Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = flexible fault current limiter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2218 KB  
Article
Improved Time-Domain Distance Protection for Two-Terminal Weak Feed AC Systems Considering the Influence of Control Strategies and Distributed Capacitor Currents
by Ping Xiong, Xiaoqian Zhu, Yu Sun, Lie Li, Yifan Zhao, Qiangqiang Gao and Junjie Hou
Electronics 2025, 14(17), 3431; https://doi.org/10.3390/electronics14173431 - 28 Aug 2025
Viewed by 476
Abstract
The flexible DC transmission project of renewable energy has become an inevitable development trend for large-scale renewable energy grid connection. A two-terminal weak feed (TTWF) AC system is often composed of 100% power electronic equipment. The traditional fault control strategy adopted after a [...] Read more.
The flexible DC transmission project of renewable energy has become an inevitable development trend for large-scale renewable energy grid connection. A two-terminal weak feed (TTWF) AC system is often composed of 100% power electronic equipment. The traditional fault control strategy adopted after a fault in the converter at both terminals of the line limits the fault current and controls the phase, resulting in a decrease in the time-domain distance protection performance. This paper first analyzes the adaptability challenges of time-domain distance protection in TTWF. Based on detailed fault characteristic studies, two improvement approaches are proposed: (1) accounting for phase control effects by equivalently modeling the fault impedance as a series combination of fault resistance and inductance; and (2) incorporating distributed capacitance effects through fault differential equation derivation based on π-type line equivalent models. A novel time-domain distance protection method is subsequently developed, comprehensively considering control strategy impacts and distributed capacitive currents. Simulation tests verify that the proposed method maintains reliable operation under severe conditions, including 300 Ω fault resistance and 30 dB white noise interference, demonstrating significantly improved resistance to fault impedance and noise compared to conventional solutions. Full article
Show Figures

Figure 1

27 pages, 2132 KB  
Article
Protection Principle of DC Line Based on Fault Component of Line Mode Voltage with Current-Limiting Reactor
by Weiming Zhang, Tiecheng Li, Xianzhi Wang, Qingquan Liu, Shiyan Liu, Mingyu Luo and Zhihui Dai
Energies 2025, 18(16), 4271; https://doi.org/10.3390/en18164271 - 11 Aug 2025
Cited by 1 | Viewed by 461
Abstract
High-resistance faults on the DC lines of multi-terminal VSC-HVDC grids lead to insufficient protection reliability, and the introduction of current-limiting strategies alters the system’s intrinsic fault characteristics, degrading protection performance. To address these issues, we propose a DC-line protection scheme that is immune [...] Read more.
High-resistance faults on the DC lines of multi-terminal VSC-HVDC grids lead to insufficient protection reliability, and the introduction of current-limiting strategies alters the system’s intrinsic fault characteristics, degrading protection performance. To address these issues, we propose a DC-line protection scheme that is immune to converter control strategies and highly tolerant to fault resistance. First, based on the grid topology, post-fault current paths are analyzed, and the fault characteristics produced solely by the fault-induced voltage source are identified. A sequential overlapping derivative transformation is then employed to magnify the discrepancy between internal and external faults, forming the core of the fault-identification criterion; the zero-mode component is used for pole selection. Finally, a four-terminal VSC-HVDC model is built in PSCAD/EMTDC version 4.6.2 for validation. Simulation results show that, after applying the current-limiting strategy, the characteristic quantity changes only marginally, and the proposed protection can reliably withstand fault resistances of up to 700 Ω. Full article
(This article belongs to the Special Issue Power Electronics in Renewable, Storage and Charging Systems)
Show Figures

Figure 1

23 pages, 6207 KB  
Article
Open-Switch Fault Diagnosis for Grid-Tied HANPC Converters Using Generalized Voltage Residuals Model and Current Polarity in Flexible Distribution Networks
by Xing Peng, Fan Xiao, Ming Li, Yizhe Chen, Yifan Gao, Ruifeng Zhao and Jiangang Lu
Energies 2025, 18(14), 3855; https://doi.org/10.3390/en18143855 - 20 Jul 2025
Viewed by 451
Abstract
The diagnosis of open-circuit (OC) faults in power switches is the premise for implementing fault-tolerant control, a critical aspect in ensuring the reliable operation of three-level hybrid active neutral-point-clamped (HANPC) converters in flexible distribution networks. However, existing fault diagnosis methods do not clearly [...] Read more.
The diagnosis of open-circuit (OC) faults in power switches is the premise for implementing fault-tolerant control, a critical aspect in ensuring the reliable operation of three-level hybrid active neutral-point-clamped (HANPC) converters in flexible distribution networks. However, existing fault diagnosis methods do not clearly reveal the relationship between the switching-state sequence state and the modulation voltage before and after the fault, which limits their applicability in grid-tied HANPC converters. In this article, a generalized voltage residuals model, taken as the primary diagnostic variable, is proposed for switch OC fault diagnosis in HANPC converters, and the physical meaning is established by introducing the metric of “the variation of the pulse equivalent area”. To distinguish between faulty switches with similar fault characteristics, the neutral current path is reconfigured with a set of rearranged gate sequences. Meanwhile, the auxiliary diagnostic variable, named the current polarity state variable, is developed by means of a sliding window counting algorithm. Additionally, as a case study, a diagnostic criterion for the single-switch fault of HANPC converters is designed by using proposed diagnostic variables. Experimental results are presented to verify the effectiveness of the proposed fault diagnosis method, which achieves accurate faulty switch identification in all tested scenarios within 25 ms. Full article
Show Figures

Figure 1

16 pages, 4237 KB  
Article
Solid-State Circuit Breaker Topology Design Methodology for Smart DC Distribution Grids with Millisecond-Level Self-Healing Capability
by Baoquan Wei, Haoxiang Xiao, Hong Liu, Dongyu Li, Fangming Deng, Benren Pan and Zewen Li
Energies 2025, 18(14), 3613; https://doi.org/10.3390/en18143613 - 9 Jul 2025
Viewed by 955
Abstract
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing [...] Read more.
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing an adaptive current-limiting branch topology, the proposed solution reduces the risk of system oscillations induced by current-limiting inductors during normal operation and minimizes steady-state losses in the breaker. Upon fault occurrence, the current-limiting inductor is automatically activated to effectively suppress the transient current rise rate. An energy dissipation circuit (EDC) featuring a resistor as the primary energy absorber and an auxiliary varistor (MOV) for voltage clamping, alongside a snubber circuit, provides an independent path for inductor energy release after faults. This design significantly alleviates the impact of MOV capacity constraints on the fault isolation process compared to traditional schemes where the MOV is the primary energy sink. The proposed topology employs a symmetrical bridge structure compatible with both pole-to-pole and pole-to-ground fault scenarios. Parameter optimization ensures the IGBT voltage withstand capability and energy dissipation efficiency. Simulation and experimental results demonstrate that this scheme achieves fault isolation within 0.1 ms, reduces the maximum fault current-to-rated current ratio to 5.8, and exhibits significantly shorter isolation times compared to conventional approaches. This provides an effective solution for segment switches and tie switches in millisecond-level self-healing systems for both low-voltage (LVDC, e.g., 750 V/1500 V DC) and medium-voltage (MVDC, e.g., 10–35 kV DC) smart DC distribution grids, particularly in applications demanding ultra-fast fault isolation such as data centers, electric vehicle (EV) fast-charging parks, and shipboard power systems. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

23 pages, 4741 KB  
Article
Advanced Diagnostic Techniques for Earthing Brush Faults Detection in Large Turbine Generators
by Katudi Oupa Mailula and Akshay Kumar Saha
Energies 2025, 18(14), 3597; https://doi.org/10.3390/en18143597 - 8 Jul 2025
Cited by 1 | Viewed by 537
Abstract
Large steam turbine generators are increasingly vulnerable to damage from shaft voltages and bearing currents due to the widespread adoption of modern power electronic excitation systems and more flexible operating regimes. Earthing brushes provide a critical path for discharging these shaft currents and [...] Read more.
Large steam turbine generators are increasingly vulnerable to damage from shaft voltages and bearing currents due to the widespread adoption of modern power electronic excitation systems and more flexible operating regimes. Earthing brushes provide a critical path for discharging these shaft currents and voltages, but their effectiveness depends on the timely detection of brush degradation or faults. Conventional monitoring of shaft voltage and current is often rudimentary, typically limited to peak readings, making it challenging to identify specific fault conditions before mechanical damage occurs. This study addresses this gap by systematically analyzing shaft voltage and current signals under various controlled earthing brush fault conditions (floating brushes, worn brushes, and oil/dust contamination) in several large turbine generators. Experimental site tests identified distinct electrical signatures associated with each fault type, demonstrating that online shaft voltage and current measurements can reliably detect and classify earthing brush faults. These include unique RMS, DC, and harmonic patterns in both voltage and current signals, enabling accurate fault classification. These findings highlight the potential for more proactive maintenance and condition-based monitoring, which can reduce unplanned outages and improve the reliability and safety of power generation systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

25 pages, 3362 KB  
Article
A Fault Direction Discrimination Method for a Two-Terminal Weakly Fed AC System Using the Time-Domain Fault Model for the Difference Discrimination of Composite Electrical Quantities
by Lie Li, Yu Sun, Yifan Zhao, Xiaoqian Zhu, Ping Xiong, Wentao Yang and Junjie Hou
Electronics 2025, 14(13), 2556; https://doi.org/10.3390/electronics14132556 - 24 Jun 2025
Viewed by 327
Abstract
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential [...] Read more.
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential transformation in fault characteristics and protection requirements. At present, in research, the traditional directional elements are limited by the negative-sequence control strategy, resulting in the decline of their sensitivity and reliability. Therefore, this paper proposes a model for identifying directional elements using composite electrical quantities that is not affected by the control strategy of the two-terminal weakly fed AC system and can reliably identify the fault direction. Firstly, the adaptability of traditional directional elements under the negative-sequence current suppression strategy on both sides of the system when faults occur in the AC line was analyzed. Secondly, based on the idea of model recognition, the model relationship of fault voltage and current in the case of ground faults and non-ground faults occurring at different locations was analyzed. Finally, a fitted voltage was constructed and the Kendall correlation coefficient was introduced to achieve fault direction discrimination. Simulation results demonstrate that the proposed pilot protection scheme can operate reliably under conditions of 300 Ω transition resistance and 25 dB noise interference. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

17 pages, 3568 KB  
Article
Multi-Objective Optimal Control of Variable Speed Alternating Current-Excited Pumped Storage Units Considering Electromechanical Coupling Under Grid Voltage Fault
by Tao Liu, Yu Lu, Xiaolong Yang, Ziqiang Man, Wei Yan, Teng Liu, Changjiang Zhan, Xingwei Zhou and Tianyu Fang
Energies 2025, 18(11), 2750; https://doi.org/10.3390/en18112750 - 26 May 2025
Viewed by 464
Abstract
Variable Speed AC-excited Pumped Storage Units (VSACPSUs) demonstrate advantages in flexibility, high efficiency, and fast response, and they play a crucial regulatory role in power systems with increasing renewable energy penetration. Typically connected to weak grids, conventional low-voltage ride-through (LVRT) control methods for [...] Read more.
Variable Speed AC-excited Pumped Storage Units (VSACPSUs) demonstrate advantages in flexibility, high efficiency, and fast response, and they play a crucial regulatory role in power systems with increasing renewable energy penetration. Typically connected to weak grids, conventional low-voltage ride-through (LVRT) control methods for these units suffer from single control objectives, poor adaptability, and neglect of electromechanical coupling characteristics. To address these limitations, this paper proposes a multi-objective optimization strategy considering electromechanical coupling under a grid voltage fault. Firstly, a positive/negative-sequence mathematical model of doubly-fed machines is established. Based on stator winding power expressions, the operational characteristics under a grid fault are analyzed, including stator current imbalance as well as oscillation mechanisms of active power, reactive power, and electromagnetic torque. Considering the differences in rotor current references under different control objectives, a unified rotor current reference expression is constructed by introducing a time-varying weighting factor according to expression characteristics and electromechanical coupling properties. The weighting factor can be dynamically adjusted based on operating conditions and grid requirements using turbine input power, grid current unbalance, and voltage dip depth as key indicators to achieve adaptive control optimization. Finally, a multi-objective optimization model incorporating coupling characteristics and operational requirements is developed. Compared with conventional methods, the proposed strategy demonstrates enhanced adaptability and significantly improved low-voltage ride-through performance. Simulation results verify its effectiveness. Full article
Show Figures

Figure 1

15 pages, 4805 KB  
Article
Experimental Study on the Interfacial Shear Behavior Between ECC and Foamed Concrete
by Runtao Li, Zude Ding, Shunguo Wang, Juan Huang and Caipeng Zhu
Buildings 2025, 15(10), 1582; https://doi.org/10.3390/buildings15101582 - 8 May 2025
Cited by 1 | Viewed by 570
Abstract
In tunnel structures that traverse active fault zones, a vibration isolation layer is often installed between the primary support and the secondary lining. As a result, a three-layer flexible support structure composed of the initial support, damping layer, and secondary lining is formed. [...] Read more.
In tunnel structures that traverse active fault zones, a vibration isolation layer is often installed between the primary support and the secondary lining. As a result, a three-layer flexible support structure composed of the initial support, damping layer, and secondary lining is formed. Currently, there is limited research on the mechanical behavior of interlayer interfaces. To address this, mechanical performance tests were conducted on composite specimens under compression-shear conditions, including foam concrete paired with C30 ordinary concrete (PC specimens) and foam concrete paired with Engineered Cementitious Composites (PE specimens). The interfacial shear mechanical properties under varying normal loads were analyzed. The results indicate that the shear mechanical properties of both PC and PE interfaces increase with rising normal stress. Under identical normal stress conditions, the PC interface exhibits higher shear strength, shear modulus, and shear-slip energy compared to the PE interface, but its failure displacement is smaller. When the normal stress increases from 0 MPa to 2 MPa, the interfacial shear strength of PC specimens increases by 1.6 times, while that of PE specimens increases by 2.7 times. The residual shear strength of the PC specimens and PE specimens increased by 6.1 times and 15.3 times, respectively. B Established the maximum shear strength formulas for PC specimens and PE specimens. These findings provide a scientific basis for the design of tunnel shock-absorbing layers and ductile linings. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 3391 KB  
Article
Characteristics Evaluation and Coordinated Control Strategy of Power-Electronics-Based MMC-HVDC Systems Connected with Wind Farms
by Lin Xu, Chang Liu, Jingyi Zhang, Zhen Tian, Pan Feng and Meng Huang
Appl. Sci. 2025, 15(5), 2582; https://doi.org/10.3390/app15052582 - 27 Feb 2025
Cited by 2 | Viewed by 919
Abstract
Modular multilevel converter–high-voltage direct current (MMC-HVDC) systems are a key technology for integrating large-scale offshore wind farms due to their flexibility, controllability, and decoupled active and reactive power characteristics. However, offshore wind farms rely on power electronic converters, resulting in low inertia, which [...] Read more.
Modular multilevel converter–high-voltage direct current (MMC-HVDC) systems are a key technology for integrating large-scale offshore wind farms due to their flexibility, controllability, and decoupled active and reactive power characteristics. However, offshore wind farms rely on power electronic converters, resulting in low inertia, which can worsen frequency fluctuations and affect system stability during major disturbances. Additionally, the decoupled power control of MMC-HVDC systems limits wind farms’ inertia contribution to the AC grid, exacerbating inertia deficiency. To address this, a coordinated inertia support strategy is proposed, utilizing a DC voltage–frequency mapping method that enables wind farms to perceive frequency variations without communication and rapidly provide inertia response. This strategy coordinates wind farms and MMC-HVDC systems to enhance frequency support. Simulations demonstrate that the proposed strategy overcomes MMC-HVDC’s decoupling effect, accelerates frequency recovery, and improves the inertia response speed, achieving faster power support and higher peak power output, thereby enhancing frequency stability. Furthermore, PSCAD/EMTDC simulations were conducted to analyze the transient characteristics of MMC-HVDC under AC-side faults, verifying that braking resistors (BRs) effectively suppress DC overvoltage, reducing wind farm power curtailment and improving system security. This study provides a new approach for frequency stability control in MMC-HVDC-based offshore wind integration and serves as a reference for further optimization of inertia support and fault protection strategies. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 5482 KB  
Article
Time-Domain Fault Detection and Location Scheme for Flexible DC Distribution Networks
by Yafei Li, Jie Li, Kejun Qian, Xiuyong Yu and Xinsong Zhang
Energies 2024, 17(20), 5128; https://doi.org/10.3390/en17205128 - 15 Oct 2024
Viewed by 1127
Abstract
Accurately detecting and locating the fault point of the DC line is significant for eliminating the fault and restoring the power supply of the flexible DC distribution network as soon as possible. Firstly, a direction pilot protection scheme for a complex DC distribution [...] Read more.
Accurately detecting and locating the fault point of the DC line is significant for eliminating the fault and restoring the power supply of the flexible DC distribution network as soon as possible. Firstly, a direction pilot protection scheme for a complex DC distribution network is proposed based on the integral of the current superposition to identify the fault direction. Then, an online time-domain fault location method based on the least square (LS) method to solve the overdetermined equations is proposed by analyzing the fault loop circuit after the DC line fault. The proposed location scheme utilizes fault data at both ends of the line to eliminate the theoretical impact of fault resistance, and the calculation of the current difference method is discussed to reduce the location error of whether the fault current-limiting reactor (CLR) exists. Finally, various simulations by PSCAD/EMTDC V4.5 demonstrate that the proposed scheme has high protection reliability and location results after different fault positions and resistances. The proposed scheme has low requirements for the sampling rate, fault data length, and implementation costs, which can meet practical application requirements. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 7678 KB  
Article
Protection and Fault Isolation Scheme for DC Distribution Network Based on Active Current-Limiting Control
by Langheng Cao, Jiawen Lv, Jing Chen, Feng Zheng and Ning Liang
Symmetry 2024, 16(10), 1275; https://doi.org/10.3390/sym16101275 - 27 Sep 2024
Cited by 3 | Viewed by 1585
Abstract
Aiming at the problems of high peak value fault current, fast rising speed, and being unable to ensure the reliability of the power supply in the non-fault zone in a multi-terminal DC system, a new cascade flexible current limiter and mechanical DC circuit [...] Read more.
Aiming at the problems of high peak value fault current, fast rising speed, and being unable to ensure the reliability of the power supply in the non-fault zone in a multi-terminal DC system, a new cascade flexible current limiter and mechanical DC circuit breaker for medium- and high-voltage distribution networks are proposed. Firstly, the flexible current limiter is triggered by differential under-voltage protection to achieve the effect of interpole voltage clamping, suppressing the fault current and improving the dynamic recovery characteristics of the DC system after fault clearing. Secondly, according to the breaking speed of the DC circuit breaker, the action time of the current limiter can be set flexibly. The directional pilot protection signal of the circuit breaker is used to ensure the continuous action of the current limiter at the converter station side in the fault zone, until the circuit breaker acts to isolate the fault. The protection strategy can also avoid the blocking of the converter station and reduce the requirements for the breaking speed and breaking capacity of the circuit breaker. Finally, a four-terminal medium voltage distribution network model is built in MATLAB/SIMULINK, and the effect of the current limiter and the feasibility of the proposed protection strategy are verified by simulation. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 5459 KB  
Article
Fault Localization in Multi-Terminal DC Distribution Networks Based on PSO Algorithm
by Mingyuan Wang and Yan Xu
Electronics 2024, 13(17), 3420; https://doi.org/10.3390/electronics13173420 - 28 Aug 2024
Cited by 3 | Viewed by 1288
Abstract
Flexible DC power grids are widely recognized as an important component of building smart grids. Compared with traditional AC power grids, flexible DC power grids have strong technical advantages in islanding power supplies, distributed power supplies, regional power supplies, and AC system interconnection. [...] Read more.
Flexible DC power grids are widely recognized as an important component of building smart grids. Compared with traditional AC power grids, flexible DC power grids have strong technical advantages in islanding power supplies, distributed power supplies, regional power supplies, and AC system interconnection. In multi-terminal flexible DC power grids containing renewable energy sources such as solar and wind power, due to the instability and intermittency of renewable energy, it is usually necessary to add energy storage units to pre-regulate the power of the multi-terminal flexible DC power grid in islanded operation. Aiming at the important problem of large current impact and serious consequences when the flexible DC distribution network fails, a combined location method combining an improved impedance method (series current-limiting reactors at both ends of the line to obtain a more accurate current differential value) and a particle swarm optimization algorithm is proposed. Initially, by establishing the enhanced impedance model, the differential variables under the conditions of inter-electrode short-circuit and single-pole grounding fault can be obtained. Then tailor-made fitness functions are designed for these two models to optimize parameter identification. Subsequently, the iterative parameters of the particle swarm optimization algorithm are fine-tuned, giving it dynamic sociality and self-learning ability in the iterative process, which significantly improves the convergence speed and successfully avoids local optimization. Finally, various fault types in a six-terminal DC distribution network are simulated and analyzed by MATLAB, and the results show that this method has good accuracy and robustness. This research provides strong theoretical and methodological support for improving the safety and reliability of DC distribution systems. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

39 pages, 3464 KB  
Review
A Comprehensive Review on the Role of Artificial Intelligence in Power System Stability, Control, and Protection: Insights and Future Directions
by Ibrahim Alhamrouni, Nor Hidayah Abdul Kahar, Mohaned Salem, Mahmood Swadi, Younes Zahroui, Dheyaa Jasim Kadhim, Faisal A. Mohamed and Mohammad Alhuyi Nazari
Appl. Sci. 2024, 14(14), 6214; https://doi.org/10.3390/app14146214 - 17 Jul 2024
Cited by 67 | Viewed by 24692
Abstract
This review comprehensively examines the burgeoning field of intelligent techniques to enhance power systems’ stability, control, and protection. As global energy demands increase and renewable energy sources become more integrated, maintaining the stability and reliability of both conventional power systems and smart grids [...] Read more.
This review comprehensively examines the burgeoning field of intelligent techniques to enhance power systems’ stability, control, and protection. As global energy demands increase and renewable energy sources become more integrated, maintaining the stability and reliability of both conventional power systems and smart grids is crucial. Traditional methods are increasingly insufficient for handling today’s power grids’ complex, dynamic nature. This paper discusses the adoption of advanced intelligence methods, including artificial intelligence (AI), deep learning (DL), machine learning (ML), metaheuristic optimization algorithms, and other AI techniques such as fuzzy logic, reinforcement learning, and model predictive control to address these challenges. It underscores the critical importance of power system stability and the new challenges of integrating diverse energy sources. The paper reviews various intelligent methods used in power system analysis, emphasizing their roles in predictive maintenance, fault detection, real-time control, and monitoring. It details extensive research on the capabilities of AI and ML algorithms to enhance the precision and efficiency of protection systems, showing their effectiveness in accurately identifying and resolving faults. Additionally, it explores the potential of fuzzy logic in decision-making under uncertainty, reinforcement learning for dynamic stability control, and the integration of IoT and big data analytics for real-time system monitoring and optimization. Case studies from the literature are presented, offering valuable insights into practical applications. The review concludes by identifying current limitations and suggesting areas for future research, highlighting the need for more robust, flexible, and scalable intelligent systems in the power sector. This paper is a valuable resource for researchers, engineers, and policymakers, providing a detailed understanding of the current and future potential of intelligent techniques in power system stability, control, and protection. Full article
(This article belongs to the Special Issue Power Systems Stability in Current and Future Scenarios)
Show Figures

Figure 1

15 pages, 3601 KB  
Article
Novel Fault Protection Method for Flexible DC Power Systems
by Genqi Chen, Qing Duan, Caihong Zhao, Haoqing Wang, Guanglin Sha, Jian Gao, Yong Li and Shuiliang Zhou
Energies 2024, 17(14), 3446; https://doi.org/10.3390/en17143446 - 13 Jul 2024
Cited by 1 | Viewed by 1109
Abstract
A fault protection method is proposed for flexible direct-current (DC) power systems based on the cosine similarity of currents in current-limiting reactors. The typical characteristics of external and internal faults in a flexible DC power system were analyzed. The principles of cosine similarity [...] Read more.
A fault protection method is proposed for flexible direct-current (DC) power systems based on the cosine similarity of currents in current-limiting reactors. The typical characteristics of external and internal faults in a flexible DC power system were analyzed. The principles of cosine similarity and the fault current characteristics of current-limiting reactors were used to distinguish between internal and external faults. The ratio of the average positive and negative voltages of the current-limiting reactor was then used to distinguish the fault types and fault line. Finally, a simulation model of a circular flexible DC power system was constructed using MATLAB/Simulink software (2018b). The simulation results show that the proposed protection scheme can quickly and accurately identify the location and type of faults, and has a strong ability to withstand fault resistance and is less affected by distributed capacitance, noise, and communication delay. Full article
(This article belongs to the Special Issue Sustainable Technological Development of Smart Energy Engineering)
Show Figures

Figure 1

10 pages, 3157 KB  
Proceeding Paper
Current Measurement and Fault Detection Based on the Non-Invasive Smart Internet of Things Technique
by Abhrodeep Chanda and Abhishek Gudipalli
Eng. Proc. 2023, 59(1), 174; https://doi.org/10.3390/engproc2023059174 - 17 Jan 2024
Viewed by 1497
Abstract
Graphing the consumption of daily essentials like electricity and water is crucial for minimising waste and estimating per-user usage in light of the modern-day data acquisition rally for a better understanding of customer consumption and patterns. Traditional methods of electrical measurement require the [...] Read more.
Graphing the consumption of daily essentials like electricity and water is crucial for minimising waste and estimating per-user usage in light of the modern-day data acquisition rally for a better understanding of customer consumption and patterns. Traditional methods of electrical measurement require the involvement of a trained professional, while more advanced alternatives can be prohibitively expensive or offer limited customisation options. We address the cost factor, flexibility, and complexity issues by using a non-intrusive clamp current transformer around power lines to measure current, estimate power, and upload it to the cloud with proper statistical data. For domestic and industrial applications, the filtered and referenced outputs are read by a low-cost CPU (ultra-low power) equipped with Wi-Fi, an analog-to-digital converter, and Bluetooth capabilities, which then determines the apparent power with an accuracy of 0.37 to 0.8%. Nonlinearity varies from 0.2% to 0.3% as a function of increasing current; nonetheless, offsets are imperceptible under typical operating conditions. Safety in the event of a sudden, large change in the current profile is one of several factors that determine the current measuring limit, together with the rating of the current transformer utilised and other related filtering, reference, calibration, and coding criteria. Our goal is to make the power consumption statistics accessible on the move at little cost by simplifying the circuit and coding of traditional metres. It is smart in that no hard coding is required to send credentials across routers, and fault signals are detected and relayed in accordance with an algorithm. User-specific servers save data for monitoring and conserving energy usage; users do not need to consult specialists or put their own security at risk. Data are acquired from the power line and sent to the cloud where statistical functions are performed to increase insight into consumption and failure. It has impressive range and accuracy in terms of power and current for residential and business applications. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

Back to TopTop