Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = flood hazard communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9349 KiB  
Article
Optical Remote Sensing for Global Flood Disaster Mapping: A Critical Review Towards Operational Readiness
by Molan Zhang, Zhiqiang Chen, Jun Wang, Bandana Kar, Marlon Pierce, Kristy Tiampo, Ronald Eguchi and Margaret Glasscoe
Remote Sens. 2025, 17(11), 1886; https://doi.org/10.3390/rs17111886 - 29 May 2025
Viewed by 163
Abstract
Flood hazards and their disastrous consequences disrupt economic activity and threaten human lives globally. From a remote sensing perspective, since floods are often triggered by extreme climatic events, such as heavy rainstorms or tropical cyclones, the efficacy of using optical remote sensing data [...] Read more.
Flood hazards and their disastrous consequences disrupt economic activity and threaten human lives globally. From a remote sensing perspective, since floods are often triggered by extreme climatic events, such as heavy rainstorms or tropical cyclones, the efficacy of using optical remote sensing data for disaster and damage mapping is significantly compromised. In many flood events, obtaining cloud-free images covering the affected area remains challenging. Nonetheless, considering that floods are the most frequent type of natural disaster on Earth, optical remote sensing data should be fully exploited. In this article, firstly, we will present a critical review of remote sensing data and machine learning methods for global flood-induced damage detection and mapping. We will primarily consider two types of remote sensing data: moderate-resolution multi-spectral data and high-resolution true-color or panchromatic data. Big and semantic databases available for advanced machine learning to date will be introduced. We will develop a set of best-use case scenarios for using these two data types to conduct water-body and built-up area mapping with no to moderate cloud coverage. We will cross-verify traditional machine learning and current deep learning methods and provide both benchmark databases and algorithms for the research community. Last, with this suite of data and algorithms, we will demonstrate the development of a cloud-computing-supported computing gateway, which houses the services of both our remote-sensing-based machine learning engine and a web-based user interface. Under this gateway, optical satellite data will be retrieved based on a global flood alerting system. Near-real-time pre- and post-event flood analytics are then showcased for end-user decision-making, providing insights such as the extent of severely flooded areas, an estimated number of affected buildings, and spatial trends of damage. In summary, this paper’s novel contributions include (1) a critical synthesis of operational readiness in flood mapping, (2) a multi-sensor-aware review of optical limitations, (3) the deployment of a lightweight ML pipeline for near-real-time mapping, and (4) a proposal of the GloFIM platform for field-level disaster support. Full article
Show Figures

Figure 1

11 pages, 2775 KiB  
Article
Assessing the Role of Coastal Habitats in Flood Reduction in Selected Communities of Rivers State
by Chinomnso C. Onwubiko and Denis Worlanyo Aheto
Coasts 2025, 5(2), 17; https://doi.org/10.3390/coasts5020017 - 27 May 2025
Viewed by 119
Abstract
Coastal habitats are crucial in mitigating the impact of coastal hazards on society. However, the shortage of information about the role of these habitats in reducing floods in Rivers State, Nigeria, is limited. This study aims to assess the contribution of mangrove habitats [...] Read more.
Coastal habitats are crucial in mitigating the impact of coastal hazards on society. However, the shortage of information about the role of these habitats in reducing floods in Rivers State, Nigeria, is limited. This study aims to assess the contribution of mangrove habitats in protecting coastal communities from flooding using the InVEST coastal vulnerability model (version 3.10.2). The model analyzes various data inputs and assigns relative numbers, ranging from 1 to 5, indicating different levels of exposure. Data on population, bathymetry, shoreline type, land use land cover, and continental shelf were obtained from relevant websites and the InVEST model package. The findings indicate that the mangrove habitats in Rivers State offer minimal protection against coastal flooding due to their degraded state caused by oil spills and over-exploitation. Additionally, sandy beaches provide little to no protection, and the socio-economic conditions in the communities contribute to increased vulnerability to flooding. The study recommends awareness programs to educate the public about the importance of mangroves for coastal protection in addition to their conservation and restoration. Full article
Show Figures

Figure 1

26 pages, 17206 KiB  
Article
Cascading Landslide–Barrier Dam–Outburst Flood Hazard: A Systematic Study Using Rockfall Analyst and HEC-RAS
by Ming Zhong, Xiaodi Li, Jiao Wang, Lu Zhuo and Feng Ling
Remote Sens. 2025, 17(11), 1842; https://doi.org/10.3390/rs17111842 - 25 May 2025
Viewed by 357
Abstract
Landslide hazard chains pose significant threats in mountainous areas worldwide, yet their cascading effects remain insufficiently studied. This study proposes an integrated framework to systematically assess the landslide-landslide dam-outburst flood hazard chain in mountainous river systems. First, landslide susceptibility is assessed through a [...] Read more.
Landslide hazard chains pose significant threats in mountainous areas worldwide, yet their cascading effects remain insufficiently studied. This study proposes an integrated framework to systematically assess the landslide-landslide dam-outburst flood hazard chain in mountainous river systems. First, landslide susceptibility is assessed through a random forest model incorporating 11 static environmental and geological factors. The surface deformation rate derived from SABS-InSAR technology is incorporated as a dynamic factor to improve classification accuracy. Second, motion trajectories of rock masses in high-risk zones are identified by Rockfall Analyst model to predict potential river blockages by landslide dams, and key geometric parameters of the landslide dams are predicted using a predictive model. Third, the 2D HEC-RAS model is used to simulate outburst flood evolution. Results reveal that: (1) incorporating surface deformation rate as a dynamic factor significantly improves the predictive accuracy of landslide susceptibility assessment; (2) landslide-induced outburst floods exhibit greater destructive potential and more complex inundation dynamics than conventional mountain flash floods; and (3) the outburst flood propagation process exhibits three sequential phases defined by the Outburst Flood Arrival Time (FAT): initial rapid advancement phase, intermediate lateral diffusion phase, and mature floodplain development phase. These phases represent critical temporal thresholds for initiating timely downstream evacuation. This study contributes to the advancement of early warning systems aimed at protecting downstream communities from outburst floods triggered by landslide hazard chains. It enables researchers to better analyze the complex dynamics of such cascading events and to develop effective risk reduction strategies applicable in vulnerable regions. Full article
Show Figures

Figure 1

21 pages, 8687 KiB  
Article
Assessment of Coastal Zone Vulnerability in Context of Sea-Level Rise and Inundation Risk in Qatar
by Abdulaziz Ali M. Al-Mannai, Sarra Ouerghi and Mohamed Elhag
Atmosphere 2025, 16(5), 622; https://doi.org/10.3390/atmos16050622 - 19 May 2025
Viewed by 215
Abstract
Coastal zones represent the most active interfaces where natural processes and human activities converge, making them crucial for biodiversity and socioeconomic development. These zones are characterized by their fragility and susceptibility to frequent natural disasters, such as floods and erosion, which are exacerbated [...] Read more.
Coastal zones represent the most active interfaces where natural processes and human activities converge, making them crucial for biodiversity and socioeconomic development. These zones are characterized by their fragility and susceptibility to frequent natural disasters, such as floods and erosion, which are exacerbated by high-intensity human activities and urban expansion. The ongoing challenges posed by rising sea levels and climate change necessitate robust scientific assessments of coastal vulnerability to ensure effective disaster prevention and environmental protection. This paper introduces a comprehensive evaluation system for assessing coastal zone vulnerability, utilizing multi-source data to address ecological vulnerabilities stemming from sea-level rise and climate change impacts. This system is applied to examine the specific case of Qatar, where rapid urban development and a high population density in coastal areas heighten the risk of flooding and inundation. Employing remote sensing data and Geographic Information Systems (GISs), this research leverages spatial interpolation techniques and high-resolution digital elevation models (DEMs) to identify and evaluate high-risk zones susceptible to sea-level rise. In this study, the hydrological connectivity model, bathtub technique, and CVI are interconnected tools that complement each other to assess future flooding risks under various climate change projections, highlighting the increased probability of coastal hazards. The findings underscore the urgent need for adaptive planning and regulatory frameworks to mitigate these risks, providing technical support for the sustainable development of coastal communities globally and in Qatar. This approach not only informs policy makers, but also aids in the strategic planning required to foster resilient coastal infrastructure capable of withstanding both current and future environmental challenges. Full article
Show Figures

Figure 1

13 pages, 6387 KiB  
Article
Evolution of a Potentially Dangerous Glacial Lake on the Kanchenjunga Glacier, Nepal, Predictive Flood Models, and Prospective Community Response
by Alton C. Byers, Sonam Rinzin, Elizabeth Byers and Sonam Wangchuk
Water 2025, 17(10), 1457; https://doi.org/10.3390/w17101457 - 12 May 2025
Viewed by 811
Abstract
During a research expedition to the Kanchenjunga Conservation Area (KCA), eastern Nepal, in April–June 2024, local concern was expressed about the rapid development of meltwater ponds upon the terminus of the Kanchenjunga glacier since 2020, especially in terms of the possible formation of [...] Read more.
During a research expedition to the Kanchenjunga Conservation Area (KCA), eastern Nepal, in April–June 2024, local concern was expressed about the rapid development of meltwater ponds upon the terminus of the Kanchenjunga glacier since 2020, especially in terms of the possible formation of a large and potentially dangerous glacial lake. Our resultant study of the issue included informal interviews with local informants, comparison of time series satellite composite images acquired by Sentinel-2 Multispectral Instrument, and modeling of different lake development, outburst flood scenarios, and prospective downstream impacts. Assuming that the future glacial lake will be formed by the merging of present-day supraglacial ponds, filling the low-gradient area beneath the present-day glacier terminal complex, we estimated the potential volume of a Kanchenjunga proglacial lake to be 33 × 106 m3. Potential mass movement-triggered outburst floods would travel downstream distances of almost 120 km even under the small magnitude scenario, and under the worst-case scenario would reach the Indo-Gangetic Plain and cross the border into India, exposing up to 90 buildings and 44 bridges. In response, we suggest that the lower Kanchenjunga glacier region be regularly monitored by both local communities and Kathmandu-based research entities over the next decade. The development of user-friendly early warning systems, hazard mapping and zoning programs, cryospheric hazards awareness building programs, and construction of locally appropriate flood mitigation measures are recommended. Finally, the continued development and refinement of the models presented here could provide governments and remote communities with a set of inexpensive and reliable tools capable of providing the basic information needed for communities to make informed decisions regarding hazard mitigation, adaptive, and/or preventive measures related to changing glaciers. Full article
(This article belongs to the Special Issue Study of Hydrological Mechanisms: Floods and Landslides)
Show Figures

Figure 1

11 pages, 5014 KiB  
Proceeding Paper
Internet of Things for Enhancing Public Safety, Disaster Response, and Emergency Management
by Waiyie Leong
Eng. Proc. 2025, 92(1), 61; https://doi.org/10.3390/engproc2025092061 - 2 May 2025
Viewed by 391
Abstract
The Internet of Things (IoT) offers transformative capabilities in enhancing public safety, disaster response, and emergency management by leveraging interconnected devices and real-time data. Through the IoT, smart sensors and networks are deployed across cities and environments to monitor critical parameters including air [...] Read more.
The Internet of Things (IoT) offers transformative capabilities in enhancing public safety, disaster response, and emergency management by leveraging interconnected devices and real-time data. Through the IoT, smart sensors and networks are deployed across cities and environments to monitor critical parameters including air quality, structural integrity, and environmental changes. These systems provide early warnings for natural disasters such as earthquakes, floods, and wildfires, enabling authorities to respond proactively. In emergency management, IoT devices help coordinate resources and improve situational awareness during crises. Real-time data from wearable devices, smart infrastructure, and communication systems allow responders to track people, manage evacuations, and deploy resources more effectively. For example, IoT-enabled drones and autonomous vehicles are used to deliver supplies or assess damage in hazardous areas without risking human lives. IoT technologies improve post-disaster recovery by continuously monitoring areas for safety hazards and supporting infrastructure restoration. Smart traffic management systems assist in controlling traffic flow for emergency vehicles, while IoT-based communication networks ensure connectivity when traditional systems fail. The IoT significantly enhances the speed, accuracy, and effectiveness of disaster response and public safety operations, leading to the better protection of communities and faster recovery from emergencies. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

29 pages, 6754 KiB  
Article
Assessing Drainage Infrastructure in Coastal Lowlands: Challenges, Design Choices, and Environmental and Urban Impacts
by Beatriz Cruz Amback, Paula Morais Canedo de Magalhães, Luiz Eduardo Siqueira Saraiva, Matheus Martins de Sousa and Marcelo Gomes Miguez
Infrastructures 2025, 10(5), 103; https://doi.org/10.3390/infrastructures10050103 - 22 Apr 2025
Viewed by 328
Abstract
Urban flooding is a growing concern, particularly in coastal lowland cities where climate change exacerbates hazards through rising sea levels and intense rainfall. Traditional flood defenses like fluvial polders often exacerbate urban fragmentation and maintenance costs if poorly integrated into planning. This study [...] Read more.
Urban flooding is a growing concern, particularly in coastal lowland cities where climate change exacerbates hazards through rising sea levels and intense rainfall. Traditional flood defenses like fluvial polders often exacerbate urban fragmentation and maintenance costs if poorly integrated into planning. This study proposes a multifunctional assessment design framework to evaluate polder design effectiveness considering both the hydraulic and social–environmental dimensions, emphasizing blue–green infrastructure (BGI) for flood control, leisure, and landscape integration. Three design scenarios for Rio de Janeiro’s Jardim Maravilha neighborhood were modeled hydrodynamically: S1 (dike near urban areas, pump-dependent) and S2/S3 (dikes along the riverbank, gravity-driven). Results show S2/S3 outperformed S1 in storage capacity (2.7× larger volume), freeboard resilience (0.42–0.43 m vs. 0.25 m), and urban integration (floodable parks accessible to communities), though S1 had faster reservoir emptying. Under climate change, all scenarios sustained functionality, but S1’s freeboard reduced by 86%, nearing its limit. The framework’s standardized scoring system balanced quantitative and qualitative criteria, revealing trade-offs between hydraulic efficiency and urban adaptability. The optimized S3 design, incorporating external storage and dredging, achieved the best compromise. This approach aids decision-making by systematically evaluating resilience, operational feasibility, and long-term climate adaptation, supporting sustainable flood infrastructure in coastal cities. Full article
(This article belongs to the Special Issue Smart, Sustainable and Resilient Infrastructures, 3rd Edition)
Show Figures

Figure 1

30 pages, 8572 KiB  
Article
Flood Damage Risk Mapping Along the River Niger: Ten Benefits of a Participated Approach
by Maurizio Tiepolo, Muhammad Abraiz, Maurizio Bacci, Ousman Baoua, Elena Belcore, Giorgio Cannella, Edoardo Fiorillo, Daniele Ganora, Mohammed Ibrahim Housseini, Gaptia Lawan Katiellou, Marco Piras, Francesco Saretto and Vieri Tarchiani
Climate 2025, 13(4), 80; https://doi.org/10.3390/cli13040080 - 14 Apr 2025
Viewed by 521
Abstract
Flood risk mapping is spreading in the Global South due to the availability of high-resolution/high-frequency satellite imagery, volunteered geographic information, and hydraulic models. However, these maps are increasingly generated without the participation of exposed communities, contrary to the Sendai Framework for Disaster Risk [...] Read more.
Flood risk mapping is spreading in the Global South due to the availability of high-resolution/high-frequency satellite imagery, volunteered geographic information, and hydraulic models. However, these maps are increasingly generated without the participation of exposed communities, contrary to the Sendai Framework for Disaster Risk Reduction 2015–2030 priorities. As a result, the understanding of risk is limited. This study aims to map flood risk with citizen science complemented by hydrology, geomatics, and spatial planning. The Niger River floods of 2024–2025 on a 113 km2 area upstream of Niamey are investigated. The novelty of the work is the integration of local and technical knowledge in the micro-mapping of risk in a large area. We consider risk the product of a hazard and damage in monetary terms. Focus groups in flooded municipalities, interviews with irrigation perimeter managers, and statistical river flow and rainfall analysis identified the hazard. The flood plain was extracted from Sentinel-2 images using MNDWI and validated with ground control points. Six classes of assets were identified by visual photo interpretation of very high-resolution satellite imagery. Damage was ascertained through interviews with a sample of farmers. The floods of 2024–2025 may occur again in the next 12–19 years. Farmers cannot crop safer sites, raising significant environmental justice issues. Damage depends on the strength of the levees, the crop, and the season. From January to February, horticulture is at a higher risk. Flooding does not bring benefits. Risk maps highlight hot spots, are validated, and can be linked to observed flood levels. Full article
(This article belongs to the Special Issue Advances of Flood Risk Assessment and Management)
Show Figures

Figure 1

23 pages, 31476 KiB  
Article
Integrated Risk Assessment of Floods and Landslides in Kohistan, Pakistan
by Taliah Sajid, Sakina Khuzema Maimoon, Muhammad Waseem, Shiraz Ahmed, Muhammad Arsalan Khan, Jens Tränckner, Ghufran Ahmed Pasha, Hossein Hamidifar and Charalampos Skoulikaris
Sustainability 2025, 17(8), 3331; https://doi.org/10.3390/su17083331 - 9 Apr 2025
Viewed by 799
Abstract
Climate change and global warming have increased the frequency and intensity of natural hazards such as floods, landslides, and avalanches. These hazards not only have significant individual impacts but are also interconnected, often amplifying their destructive effects. Therefore, it is crucial to manage [...] Read more.
Climate change and global warming have increased the frequency and intensity of natural hazards such as floods, landslides, and avalanches. These hazards not only have significant individual impacts but are also interconnected, often amplifying their destructive effects. Therefore, it is crucial to manage their consequences and ensure that communities and infrastructure are resilient enough to withstand these challenges. Given the limited research assessing the collective impact of natural hazards, particularly in Pakistan, this study investigates the effects of floods and landslides in the Kohistan District of northern Pakistan, an area which is highly vulnerable to such hazards yet minimally studied. Machine learning techniques, including the Analytical Hierarchy Process (AHP) and weighted overlay, along with geographic information systems (GISs) and remote sensing (RS), were employed to analyze the causative factors of these hazards. The resulting flood risk and landslide risk maps were then superimposed to produce an integrated dual-hazard risk assessment. The research findings serve as a foundation for policy-making, offering strategies to reduce risks for all stakeholders, implement adaptive measures for communities, and ensure that future developments are both resilient and sustainable. Full article
Show Figures

Figure 1

26 pages, 10308 KiB  
Article
Integrating Machine Learning and Geospatial Data for Mapping Socioeconomic Vulnerability to Urban Natural Hazard
by Esaie Dufitimana, Paterne Gahungu, Ernest Uwayezu, Emmy Mugisha and Jean Pierre Bizimana
ISPRS Int. J. Geo-Inf. 2025, 14(4), 161; https://doi.org/10.3390/ijgi14040161 - 8 Apr 2025
Viewed by 929
Abstract
Rapid urbanization and climate change are increasing the risks associated with natural hazards, especially in cities where socio-economic disparities are significant. Current hazard risk assessment frameworks fail to consider socio-economic factors, which limits their ability to effectively address vulnerabilities at the community level. [...] Read more.
Rapid urbanization and climate change are increasing the risks associated with natural hazards, especially in cities where socio-economic disparities are significant. Current hazard risk assessment frameworks fail to consider socio-economic factors, which limits their ability to effectively address vulnerabilities at the community level. This study introduces a machine learning framework designed to assess flood susceptibility and socio-economic vulnerability, particularly in urban areas with limited data. Using Kigali, Rwanda, as a case study, we quantified socio-economic vulnerability through a composite index that includes indicators of sensitivity and adaptive capacity. We utilized a variety of data sources, such as demographic, environmental, and remotely sensing datasets, applying machine learning algorithms like Multilayer Perceptron (MLP), Random Forest, Support Vector Machine (SVM), and XGBoost. Among these, MLP achieved the best predictive performance, with an AUC score of 0.902 and an F1-score of 0.86. The findings indicate spatial differences in socio-economic vulnerability, with central and southern Kigali showing greater vulnerability due to a mix of socio-economic challenges and high flood risk. The vulnerability maps created were validated against historical flood records, socio-economic research, and expert insights, confirming their accuracy and relevance for urban risk assessment. Additionally, we tested the framework’s scalability and adaptability in Kampala, Uganda, and Dar es Salaam, Tanzania, showing that making context-specific adjustments to the model improves its transferability. This study offers a solid, data-driven approach for combining assessments of flood susceptibility and socio-economic vulnerability, filling important gaps in urban resilience planning. The results support the advancement of risk-informed decision-making, especially in areas with limited access to detailed socio-economic information. Full article
Show Figures

Figure 1

21 pages, 3068 KiB  
Article
Evaluation of Historical Dry and Wet Periods over Lake Kyoga Basin in Uganda
by Hassen Babaousmail and Moses A. Ojara
Water 2025, 17(7), 1044; https://doi.org/10.3390/w17071044 - 2 Apr 2025
Viewed by 341
Abstract
Rainfall datasets from the Uganda National Meteorological Authority (UNMA) for 1981–2017 and two reanalysis datasets (Climate Hazards Group Infrared Precipitation with Stations data (CHIRPS) and Tropical Applications of Meteorology using Satellite data (TAMSAT) were used to compute drought and flood tendencies from 1981 [...] Read more.
Rainfall datasets from the Uganda National Meteorological Authority (UNMA) for 1981–2017 and two reanalysis datasets (Climate Hazards Group Infrared Precipitation with Stations data (CHIRPS) and Tropical Applications of Meteorology using Satellite data (TAMSAT) were used to compute drought and flood tendencies from 1981 to 2017. The cumulative departure index (CDI) and rainfall anomaly index (RAI) were computed to show drought and flood tendencies in the region. Meanwhile, dry days (DD) and wet days (WD) were computed based on the definition as a day of the season with rainfall amounts less than 1.0 mm and greater than 1.0 mm, respectively. The CDI graphics indicated below-average rainfall during 1981–1987 and relatively wetter conditions during 1989–1995 for all stations in the region. Generally, seasonal rainfall declined over the first 27 years but an increasing trend in both MAM (March–April–May) and SOND (September–October–November–December) was observed in most stations during 2006–2017. The highly variable seasonal rainfall in the region is expected to impact the livelihoods of the communities. This study recommends that the use of tailor-made weather and climate information for planning economic development programs such as agriculture will play a critical role in improving the livelihood of the communities in the region. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes)
Show Figures

Figure 1

34 pages, 5167 KiB  
Review
Evaluating Food Resilience Initiatives Through Urban Agriculture Models: A Critical Review
by Federico Lopez-Muñoz, Waldo Soto-Bruna, Brigitte L. G. Baptiste and Jeffrey Leon-Pulido
Sustainability 2025, 17(7), 2994; https://doi.org/10.3390/su17072994 - 27 Mar 2025
Cited by 1 | Viewed by 930
Abstract
As global food demand rises, urban agriculture models, such as vertical and terrace farming, have gained traction, especially amid crises like the Ukraine war and COVID-19 pandemic. Climate change remains the most significant threat to global food security. According to the latest FAO [...] Read more.
As global food demand rises, urban agriculture models, such as vertical and terrace farming, have gained traction, especially amid crises like the Ukraine war and COVID-19 pandemic. Climate change remains the most significant threat to global food security. According to the latest FAO analysis, which encompasses assessments from 1990 to 2023, approximately 40% of economic losses resulting from climate-related hazards, including droughts and floods, have impacted the agriculture sector. This has reduced yields, increased production costs, and worsened food insecurity, affecting millions. Urban gardens offer a solution, enhancing food resilience. A systematic PRISMA-based review analyzed studies from Scopus and reports from organizations like the FAO. Over 3329 documents were reviewed. Publications on food resilience grew by 50% in four years, with the US leading with 700 projects. Agricultural and biological sciences dominate research (45%). Urban gardens focus on educating communities about food security and improving food systems. Mobile gardens with portable labs maximize urban spaces, turning rooftops and terraces into productive areas. These initiatives empower communities to grow food, promote nutrition education, and foster social connections. Urban gardens, though not fully sustainable, as they can consume up to 35% more energy per kg of food than optimized traditional farms and generate a 20–40% higher carbon footprint if using imported substrates or plastics, are key for resilient food systems, yielding up to 20 kg/m2/year, reducing transport emissions by 68% (vs. 2400 km supply chains), and using 90% less water than conventional agriculture. Full article
Show Figures

Figure 1

22 pages, 12360 KiB  
Article
Understanding Public Perception and Preparedness for Flood Risks in Greece
by Nada Joumar, Cleo M. Gaganis, Polina N. Tourlioti, Ioannis Pantelakis, Ourania Tzoraki, Lahcen Benaabidate, Jamal Eddine Stitou El Messari and Petros Gaganis
Water 2025, 17(5), 764; https://doi.org/10.3390/w17050764 - 6 Mar 2025
Viewed by 1167
Abstract
The present study examines perceptions and preparedness for flooding in Greece, a country increasingly impacted by natural hazards, particularly due to the effects of climate change. Despite the frequent occurrence of floods, public preparedness remains insufficient in many areas. Through a survey of [...] Read more.
The present study examines perceptions and preparedness for flooding in Greece, a country increasingly impacted by natural hazards, particularly due to the effects of climate change. Despite the frequent occurrence of floods, public preparedness remains insufficient in many areas. Through a survey of 1282 respondents from various regions of Greece and using R statistical software to process and analyse data, the research explores the relationship between individual flood risk perceptions, prior experiences, and household-level preparedness. The findings show most participants are aware of governmental flood plans, but a significant gap exists between perceived flood risks and actual preparedness, especially regarding insurance and relocation willingness. The findings reveal that a majority of participants are aware of governmental flood management plans; however, outcomes concerning flood insurance and the willingness to relocate highlight the significant gap between perceived flood risks and actual preparedness efforts. Many respondents expressed dissatisfaction with current measures to address flood risks, leading to a diminished trust in the respective authorities. To enhance public awareness and engagement in flood preparedness, the study underscores the importance of localized risk communication strategies tailored to different demographic groups. Given the observed gap between awareness and actual preparedness, efforts should focus on bridging this disconnect through practical, community-driven initiatives. Recommendations include implementing targeted awareness campaigns, promoting trust in government efforts through transparent policies, and providing financial incentives such as subsidized flood insurance to encourage protective actions, and, additionally, fostering community involvement in disaster risk management, particularly in historically flood-prone regions, to strengthen the resilience against future flooding events. Full article
Show Figures

Figure 1

24 pages, 55152 KiB  
Article
Japan’s Urban-Environmental Exposures: A Tripartite Analysis of City Shrinkage, SAR-Based Deep Learning Versus Forward Modeling in Inundation Mapping, and Future Flood Schemes
by Mohammadreza Safabakhshpachehkenari, Hideki Tsubomatsu and Hideyuki Tonooka
Urban Sci. 2025, 9(3), 71; https://doi.org/10.3390/urbansci9030071 - 5 Mar 2025
Viewed by 748
Abstract
This study investigates how urban decline and intensifying flood hazards interact to threaten Japan’s urban environments, focusing on three main dimensions. First, a fine-scale analysis of spatial shrinkage was conducted using transition potential maps generated with a maximum entropy classifier. This approach enabled [...] Read more.
This study investigates how urban decline and intensifying flood hazards interact to threaten Japan’s urban environments, focusing on three main dimensions. First, a fine-scale analysis of spatial shrinkage was conducted using transition potential maps generated with a maximum entropy classifier. This approach enabled the identification of neighborhoods at high risk of future abandonment, revealing that peripheral districts, such as Hirakue-cho and Shimoirino-cho, are especially susceptible due to their distance from central amenities. Second, this study analyzed the 2019 Naka River flood induced by Typhoon Hagibis, evaluating water detection performance through both a U-Net-based deep learning model applied to Sentinel-1 SAR imagery in ArcGIS Pro and the DioVISTA Flood Simulator. While the SAR-based approach excelled in achieving high accuracy with a score of 0.81, the simulation-based method demonstrated higher sensitivity, emphasizing its effectiveness in flagging potential flood zones. Third, forward-looking scenarios under Representative Concentration Pathways (RCP) 2.6 and RCP 8.5 climate trajectories were modeled to capture the potential scope of future flood impacts. The primary signal is that flooding impacts 3.2 km2 of buildings and leaves 11 of 82 evacuation sites vulnerable in the worst-case scenario. Japan’s proven disaster expertise can still jolt adaptation toward greater flexibility. Adaptive frameworks utilizing real-time and predictive insights powered by remote sensing, GIS, and machine intelligence form the core of proactive decision-making. By prioritizing the repositioning of decaying suburbs as disaster prevention hubs, steadily advancing hard and soft measures to deployment, supported by the reliability of DioVISTA as a flood simulator, and fueling participatory, citizen-led ties within a community, resilience shifts from a reactive shield to a living ecosystem, aiming for zero victims. Full article
(This article belongs to the Special Issue Advances in Urban Spatial Analysis, Modeling and Simulation)
Show Figures

Figure 1

15 pages, 4188 KiB  
Article
Land Cover Transformation and Population Growth: Impacts on Coastal Environment of The Gambia (1990–2020)
by Bintou Dibba, Sidat Yaffa, Mamma Sawaneh and William Adzawla
Sustainability 2025, 17(5), 1853; https://doi.org/10.3390/su17051853 - 21 Feb 2025
Viewed by 578
Abstract
The coastal zone of The Gambia, which contributes 36% to the country’s GDP, has experienced considerable transformation due to increased socioeconomic development and urbanisation. This growth has significantly altered the coastal landscape, intensifying pressure on the environment and increasing vulnerability to climate hazards. [...] Read more.
The coastal zone of The Gambia, which contributes 36% to the country’s GDP, has experienced considerable transformation due to increased socioeconomic development and urbanisation. This growth has significantly altered the coastal landscape, intensifying pressure on the environment and increasing vulnerability to climate hazards. A study used cloud-free Landsat imagery from 1990, 2000, 2010, and 2020 for assessing land use and land cover (LULC) changes and population growth. The analysis classified LULC into five categories: barren land, built-up areas, vegetation cover, water bodies, and wetlands. The findings highlighted dramatic changes in LULC over the past three decades. Barren land increased by 46%, and built-up areas surged by 680%. In contrast, vegetation cover decreased by 35%, water bodies by 31%, and wetlands by 14%. These transformations correlate with rising population densities along the coastline, particularly within 10–25 km of the shore. The substantial growth in built-up areas and reduction in vegetation are directly linked to urbanisation and population pressure. This rapid change exacerbates the vulnerability of coastal communities to extreme weather events such as flooding and tropical windstorms. To address these challenges, it is crucial for the government and stakeholders to implement policies that manage coastal congestion and encourage development in inland regions. Such measures should consider the impacts of population growth on coastal environments and aim to ensure the long-term sustainability of The Gambia’s coastal ecosystems by mitigating risks associated with climate change. Full article
Show Figures

Figure 1

Back to TopTop