A response mathematical model linking parameters to grey relational grade was established via support vector regression (SVR). Particle Swarm Optimization (PSO) then determined the optimal parameter combination: d = 0.6 mm, h = 0.3 mm, v1 = 8 mm/s, and v2 = 8 mm/s. Comparative experiments showed the optimized parameters predicted by the model with a mean error of 5.15% for printing precision, which outperformed random sets. This data-driven approach reduces uncertainties inherent in conventional simulation methods, enhancing predictive accuracy. The methodology establishes a novel framework for optimizing precision in extrusion-based 3D bioprinting. Full article
(This article belongs to the Special Issue 3D Printing of Gel-Based Materials (2nd Edition))
Show Figures

Graphical abstract

15 pages, 6813 KB  
Article
Melt Spinning Process Optimization of Polyethylene Terephthalate Fiber Structure and Properties from Tetron Cotton Knitted Fabric
by Nanjaporn Roungpaisan, Natee Srisawat, Nattadon Rungruangkitkrai, Nawarat Chartvivatpornchai, Jirachaya Boonyarit, Thorsak Kittikorn and Rungsima Chollakup
Polymers 2023, 15(22), 4364; https://doi.org/10.3390/polym15224364 - 9 Nov 2023
Cited by 4 | Viewed by 3566
Abstract
Polyester/cotton fabrics with different proportions of Tetron Cotton, TC (35% Cotton/65% PET), and Chief Value Cotton, CVC (60% Cotton/40% PET), were investigated by removing the cotton component under various phosphoric acidic conditions including the use of cellulase enzymes. The remaining polyethylene terephthalate (PET) [...] Read more.
Polyester/cotton fabrics with different proportions of Tetron Cotton, TC (35% Cotton/65% PET), and Chief Value Cotton, CVC (60% Cotton/40% PET), were investigated by removing the cotton component under various phosphoric acidic conditions including the use of cellulase enzymes. The remaining polyethylene terephthalate (PET) component was spun using the melt spinning method. Only 85% H3PO4-Enz_TC could be spun into consistent filament fibers. The effects of Acid-Enz TC (obtained from a powder preparation of 85% H3PO4-Enz_TC) at different weight amounts (1, 2, 5, and 10 %wt) blending with WF-rPET powder prepared by white recycled polyester fabric were evaluated for fiber spinnability at different winding speeds of 1000 and 1500 m/min. The results revealed that recycled PET fiber spun by adding Acid-Enz_TC up to 10 %wt gave uniformly distributed filament fibers. A comparative study of the physical, thermal, and mechanical properties also investigated the relationship between the effect of Acid-Enz_TC and the structure of the obtained fibers. Acid-Enz_TC:WF-rPET (5:95) was the optimal ratio. The thermal values were analyzed by DSC and TGA and crystallinity was analyzed by XRD, with mechanical strength closed to 100% WF-rPET. The FTIR analysis of the functional groups showed the removal of cotton from the blended fabrics. Other factors such as the Acid-Enz_TC component in WF-rPET, extraction conditions, purity, thermal, chemical, and exposure experiences also affected the formability and properties of recycled PET made from non-single-component raw materials. This study advanced the understanding of recycling PET from TC fabrics by strategically removing cotton from polyester–cotton blends and then recycling using controlled conditions and processes via the melt spinning method. Full article
(This article belongs to the Special Issue Polymeric Textile Materials)
Show Figures

Graphical abstract

13 pages, 2748 KB  
Article
Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites
by Joseph C. Janicki, Matthew C. Egloff, Dilpreet S. Bajwa, Roberta Amendola, Cecily A. Ryan and Douglas S. Cairns
J. Compos. Sci. 2023, 7(6), 222; https://doi.org/10.3390/jcs7060222 - 29 May 2023
Cited by 3 | Viewed by 1911
Abstract
Carbon fiber reinforced polymers (CFRPs) are increasingly used in the aerospace industry because of their robust mechanical properties and strength to weight ratio. A significant drawback of CFRPs is their resistance to formability when drawing continuous CFRPs into complex shapes as it tends [...] Read more.
Carbon fiber reinforced polymers (CFRPs) are increasingly used in the aerospace industry because of their robust mechanical properties and strength to weight ratio. A significant drawback of CFRPs is their resistance to formability when drawing continuous CFRPs into complex shapes as it tends to bridge, resulting in various defects in the final product. However, CFRP made from Stretch Broken Carbon Fiber (SBCF) aims to solve this issue by demonstrating superior formability compared to conventional continuous CFRPs. To study and validate the performance of SBCF, a statistical design of the experiment was conducted using three different types of CFRPs in tow/tape form. Hexcel (Stamford, CT, USA) IM7-G continuous carbon fiber impregnated with Huntsman (The Woodlands, TX, USA) RDM 2019-053 resin system, Hexcel SBCF impregnated with RDM2019-053 resin, and Montana State University manufactured SBCF impregnated with Huntsman RDM 2019-053 resin were tested in a multitude of forming trials and the data were analyzed using a statistical model to evaluate the forming behavior of each fiber type. The results show that for continuous fiber CFRP tows forming, Fmax and Δmax do not show statistical significance based on temperature fluctuations; however, in SBCF CFRP tows forming, Fmax and Δmax is dominated by the temperature and geometry has a low statistical influence on the Fmax. The lower dependence on tool geometry at higher temperatures indicates possibly superior formability of MSU SBCF. Overall findings from this research help define practical testing methods to compare different CFRPs and provide a repeatable approach to creating a statistical model for measuring results from the formability trials. Full article
(This article belongs to the Topic Advanced Carbon Fiber Reinforced Composite Materials)
Show Figures

Figure 1

14 pages, 4037 KB  
Article
Technogenic Fiber Wastes for Optimizing Concrete
by Sergey Klyuev, Roman Fediuk, Marina Ageeva, Ekaterina Fomina, Alexander Klyuev, Elena Shorstova, Linar Sabitov, Oleg Radaykin, Sergey Anciferov, Diana Kikalishvili, Afonso R. G. de Azevedo, Nikolai Ivanovich Vatin and Mugahed Amran
Materials 2022, 15(14), 5058; https://doi.org/10.3390/ma15145058 - 20 Jul 2022
Cited by 34 | Viewed by 2862
Abstract
A promising method of obtaining mineral fiber fillers for dry building mixtures is the processing of waste that comes from the production of technogenic fibrous materials (TFM). The novelty of the work lies in the fact that, for the first time, basalt production [...] Read more.
A promising method of obtaining mineral fiber fillers for dry building mixtures is the processing of waste that comes from the production of technogenic fibrous materials (TFM). The novelty of the work lies in the fact that, for the first time, basalt production wastes were studied not only as reinforcing components, but also as binder ones involved in concrete structure formation. The purpose of the article is to study the physical and mechanical properties of waste technogenic fibrous materials as additives for optimizing the composition of raw concrete mixes. To assess the possibility of using wastes from the complex processing of TFM that were ground for 5 and 10 min as an active mineral additive to concrete, their chemical, mineralogical, and granulometric compositions, as well as the microstructure and physical and mechanical characteristics of the created concretes, were studied. It is established that the grinding of TFM for 10 min leads to the grinding of not only fibers, but also pellets, the fragments of which are noticeable in the total mass of the substance. The presence of quartz in the amorphous phase of TFM makes it possible to synthesize low-basic calcium silicate hydrates in a targeted manner. At 90 days age, at 10–20% of the content of TFM, the strength indicators increase (above 40 MPa), and at 30% of the additive content, they approach the values of the control composition without additives (above 35 MPa). For all ages, the ratio of flexural and compressive strengths is at the level of 0.2, which characterizes a high reinforcing effect. Analysis of the results suggests the possibility of using waste milled for 10 min as an active mineral additive, as well as to give better formability to the mixture and its micro-reinforcement to obtain fiber-reinforced concrete. Full article
Show Figures

Figure 1

13 pages, 5549 KB  
Article
Fabrication and Formability of Continuous Carbon Fiber Reinforced Resin Matrix Composites Using Additive Manufacturing
by Lining Yang, Donghao Zheng, Guojie Jin and Guang Yang
Crystals 2022, 12(5), 649; https://doi.org/10.3390/cryst12050649 - 2 May 2022
Cited by 9 | Viewed by 3831
Abstract
In the current process for additive manufacturing of continuous carbon fiber reinforced resin matrix composites, the fiber and resin matrix are fed into the molten chamber, and then impregnated and compounded in the original position, and finally extruded and deposited on the substrate. [...] Read more.
In the current process for additive manufacturing of continuous carbon fiber reinforced resin matrix composites, the fiber and resin matrix are fed into the molten chamber, and then impregnated and compounded in the original position, and finally extruded and deposited on the substrate. It is difficult to control the ratio of fiber and resin, and to achieve good interface fusion, which results in an unsatisfactory enhancement effect. Therefore, an additive manufacturing process based on continuous carbon fiber reinforced polylactic acid composite prepreg filament was explored in this study. The effects of various process parameters on the formability of composites were studied through systematic process experiments. The results showed that the process parameters of additive manufacturing have a systematic influence on the forming quality, accuracy and efficiency, and on the mechanical properties of CFRP. Through the experimental optimization of various process parameters, a continuous and stable forming process was achieved when the nozzle aperture was 0.8 mm, the nozzle printing temperature was 240 °C, the substrate temperature was 60 °C, the wire feeding speed was 5 mm/s, the nozzle moving speed was 5 mm/s, the path bonding rate was 40%, and the printing layer thickness was 0.7 mm. Based on the optimized process parameters, direct additive manufacturing of a lightweight and high-strength composite cellular load-bearing structure could be realized. Its volume fraction of carbon fiber was approximately 7.7%, and the tensile strength was up to 224.3 MPa. Full article
Show Figures

Figure 1

13 pages, 4329 KB  
Article
Characterization of the Static, Creep, and Fatigue Tensile Behavior of Basalt Fiber/Polypropylene Composite Rods for Passive Concrete Reinforcement
by Jonathon Tanks, Kimiyoshi Naito and Hisai Ueda
Polymers 2021, 13(18), 3136; https://doi.org/10.3390/polym13183136 - 16 Sep 2021
Cited by 12 | Viewed by 3620
Abstract
Fiber-reinforced polymer (FRP) composites are becoming more frequently adopted as so-called “corrosion-resistant” concrete reinforcement materials due to their excellent mechanical properties and formability. However, their long-term reliability must be thoroughly investigated in order to understand failure mechanisms and to develop service life models. [...] Read more.
Fiber-reinforced polymer (FRP) composites are becoming more frequently adopted as so-called “corrosion-resistant” concrete reinforcement materials due to their excellent mechanical properties and formability. However, their long-term reliability must be thoroughly investigated in order to understand failure mechanisms and to develop service life models. This study is on the mechanical properties of a prototype basalt fiber-reinforced polypropylene (BFPP) rod under quasi-static and sustained loading. Static strength and modulus at elevated temperatures do not decrease significantly, but the variability in strength increases with temperature, as shown by a Weibull analysis. Creep behavior is typical of unidirectional FRP, where the creep rupture strength follows a power law. Fatigue at various stress ratios R reveals the sensitivity of composite strength to the matrix damage, which increases at lower values of R (i.e., higher stress amplitudes). These results are discussed in the context of service life and concrete structure design guidelines. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

18 pages, 8724 KB  
Article
Microstructural Stability of Extruded Mg-Mn-Ce Hollow Profiles with Weld Seams
by Felix Gensch, Sven Gall, Stefan Lechner, Christoph Fahrenson and Soeren Mueller
Metals 2021, 11(4), 547; https://doi.org/10.3390/met11040547 - 27 Mar 2021
Cited by 1 | Viewed by 2333
Abstract
Despite aluminum profiles, magnesium profiles have not been well developed due to the low formability. Furthermore, extruded magnesium profiles show a strong dependence on the mechanical properties, according to the loading direction. This is caused by a strong basal texture, which is directly [...] Read more.
Despite aluminum profiles, magnesium profiles have not been well developed due to the low formability. Furthermore, extruded magnesium profiles show a strong dependence on the mechanical properties, according to the loading direction. This is caused by a strong basal texture, which is directly dependent on the process parameters during the extrusion and the subsequent aging. Thus, the present paper focuses on the analysis of the microstructure and its evolution of extruded magnesium hollow profiles, which were subjected to a series of heat treatments at 475 °C up to one hour. The hollow profiles were extruded through a porthole die, thus, containing longitudinal weld seams. These were formed by material that underwent heavy shearing along the tool surface based on the friction conditions in the porthole die. Three extrusion ratios (ER = 8:1, ER = 16:1, ER = 30:1) were applied, resulting in three different wall thicknesses of the profiles. The microstructure of the profiles was analyzed using light-optical microscopy (LOM) and scanning electron microscopy (SEM) coupled with electron backscatter diffraction (EBSD). The analysis revealed no change of the microstructure of the profiles extruded at the two higher extrusion ratios within the time frame of the heat treatment. In contrast, the microstructure and, thus, the micro-texture of the profile with the lowest extrusion ratio (ER = 8:1) has been affected to a great extent. While only small changes in microstructure in the weld-free area were observed, the initial microstructure in the weld seam was transformed from fine recrystallized grains into a significantly bimodal microstructure mainly due to an abnormal grain growth (AGG). These changes were accompanied by a promotion of the rare-earth (RE) texture component for the weld-free material and a change of the overall texture from RE to a typical non-RE double fiber texture for the weld seam due to the intense AGG within the short-time heat treatments. In addition, the influence of the extrusion ratio on particle size and distribution as well as the character of the microstructure governing the behavior during heat treatments was analyzed and discussed. Full article
(This article belongs to the Special Issue Magnesium Alloys: Design, Processing and Properties)
Show Figures

Figure 1

17 pages, 2169 KB  
Article
Structure/Function Analysis of Nonwoven Cotton Topsheet Fabrics: Multi-Fiber Blending Effects on Fluid Handling and Fabric Handle Mechanics
by Michael Easson, Judson Vincent Edwards, Ningtao Mao, Chris Carr, David Marshall, Jianguo Qu, Elena Graves, Michael Reynolds, Andres Villalpando and Brian Condon
Materials 2018, 11(11), 2077; https://doi.org/10.3390/ma11112077 - 24 Oct 2018
Cited by 7 | Viewed by 5468
Abstract
Greige cotton (GC) has attracted interest in recent years as an eco-friendly, functional fiber for use in nonwoven topsheet materials. GC imparts favorable fluid management and sensorial properties associated with urinary liquid transport and indices related to comfort in wearable incontinence nonwovens. Nonwoven [...] Read more.
Greige cotton (GC) has attracted interest in recent years as an eco-friendly, functional fiber for use in nonwoven topsheet materials. GC imparts favorable fluid management and sensorial properties associated with urinary liquid transport and indices related to comfort in wearable incontinence nonwovens. Nonwoven GC has material surface polarity, an ambient moisture content, and a lipid/polysaccharide matrix that imparts positive fluid mechanic properties applicable to incontinence management topsheet materials. However, a better understanding of the connection between functionality and compositional aspects of molecular, mechanical, and material property relations is still required to employ structure/function relations beyond a priori design. Thus, this study focuses on the relation of key indices of material fluid and sensorial functions to nonwoven topsheet composition. Greige cotton, polypropylene, bleached cotton, and polyester fiber blends were hydroentangled at 60, 80, and 100 bar. Greige cotton polypropylene and bleached cotton were blended at ratios to balance surface polarity, whereas low percentages of polyester were added to confer whiteness properties. Electrokinetic and contact angle measurements were obtained for the hydroentangled nonwovens to assess surface polarity in light of material composition. Notably, materials demonstrated a relation of hydrophobicity to swelling as determined electrokinetically by Δζ, ζplateau, and contact angles greater than 90°. Subsequently, three blended nonwoven fabrics were selected to assess effects on fluid management properties including topsheet performance indices of rewet, strikethrough, and fluid handling (rate and efficiency of transport to the absorbent core). These materials aligned well with commercial topsheet fluid mechanics. Using the Leeds University Fabric Handle Evaluation System (LUFHES), the nonwovens were tested for total fabric hand. The results of the LUFHES measurements are discussed in light of fiber contributions. Fiber ratios were found to correlate well with improvement in softness, flexibility, and formability. This study provides insights that improves the understanding of the multifunctional properties accessible with greige cotton toward decisions valuable to selecting greige cotton as an environmentally friendly fiber for nonwoven topsheets. Full article
(This article belongs to the Special Issue Mechanical Characterization of Bio-Based Materials and Structures)
Show Figures

Figure 1

Back to TopTop