Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = flip-flops

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2255 KB  
Article
Design and Implementation of a YOLOv2 Accelerator on a Zynq-7000 FPGA
by Huimin Kim and Tae-Kyoung Kim
Sensors 2025, 25(20), 6359; https://doi.org/10.3390/s25206359 - 14 Oct 2025
Viewed by 503
Abstract
You Only Look Once (YOLO) is a convolutional neural network-based object detection algorithm widely used in real-time vision applications. However, its high computational demand leads to significant power consumption and cost when deployed in graphics processing units. Field-programmable gate arrays offer a low-power [...] Read more.
You Only Look Once (YOLO) is a convolutional neural network-based object detection algorithm widely used in real-time vision applications. However, its high computational demand leads to significant power consumption and cost when deployed in graphics processing units. Field-programmable gate arrays offer a low-power alternative. However, their efficient implementation requires architecture-level optimization tailored to limited device resources. This study presents an optimized YOLOv2 accelerator for the Zynq-7000 system-on-chip (SoC). The design employs 16-bit integer quantization, a filter reuse structure, an input feature map reuse scheme using a line buffer, and tiling parameter optimization for the convolution and max pooling layers to maximize resource efficiency. In addition, a stall-based control mechanism is introduced to prevent structural hazards in the pipeline. The proposed accelerator was implemented on the Zynq-7000 SoC board, and a system-level evaluation confirmed a negligible accuracy drop of only 0.2% compared with the 32-bit floating-point baseline. Compared with previous YOLO accelerators on the same SoC, the design achieved up to 26% and 15% reductions in flip-flop and digital signal processor usage, respectively. This result demonstrates feasible deployment on XC7Z020 with DSP 57.27% and FF 16.55% utilization. Full article
(This article belongs to the Special Issue Object Detection and Recognition Based on Deep Learning)
Show Figures

Figure 1

20 pages, 1331 KB  
Review
Sleep Disorders, Dysregulation of Circadian Rhythms, and Fatigue After Craniopharyngioma—A Narrative Review
by Hermann L. Müller
Biomedicines 2025, 13(10), 2356; https://doi.org/10.3390/biomedicines13102356 - 26 Sep 2025
Viewed by 533
Abstract
Introduction: Tumor- and/or treatment-associated hypothalamic damage results in reduced quality of life and increased morbidity due to sleep disorders in survivors of craniopharyngioma. Methods: The narrative review is based on a search of Web of Science, MEDLINE/PubMed, and Embase databases for [...] Read more.
Introduction: Tumor- and/or treatment-associated hypothalamic damage results in reduced quality of life and increased morbidity due to sleep disorders in survivors of craniopharyngioma. Methods: The narrative review is based on a search of Web of Science, MEDLINE/PubMed, and Embase databases for the identification of publications. The search terms craniopharyngioma, sleep disorders, fatigue, and daytime sleepiness were used. Selected English language papers published 1970–2025 were included. Results: Circadian rhythms (wakefulness and sleep) are controlled by hypothalamic suprachiasmatic nuclei and regulated by melatonin. A dysregulation of circadian rhythms due to altered melatonin secretion can be observed in craniopharyngioma with hypothalamic involvement. Furthermore, sleep quality is regulated by lateral hypothalamic areas, the ventrolateral preoptic nucleus, and monoaminergic nuclei which function as the arousal system. Flexible changes between sleep and wakefulness can be achieved through interaction of arousal and sleep-promoting systems named “flip–flop” switch. Insomnia can be the result of damage to the ventrolateral preoptic nucleus. Excessive daytime sleepiness and disrupted sleep patterns can be observed due to dysregulation of lateral hypothalamic areas. Obesity, chronic fatigue, headache, and excessive daytime sleepiness can be the result of poor sleep quality. “Primary” hypothalamic sleep dysfunction, including narcolepsy, dysregulated sleep–wake cycles, and hypersomnia, can be observed due to hypothalamic dysfunction. “Secondary” sleep disturbances including obstructive sleep apnea, insufficient substitution medication for arginine vasopressin deficiency (nocturia), or psychosocial factors are sequelae in patients with craniopharyngioma and hypothalamic lesions. Conclusions: Further research on novel treatment approaches for sleep disorders due to hypothalamic syndrome are warranted to improve the outcome after craniopharyngioma. Full article
(This article belongs to the Special Issue Pediatric Tumors: Diagnosis, Pathogenesis, Treatment, and Outcome)
Show Figures

Figure 1

14 pages, 2677 KB  
Article
Spatial Monitoring of I/O Interconnection Nets in Flip-Chip Packages
by Emmanuel Bender, Moshe Sitbon, Tsuriel Avraham and Michael Gerasimov
Electronics 2025, 14(17), 3549; https://doi.org/10.3390/electronics14173549 - 6 Sep 2025
Viewed by 2436
Abstract
Here, we introduce a novel method for the real-time spatial monitoring of I/O interconnection nets in flip-flop packages. Resistance changes in 39 I/O nets are observed simultaneously to produce a spatial profile of the relative degradations of the solder ball joints, interconnection lines, [...] Read more.
Here, we introduce a novel method for the real-time spatial monitoring of I/O interconnection nets in flip-flop packages. Resistance changes in 39 I/O nets are observed simultaneously to produce a spatial profile of the relative degradations of the solder ball joints, interconnection lines, and transistor gates. Location-specific TTF profiles are generated from the degradation data to show the impact of the I/O nets in the context of their placement on the chip. The system succeeds in formulating a clear trend of resistance increase even in relatively mild constant temperature stress conditions. Test results of four temperatures from 80 °C to 120 °C show a dominant degradation pattern strongly influenced by BTI aging demonstrating an acute vulnerability in the pass gates to voltage and temperature stress. The proposed compact spatial monitor solution can be integrated into virtually all chip orientations. The outcome of this study can assist in foreseeing system vulnerabilities in a large spectrum of packaging and advanced packaging orientations in field applications. Full article
(This article belongs to the Special Issue Advances in Hardware Security Research)
Show Figures

Figure 1

37 pages, 24408 KB  
Review
Molecular Dynamics Simulations of Liposomes: Structure, Dynamics, and Applications
by Ehsan Khodadadi, Ehsaneh Khodadadi, Parth Chaturvedi and Mahmoud Moradi
Membranes 2025, 15(9), 259; https://doi.org/10.3390/membranes15090259 - 29 Aug 2025
Cited by 1 | Viewed by 1875
Abstract
Liposomes are nanoscale, spherical vesicles composed of phospholipid bilayers, typically ranging from 50 to 200 nm in diameter. Their unique ability to encapsulate both hydrophilic and hydrophobic molecules makes them powerful nanocarriers for drug delivery, diagnostics, and vaccine formulations. Several FDA-approved formulations such [...] Read more.
Liposomes are nanoscale, spherical vesicles composed of phospholipid bilayers, typically ranging from 50 to 200 nm in diameter. Their unique ability to encapsulate both hydrophilic and hydrophobic molecules makes them powerful nanocarriers for drug delivery, diagnostics, and vaccine formulations. Several FDA-approved formulations such as Doxil® (Baxter Healthcare Corporation, Deerfield, IL, USA), AmBisome® (Gilead Sciences, Inc., Foster City, CA, USA), and Onivyde® (Ipsen Biopharmaceuticals, Inc., Basking Ridge, NJ, USA) highlight their clinical significance. This review provides a comprehensive synthesis of how molecular dynamics (MD) simulations, particularly coarse-grained (CG) and atomistic approaches, advance our understanding of liposomal membranes. We explore key membrane biophysical properties, including area per lipid (APL), bilayer thickness, segmental order parameter (SCD), radial distribution functions (RDFs), bending modulus, and flip-flop dynamics, and examine how these are modulated by cholesterol concentration, PEGylation, and curvature. Special attention is given to curvature-induced effects in spherical vesicles, such as lipid asymmetry, interleaflet coupling, and stress gradients across the leaflets. We discuss recent developments in vesicle modeling using tools such as TS2CG, CHARMM-GUI Martini Maker, and Packmol, which have enabled the simulation of large-scale, compositionally heterogeneous systems. The review also highlights simulation-guided strategies for designing stealth liposomes, tuning membrane permeability, and enhancing structural stability under physiological conditions. A range of CG force fields, MARTINI, SPICA, SIRAH, ELBA, SDK, as well as emerging machine learning (ML)-based models, are critically assessed for their strengths and limitations. Despite the efficiency of CG models, challenges remain in capturing long-timescale events and atomistic-level interactions, driving the development of hybrid multiscale frameworks and AI-integrated techniques. By bridging experimental findings with in silico insights, MD simulations continue to play a pivotal role in the rational design of next-generation liposomal therapeutics. Full article
(This article belongs to the Collection Feature Papers in 'Membrane Physics and Theory')
Show Figures

Figure 1

16 pages, 4236 KB  
Article
Ternary Logic Design Based on Novel Tunneling-Drift-Diffusion Field-Effect Transistors
by Bin Lu, Hua Qiang, Dawei Wang, Xiaojing Cui, Jiayu Di, Yuanhao Miao, Zhuofan Wang and Jiangang Yu
Nanomaterials 2025, 15(16), 1240; https://doi.org/10.3390/nano15161240 - 13 Aug 2025
Viewed by 691
Abstract
In this paper, a novel Tunneling-Drift-Diffusion Field-Effect Transistor (TDDFET) based on the combination of the quantum tunneling and conventional drift-diffusion mechanisms is proposed for the design of ternary logic circuits. The working principle of the TDDFET is analyzed in detail. Then, the device [...] Read more.
In this paper, a novel Tunneling-Drift-Diffusion Field-Effect Transistor (TDDFET) based on the combination of the quantum tunneling and conventional drift-diffusion mechanisms is proposed for the design of ternary logic circuits. The working principle of the TDDFET is analyzed in detail. Then, the device is packaged as a “black box” based on the table lookup method and further embedded into the HSPICE platform using the Verilog-A language. The basic unit circuits, such as the Standard Ternary Inverter (STI), Negative Ternary Inverter (NTI), Positive Ternary Inverter (PTI), Ternary NAND gate (T-NAND), and Ternary NOR gate (T-NOR), are designed. In addition, based on the designed unit circuits, the combinational logic circuits, such as the Ternary Encoder (T-Encoder), Ternary Decoder (T-Decoder), and Ternary Half Adder (T-HA), and the sequential logic circuits, such as the Ternary D-Latch and edge-triggered Ternary D Flip-Flop (T-DFF), are built, which has important significance for the subsequent investigation of ternary logic circuits. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

23 pages, 14391 KB  
Article
Design of All-Optical Ternary Inverter and Clocked SR Flip-Flop Based on Polarization Conversion and Rotation in Micro-Ring Resonator
by Madan Pal Singh, Jayanta Kumar Rakshit, Kyriakos E. Zoiros and Manjur Hossain
Photonics 2025, 12(8), 762; https://doi.org/10.3390/photonics12080762 - 29 Jul 2025
Viewed by 1163
Abstract
In the present study, a polarization rotation switch (PRS)-based all-optical ternary inverter circuit and ternary clocked SR flip-flop (TCSR) are proposed and discussed. The present scheme is designed by the polarization rotation of light in a waveguide coupled with a micro-ring resonator (MRR). [...] Read more.
In the present study, a polarization rotation switch (PRS)-based all-optical ternary inverter circuit and ternary clocked SR flip-flop (TCSR) are proposed and discussed. The present scheme is designed by the polarization rotation of light in a waveguide coupled with a micro-ring resonator (MRR). The proposed scheme uses linear polarization-encoded light. Here, the ternary (radix = 3) logical states are expressed by the different polarized light. PRS-MRR explores the polarization-encoded methodology, which depends on polarization conversion from one state to another. All-optical ultrafast switching technology is employed to design the ternary NAND gate. We develop the ternary clocked SR flip-flop by employing the NAND gate; it produces a greater number of possible outputs as compared to the binary logic clocked SR flip-flop circuit. The performance of the proposed design is measured by the Jones parameter and Stokes parameter. The results of the polarization rotation-based ternary inverter and clocked SR flip-flop are realized using a pump–probe structure in the MRR. The numerical simulation results are confirmed by the well-known Jones vector (azimuth angle and ellipticity angle) and Stokes parameter (S1, S2, S3) using Ansys Lumerical Interconnect simulation software. Full article
(This article belongs to the Special Issue Advancements in Optical and Acoustic Signal Processing)
Show Figures

Figure 1

15 pages, 1846 KB  
Article
Synthesis of Monothiacalix[4]arene Using the Fragment Condensation Approach
by Daniel Kortus, Oliver Moravec, Hynek Varga, Michal Churý, Kamil Mamleev, Jan Čejka, Hana Dvořáková and Pavel Lhoták
Molecules 2025, 30(15), 3145; https://doi.org/10.3390/molecules30153145 - 27 Jul 2025
Viewed by 504
Abstract
The article describes a simple and scalable preparation of 2-monothiacalix[4]arene 7, the simplest representative of the mixed-bridged (CH2 and S) calix[4]arenes. The synthesis is based on the condensation of linear building blocks (bisphenols), which are relatively readily available, and allows, depending [...] Read more.
The article describes a simple and scalable preparation of 2-monothiacalix[4]arene 7, the simplest representative of the mixed-bridged (CH2 and S) calix[4]arenes. The synthesis is based on the condensation of linear building blocks (bisphenols), which are relatively readily available, and allows, depending on the conditions, the use of two alternative reaction routes that provide macrocycle 7 in high yield. The dynamic behavior of the basic macrocyclic skeleton was investigated using NMR spectroscopy at variable temperatures. High-temperature measurements showed that compound 7 undergoes a conecone equilibrium with activation free energy ΔG# of the inversion process of 63 kJ·mol−1. Interestingly, the same barrier for the oxidized sulfone derivative 14 shows a value of 60 kJ·mol−1, indicating weakened hydrogen bonds at the lower rim of the calixarene. The same was also confirmed at low temperatures, when barriers to changing the direction of the cyclic hydrogen bond arrays (flip-flop mechanism) were determined (compare ΔG# = 44 kJ·mol−1 for 7 vs. ΔG# = 40 kJ·mol−1 for 14). Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry II)
Show Figures

Graphical abstract

22 pages, 7579 KB  
Article
Adaptive Autoencoder-Based Intrusion Detection System with Single Threshold for CAN Networks
by Donghyeon Kim, Hyungchul Im and Seongsoo Lee
Sensors 2025, 25(13), 4174; https://doi.org/10.3390/s25134174 - 4 Jul 2025
Cited by 1 | Viewed by 1103
Abstract
The controller area network (CAN) protocol, widely used for in-vehicle communication, lacks built-in security features and is inherently vulnerable to various attacks. Numerous attack techniques against CAN have been reported, leading to intrusion detection systems (IDSs) tailored for in-vehicle networks. In this study, [...] Read more.
The controller area network (CAN) protocol, widely used for in-vehicle communication, lacks built-in security features and is inherently vulnerable to various attacks. Numerous attack techniques against CAN have been reported, leading to intrusion detection systems (IDSs) tailored for in-vehicle networks. In this study, we propose a novel lightweight unsupervised IDS for CAN networks, designed for real-time, on-device implementation. The proposed autoencoder model was trained exclusively on normal data. A portion of the attack data was utilized to determine the optimal detection threshold using a Gaussian kernel density estimation function, while the frame count was selected based on error rate analysis. Subsequently, the model was evaluated using four types of attack data that were not seen during training. Notably, the model employs a single threshold across all attack types, enabling detection using a single model. Furthermore, the designed software model was optimized for hardware implementation and validated on an FPGA under a real-time CAN communication environment. When evaluated, the proposed system achieved an average accuracy of 99.2%, precision of 99.2%, recall of 99.1%, and F1-score of 99.2%. Furthermore, compared to existing FPGA-based IDS models, our model reduced the usage of LUTs, flip-flops, and power by average factors of 1/5, 1/6, and 1/11. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Automotive Engineering)
Show Figures

Figure 1

12 pages, 3592 KB  
Article
Membrane-Embedded Anti-Cancer Peptide Causes a Minimal Structural Perturbation That Is Sufficient to Enhance Phospholipid Flip-Flop and Charge Permeation Rates
by Alfredo E. Cardenas and Ron Elber
Life 2025, 15(7), 1007; https://doi.org/10.3390/life15071007 - 25 Jun 2025
Viewed by 610
Abstract
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents [...] Read more.
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents the permeation of hydrophilic, well-solvated molecules across the lipid hydrophobic barrier. The barrier is not absolute, and several approaches are available for efficient translocation. Channels and pumps enable selective and efficient transport across membranes. Another transport mechanism is passive permeation, in which permeants, without assistance, directly transport across membranes. Passive transport is coupled to transient defects in the membrane structure that make crossing the hydrophobic bilayer easier—for example, displacements of head groups from aqueous solution–membrane interface into the membrane core. The defects, in turn, are rare unless assisted by passively permeating molecules such as cell-penetrating peptides that distort the membrane structure. One possible defect is a phospholipid molecule with a head pointing to the hydrophobic core. This membrane distortion allows head group flipping from one layer to the other. We show computationally, using atomically detailed simulations and the Milestoning theory, that the presence of a cell-penetrating peptide in a membrane greatly increases phospholipid flip-flop rate and hence defect formation and the permeability of membranes. Full article
(This article belongs to the Special Issue Applications of Molecular Dynamics to Biological Systems)
Show Figures

Figure 1

13 pages, 1959 KB  
Article
An Optical Date Flip-Flop Based on the Dynamic Coding of a Layered VO2 Metastructure
by Na Pei, Zhi-Cheng Xu, Jia-Yuan Zhang, Heng-Jing Liu and Hai-Feng Zhang
Photonics 2025, 12(7), 631; https://doi.org/10.3390/photonics12070631 - 20 Jun 2025
Viewed by 399
Abstract
A vanadium dioxide (VO2)-based layered metastructure is proposed that enables dynamic optical encoding in the range of 15.5 GHz to 16 GHz through synergistic temperature and magnetic field modulation. By utilizing sequential temperature control, an optical date flip-flop (DFF) functionality can [...] Read more.
A vanadium dioxide (VO2)-based layered metastructure is proposed that enables dynamic optical encoding in the range of 15.5 GHz to 16 GHz through synergistic temperature and magnetic field modulation. By utilizing sequential temperature control, an optical date flip-flop (DFF) functionality can be achieved. The VO2 component of the metastructure exhibits an insulator-to-metal phase transition under thermal regulation, accompanied by significant changes in its optical properties. Furthermore, by optimizing the sequential temperature-control strategy, an optical DFF is successfully implemented whose output state can be dynamically controlled by the data input (D), timing control port (T), and state control port (B). A novel technical approach is provided for programmable photonic devices, dynamic optical information storage, and optical computing systems. Full article
Show Figures

Figure 1

27 pages, 9435 KB  
Review
Comprehensive Insights into the Cholesterol-Mediated Modulation of Membrane Function Through Molecular Dynamics Simulations
by Ehsaneh Khodadadi, Ehsan Khodadadi, Parth Chaturvedi and Mahmoud Moradi
Membranes 2025, 15(6), 173; https://doi.org/10.3390/membranes15060173 - 8 Jun 2025
Cited by 3 | Viewed by 4574
Abstract
Cholesterol plays an essential role in biological membranes and is crucial for maintaining their stability and functionality. In addition to biological membranes, cholesterol is also used in various synthetic lipid-based structures such as liposomes, proteoliposomes, and nanodiscs. Cholesterol regulates membrane properties by influencing [...] Read more.
Cholesterol plays an essential role in biological membranes and is crucial for maintaining their stability and functionality. In addition to biological membranes, cholesterol is also used in various synthetic lipid-based structures such as liposomes, proteoliposomes, and nanodiscs. Cholesterol regulates membrane properties by influencing the density of lipids, phase separation into liquid-ordered (Lo) and liquid-disordered (Ld) areas, and stability of protein–membrane interactions. For planar bilayers, cholesterol thickens the membrane, decreases permeability, and brings lipids into well-ordered domains, thereby increasing membrane rigidity by condensing lipid packing, while maintaining lateral lipid mobility in disordered regions to preserve overall membrane fluidity. It modulates membrane curvature in curved bilayers and vesicles, and stabilizes low-curvature regions, which are important for structural integrity. In liposomes, cholesterol facilitates drug encapsulation and release by controlling bilayer flexibility and stability. In nanodiscs, cholesterol enhances structural integrity and protein compatibility, which enables the investigation of protein–lipid interactions under physiological conditions. In proteoliposomes, cholesterol regulates the conformational stability of embedded proteins that have implications for protein–lipid interaction. Developments in molecular dynamics (MD) techniques, from coarse-grained to all-atom simulations, have shown how cholesterol modulates lipid tail ordering, membrane curvature, and flip-flop behavior in response to concentration. Such simulations provide insights into the mechanisms underlying membrane-associated diseases, aiding in the design of efficient drug delivery systems. In this review, we combine results from MD simulations to provide a synoptic explanation of cholesterol’s complex function in regulating membrane behavior. This synthesis combines fundamental biophysical information with practical membrane engineering, underscoring cholesterol’s important role in membrane structure, dynamics, and performance, and paving the way for rational design of stable and functional lipid-based systems to be used in medicine. In this review, we gather evidence from MD simulations to provide an overview of cholesterol’s complex function regulating membrane behavior. This synthesis connects the fundamental biophysical science with practical membrane engineering, which highlights cholesterol’s important role in membrane structure, dynamics, and function and helps us rationally design stable and functional lipid-based systems for therapeutic purposes. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

14 pages, 679 KB  
Article
A Multi-Tenant Rate Limiter on FPGA
by Yunfei Guo, Zhichuan Guo and Mengting Zhang
Electronics 2025, 14(6), 1155; https://doi.org/10.3390/electronics14061155 - 15 Mar 2025
Viewed by 940
Abstract
Field-programmable gate arrays (FPGAs) are extensively utilized to accelerate virtualized network functions (VNFs) within cloud networks. Imposing rate limits on different flows can enhance the overall bandwidth utilization of the network. Existing hardware token bucket approaches fundamentally trade off resource efficiency against configuration [...] Read more.
Field-programmable gate arrays (FPGAs) are extensively utilized to accelerate virtualized network functions (VNFs) within cloud networks. Imposing rate limits on different flows can enhance the overall bandwidth utilization of the network. Existing hardware token bucket approaches fundamentally trade off resource efficiency against configuration granularity when supporting massive queues (>512). This paper proposes a novel rate-limiting method based on the token bucket algorithm and achieves efficient resource utilization through head packet scheduling and token-to-time conversion. The experimental results show that our method achieves 1.16% lookup-table (LUT) and 2.62% flip flop (FF) resource usage compared to state-of-the-art methods, while supporting 512 queues with <0.4% rate deviation across a 100 Kbps–10 Gbps range (5-decade dynamic range). Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

20 pages, 1435 KB  
Article
Hardware Acceleration-Based Privacy-Aware Authentication Scheme for Internet of Vehicles Using Physical Unclonable Function
by Ujunwa Madububa Mbachu, Rabeea Fatima, Ahmed Sherif, Elbert Dockery, Mohamed Mahmoud, Maazen Alsabaan and Kasem Khalil
Sensors 2025, 25(5), 1629; https://doi.org/10.3390/s25051629 - 6 Mar 2025
Cited by 4 | Viewed by 1477
Abstract
Due to technological advancement, the advent of smart cities has facilitated the deployment of advanced urban management systems. This integration has been made possible through the Internet of Vehicles (IoV), a foundational technology. By connecting smart cities with vehicles, the IoV enhances the [...] Read more.
Due to technological advancement, the advent of smart cities has facilitated the deployment of advanced urban management systems. This integration has been made possible through the Internet of Vehicles (IoV), a foundational technology. By connecting smart cities with vehicles, the IoV enhances the safety and efficiency of transportation. This interconnected system facilitates wireless communication among vehicles, enabling the exchange of crucial traffic information. However, this significant technological advancement also raises concerns regarding privacy for individual users. This paper presents an innovative privacy-preserving authentication scheme focusing on IoV using physical unclonable functions (PUFs). This scheme employs the k-nearest neighbor (KNN) encryption technique, which possesses a multi-multi searching property. The main objective of this scheme is to authenticate autonomous vehicles (AVs) within the IoV framework. An innovative PUF design is applied to generate random keys for our authentication scheme to enhance security. This two-layer security approach protects against various cyber-attacks, including fraudulent identities, man-in-the-middle attacks, and unauthorized access to individual user information. Due to the substantial amount of information that needs to be processed for authentication purposes, our scheme is implemented using hardware acceleration on an Nexys A7-100T FPGA board. Our analysis of privacy and security illustrates the effective accomplishment of specified design goals. Furthermore, the performance analysis reveals that our approach imposes a minimal communication and computational burden and optimally utilizes hardware resources to accomplish design objectives. The results show that the proposed authentication scheme exhibits a non-linear increase in encryption time with a growing AV ID size, starting at 5μs for 100 bits and rising to 39 μs for 800 bits. Also, the result demonstrates a more gradual, linear increase in the search time with a growing AV ID size, starting at less than 1 μs for 100 bits and rising to less than 8 μs for 800 bits. Additionally, for hardware utilization, our scheme uses only 25% from DSP slides and IO pins, 22.2% from BRAM, 5.6% from flip-flops, and 24.3% from LUTs. Full article
Show Figures

Figure 1

16 pages, 7997 KB  
Article
A 12 dBm B1dB N-Path Notch Filter for Transmitter Leakage Suppression in Wideband Receiver
by Xujia Luo, Shihao Qi, Shang Xu, Haotian Zhang, Qinfen Xu, Guoan Wu and Lamin Zhan
Electronics 2025, 14(5), 854; https://doi.org/10.3390/electronics14050854 - 21 Feb 2025
Viewed by 1001
Abstract
This paper proposes an N-path notch filter while offering high blocker power handling for co-address transmitter (TX) leakage suppression in a wideband receiver. The filter includes an impedance flip-flop over an adjustable transmission line in a block band, achieving a 12.3 to 13.6 [...] Read more.
This paper proposes an N-path notch filter while offering high blocker power handling for co-address transmitter (TX) leakage suppression in a wideband receiver. The filter includes an impedance flip-flop over an adjustable transmission line in a block band, achieving a 12.3 to 13.6 dBm blocker 1 dB compression point (B1dB) and a 12.8 to 14 dBm 1 dB compression point (P1dB) in a 130 nm CMOS SOI process. This design effectively suppresses broadband interference in the receiving system and improves the dynamic range and linearity of the receiver (RX) channel. The filter consumes 186 to 242 mW in the 0.3 GHz to 0.6 GHz band and has an active chip area of 0.21 mm2, providing maximum rejection >25 dB, with a passband third-order input intercept point (IIP3) of 22 to 25.2 dBm. The design of the adjustable transmission line structure is analyzed to reduce the insertion loss in terms of impedance and to achieve a 1.7 to 2 dB insertion loss shortfall over the RF tuning range. Full article
Show Figures

Figure 1

23 pages, 21467 KB  
Article
Protecting Dynamically Obfuscated Scan Chain Architecture from DOSCrack with Trivium Pseudo-Random Number Generation
by Jiaming Wu, Olivia Dizon-Paradis, Sazadur Rahman, Damon L. Woodard and Domenic Forte
Cryptography 2025, 9(1), 6; https://doi.org/10.3390/cryptography9010006 - 14 Jan 2025
Cited by 1 | Viewed by 1567
Abstract
Design-for-test/debug (DfT/D) introduces scan chain testing to increase testability and fault coverage by inserting scan flip-flops. However, these scan chains are also known to be a liability for security primitives. In previous research, the dynamically obfuscated scan chain (DOSC) was introduced to protect [...] Read more.
Design-for-test/debug (DfT/D) introduces scan chain testing to increase testability and fault coverage by inserting scan flip-flops. However, these scan chains are also known to be a liability for security primitives. In previous research, the dynamically obfuscated scan chain (DOSC) was introduced to protect logic-locking keys from scan-based attacks by obscuring test patterns and responses. In this paper, we present DOSCrack, an oracle-guided attack to de-obfuscate DOSC using symbolic execution and binary clustering, which significantly reduces the candidate seed space to a manageable quantity. Our symbolic execution engine employs scan mode simulation and satisfiability modulo theories (SMT) solvers to reduce the possible seed space, while obfuscation key clustering allows us to effectively rule out a group of seeds that share similarities. An integral component of our approach is the use of sequential equivalence checking (SEC), which aids in identifying distinct simulation patterns to differentiate between potential obfuscation keys. We experimentally applied our DOSCrack framework on four different sizes of DOSC benchmarks and compared their runtime and complexity. Finally, we propose a low-cost countermeasure to DOSCrack which incorporates a nonlinear feedback shift register (NLFSR) to increase the effort of symbolic execution modeling and serves as an effective defense against our DOSCrack framework. Our research effectively addresses a critical vulnerability in scan-chain obfuscation methodologies, offering insights into DfT/D and logic locking for both academic research and industrial applications. Our framework highlights the need to craft robust and adaptable defense mechanisms to counter evolving scan-based attacks. Full article
(This article belongs to the Special Issue Emerging Topics in Hardware Security)
Show Figures

Figure 1

Back to TopTop