Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = fine diluent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3146 KiB  
Article
Formation of TiB2–MgAl2O4 Composites by SHS Metallurgy
by Chun-Liang Yeh and Fu-You Zheng
Materials 2023, 16(4), 1615; https://doi.org/10.3390/ma16041615 - 15 Feb 2023
Cited by 3 | Viewed by 1411
Abstract
TiB2–MgAl2O4 composites were fabricated by combustion synthesis involving metallothermic reduction reactions. Thermite reagents contained Al and Mg as dual reductants and TiO2 or B2O3 as the oxidant. The reactant mixtures also comprised elemental Ti [...] Read more.
TiB2–MgAl2O4 composites were fabricated by combustion synthesis involving metallothermic reduction reactions. Thermite reagents contained Al and Mg as dual reductants and TiO2 or B2O3 as the oxidant. The reactant mixtures also comprised elemental Ti and boron, as well as a small amount of Al2O3 or MgO to serve as the combustion moderator. Four reaction systems were conducted and all of them were exothermic enough to proceed in the mode of self-propagating high-temperature synthesis (SHS). The reaction based on B2O3/Al/Mg thermite and diluted with MgO was the most exothermic, while that containing TiO2/Al/Mg thermite and Al2O3 as the diluent was the least. Depending on different thermites and diluents, the combustion front temperatures in a range from 1320 to 1720 °C, and combustion wave velocity from 3.9 to 5.7 mm/s were measured. The XRD spectra confirmed in situ formation of TiB2 and MgAl2O4. It is believed that MgAl2O4 was synthesized through a combination reaction between Al2O3 and MgO, both of which can be totally or partially produced from the metallothermic reduction of B2O3 or TiO2. The microstructure of the TiB2–MgAl2O4 composite exhibited fine TiB2 crystals surrounded by large densified MgAl2O4 grains. This study demonstrated an energy-saving and efficient route for fabricating MgAl2O4-containing composites. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys)
Show Figures

Figure 1

21 pages, 4593 KiB  
Article
Development of High Dose Oseltamivir Phosphate Dry Powder for Inhalation Therapy in Viral Pneumonia
by Shahir Aziz, Regina Scherlieβ and Hartwig Steckel
Pharmaceutics 2020, 12(12), 1154; https://doi.org/10.3390/pharmaceutics12121154 - 27 Nov 2020
Cited by 8 | Viewed by 4158
Abstract
Oseltamivir phosphate (OP) is an antiviral drug available only as oral therapy for the treatment of influenza and as a potential treatment option when in combination with other medication in the fight against the corona virus disease (COVID-19) pneumonia. In this study, OP [...] Read more.
Oseltamivir phosphate (OP) is an antiviral drug available only as oral therapy for the treatment of influenza and as a potential treatment option when in combination with other medication in the fight against the corona virus disease (COVID-19) pneumonia. In this study, OP was formulated as a dry powder for inhalation, which allows drug targeting to the site of action and potentially reduces the dose, aiming a more efficient therapy. Binary formulations were based on micronized excipient particles acting like diluents, which were blended with the drug OP. Different excipient types, excipient ratios, and excipient size distributions were prepared and examined. To investigate the feasibility of delivering high doses of OP in a single dose, 1:1, 1:3, and 3:1 drug/diluent blending ratios have been prepared. Subsequently, the aerosolization performance was evaluated for all prepared formulations by cascade impaction using a novel medium-resistance capsule-based inhaler (UNI-Haler). Formulations with micronized trehalose showed relatively excellent aerosolization performance with highest fine-particle doses in comparison to examined lactose, mannitol, and glucose under similar conditions. Focusing on the trehalose-based dry-powder inhalers’ (DPIs) formulations, a physicochemical characterization of extra micronized grade trehalose in relation to the achieved performance in dispersing OP was performed. Additionally, an early indication of inhaled OP safety on lung cells was noted by the viability MTT assay utilizing Calu-3 cells. Full article
(This article belongs to the Special Issue Drug Delivery through Pulmonary)
Show Figures

Graphical abstract

Back to TopTop