Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = floor impact noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10836 KB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Viewed by 383
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

28 pages, 21813 KB  
Article
Adaptive RGB-D Semantic Segmentation with Skip-Connection Fusion for Indoor Staircase and Elevator Localization
by Zihan Zhu, Henghong Lin, Anastasia Ioannou and Tao Wang
J. Imaging 2025, 11(8), 258; https://doi.org/10.3390/jimaging11080258 - 4 Aug 2025
Viewed by 487
Abstract
Accurate semantic segmentation of indoor architectural elements, such as staircases and elevators, is critical for safe and efficient robotic navigation, particularly in complex multi-floor environments. Traditional fusion methods struggle with occlusions, reflections, and low-contrast regions. In this paper, we propose a novel feature [...] Read more.
Accurate semantic segmentation of indoor architectural elements, such as staircases and elevators, is critical for safe and efficient robotic navigation, particularly in complex multi-floor environments. Traditional fusion methods struggle with occlusions, reflections, and low-contrast regions. In this paper, we propose a novel feature fusion module, Skip-Connection Fusion (SCF), that dynamically integrates RGB (Red, Green, Blue) and depth features through an adaptive weighting mechanism and skip-connection integration. This approach enables the model to selectively emphasize informative regions while suppressing noise, effectively addressing challenging conditions such as partially blocked staircases, glossy elevator doors, and dimly lit stair edges, which improves obstacle detection and supports reliable human–robot interaction in complex environments. Extensive experiments on a newly collected dataset demonstrate that SCF consistently outperforms state-of-the-art methods, including PSPNet and DeepLabv3, in both overall mIoU (mean Intersection over Union) and challenging-case performance. Specifically, our SCF module improves segmentation accuracy by 5.23% in the top 10% of challenging samples, highlighting its robustness in real-world conditions. Furthermore, we conduct a sensitivity analysis on the learnable weights, demonstrating their impact on segmentation quality across varying scene complexities. Our work provides a strong foundation for real-world applications in autonomous navigation, assistive robotics, and smart surveillance. Full article
Show Figures

Figure 1

14 pages, 1717 KB  
Article
Development of Floor Structures with Crumb Rubber for Efficient Floor Impact Noise Reduction
by Ji-Hoon Park and Chan-Hoon Haan
Acoustics 2025, 7(3), 47; https://doi.org/10.3390/acoustics7030047 - 29 Jul 2025
Viewed by 579
Abstract
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous [...] Read more.
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous national economic growth, the interest in well-being and the expectation of a quiet life with a comfortable and pleasant residential environment have also been increasing. However, Koreans have a lifestyle involving sitting on the floor, so floor impact noise has been occurring more and more frequently. Because of this, neighborly disputes have been a serious social problem. And lately, damage and disputes from noise between floors have been increasing much more. The present work, therefore, used waste tire chips as a resilient material for reducing floor impact noise in order to recycle waste tires effectively. Also, a compounded resilient material, which combines EPS (expanded polystyrene), a flat resilient material on the upper part, with waste tire chips for the lower part, was developed. After constructing waste tire chips at a standardized test building, experiments with both light-weight and heavy-weight floor impact noise were performed. The tests confirmed that waste tire chips, when used as a resilient material, can effectively reduce both light-weight and heavy-weight floor impact noise. Full article
Show Figures

Figure 1

31 pages, 2663 KB  
Article
Integrating Noise Pollution into Life Cycle Assessment: A Comparative Framework for Concrete and Timber Floor Construction
by Rabaka Sultana, Taslima Khanam and Ahmad Rashedi
Sustainability 2025, 17(14), 6514; https://doi.org/10.3390/su17146514 - 16 Jul 2025
Viewed by 509
Abstract
Despite the well-documented health risks of noise pollution, its impact remains overlooked mainly in life cycle assessment (LCA). This study introduces a methodological innovation by integrating both traffic and construction noise into the LCA framework for concrete construction, providing a more holistic and [...] Read more.
Despite the well-documented health risks of noise pollution, its impact remains overlooked mainly in life cycle assessment (LCA). This study introduces a methodological innovation by integrating both traffic and construction noise into the LCA framework for concrete construction, providing a more holistic and realistic evaluation of environmental and health impacts. By combining building information modeling (BIM) with LCA, the method automates material quantification and assesses both environmental and noise-related health burdens. A key advancement is the inclusion of health-based indicators, such as annoyance and sleep disturbance, quantified through disability-adjusted life years (DALYs). Two scenarios are examined: (1) a comparative analysis of concrete versus timber flooring and (2) end-of-life options (reuse vs. landfill). The results reveal that concrete has up to 7.4 times greater environmental impact than timber, except in land use. When noise is included, its contribution ranges from 7–33% in low-density regions (Darwin) and 62–92% in high-density areas (NSW), underscoring the critical role of local context. Traffic noise emerged as the dominant source, while equipment-related noise was minimal (0.3–1.5% of total DALYs). Timber slightly reduced annoyance but showed similar sleep disturbance levels. Material reuse reduced midpoint environmental impacts by 67–99.78%. Sensitivity analysis confirmed that mitigation measures like double glazing can cut noise-related impacts by 2–10% in low-density settings and 31–45% in high-density settings, validating the robustness of this framework. Overall, this study establishes a foundation for integrating noise into LCA, supporting sustainable material choices, environmentally responsible construction, and health-centered policymaking, particularly in noise-sensitive urban development. Full article
Show Figures

Figure 1

16 pages, 4224 KB  
Article
Optimizing Museum Acoustics: How Absorption Magnitude and Surface Location of Finishing Materials Influence Acoustic Performance
by Milena Jonas Bem and Jonas Braasch
Acoustics 2025, 7(3), 43; https://doi.org/10.3390/acoustics7030043 - 11 Jul 2025
Viewed by 601
Abstract
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific [...] Read more.
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific absorption treatments on acoustic metrics across eight gallery spaces. Room impulse responses calibrated virtual models, which simulated nine absorption scenarios (low, medium, and high on ceilings, floors, and walls) and evaluated reverberation time (T20), speech transmission index (STI), clarity (C50), distraction distance (rD), Spatial Decay Rate of Speech (D2,S), and Speech Level at 4 m (Lp,A,S,4m). The results indicate that going from concrete to a wooden floor yields the most rapid T20 reductions (up to −1.75 s), ceiling treatments deliver the greatest STI and C50 gains (e.g., STI increases of +0.16), and high-absorption walls maximize privacy metrics (D2,S and Lp,A,S,4m). A linear regression model further predicted the STI from T20, total absorption (Sabins), and room volume, with an 84.9% conditional R2, enabling ±0.03 accuracy without specialized testing. These findings provide empirically derived, surface-specific “first-move” guidelines for architects and acousticians, underscoring the necessity of integrating acoustics early in museum design to balance auditory and visual objectives and enhance the visitor experience. Full article
Show Figures

Figure 1

16 pages, 4379 KB  
Article
Development of 3D-Printed Vibration Absorbers for Noise Control in Material Removal Processes
by Sungmyung Lee, Haewoon Choi and Jonghyun Kim
Machines 2025, 13(5), 370; https://doi.org/10.3390/machines13050370 - 29 Apr 2025
Viewed by 638
Abstract
Material removal processes such as milling, drilling, and turning often generate harmful vibrations that can negatively impact both machine performance and operator safety. Addressing these vibrations at their source or reducing them to safe levels is, therefore, a critical challenge. This study proposes [...] Read more.
Material removal processes such as milling, drilling, and turning often generate harmful vibrations that can negatively impact both machine performance and operator safety. Addressing these vibrations at their source or reducing them to safe levels is, therefore, a critical challenge. This study proposes a practical solution by introducing thin-fin-type vibration-absorbing devices fabricated using 3D printing technology. These devices are designed specifically to mitigate vibration propagation during milling operations. To evaluate their effectiveness, a multi-sensor system comprising sound level meters, a vibrometer, and a vision–acoustic camera was employed to measure sound levels. The results show that the use of fabricated devices can reduce noise levels significantly, from 93 dB (comparable to power tools or a lawn mower) to 74 dB (similar to normal conversation or a busy office). This substantial reduction demonstrates the potential of the proposed devices to enhance workplace safety and acoustic comfort on the shop floor. Full article
(This article belongs to the Special Issue Transforming Classic Machining into Smart Manufacturing)
Show Figures

Figure 1

16 pages, 5032 KB  
Article
A Low-Noise High-Resolution Temperature Measurement Technique Based on Inductive Voltage Divider and Alternating-Current Bridge
by Shanghua Gao, Xiaoyi Zhu, Xiaofeng Zhang, Bing Xue, Jilou Xi, Jiang Li, Bing Zhang, Xiaolei Wang, Yuru Wang, Haoyue Zhang and Xu Wu
Sensors 2025, 25(9), 2777; https://doi.org/10.3390/s25092777 - 28 Apr 2025
Viewed by 551
Abstract
In the field of space gravitational wave detection, high-precision temperature measurement with a resolution at the micro-Kelvin level in the milli-Hertz frequency range is required to mitigate the interference caused by temperature fluctuations around the core components. This is a very challenging task [...] Read more.
In the field of space gravitational wave detection, high-precision temperature measurement with a resolution at the micro-Kelvin level in the milli-Hertz frequency range is required to mitigate the interference caused by temperature fluctuations around the core components. This is a very challenging task due to resistance thermal noise and the inherent 1/f noise of electronic components. To overcome this problem, this paper proposes a low-noise, high-resolution temperature measurement method based on an inductive voltage divider and an alternating-current (AC) bridge. The proposed method has the following three characteristics: (1) it employs an AC excitation signal to drive the temperature measuring bridge to overcome the influence of 1/f noise in electronic components; (2) it uses as few resistance components as possible in the AC bridge and signal detection circuit to reduce the impact of resistance thermal noise on the measurement results; (3) it adopts a frequency-domain data processing algorithm based on discrete Fourier transform to improve the accuracy of the temperature measuring result. Using this method, a circuit board is designed and tested. The results show that the noise floor level of the designed temperature measurement circuit is below 7×106 K/Hz in a frequency range of 0.005~1 Hz. This demonstrates that our proposed method is able to detect extremely weak temperature change signals and meets the temperature measurement requirements of space gravitational wave detection. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

17 pages, 6209 KB  
Article
Assessing Train-Induced Building Vibrations in a Subway Transfer Station and Potential Control Strategies
by Mengting Xing, Juxiang Zhu and Dingqing Chen
Buildings 2025, 15(7), 1024; https://doi.org/10.3390/buildings15071024 - 23 Mar 2025
Viewed by 555
Abstract
Transit-oriented development (TOD) and over-track buildings have been rapidly expanding in Chinese subways since their development. This new method is highly convenient for people while the influence of indoor vibration and noise in buildings is not yet clear. A case study is conducted [...] Read more.
Transit-oriented development (TOD) and over-track buildings have been rapidly expanding in Chinese subways since their development. This new method is highly convenient for people while the influence of indoor vibration and noise in buildings is not yet clear. A case study is conducted on over-track buildings on a subway transfer station in Chengdu, China. This paper first proposes a numerical prediction model based on a three-step approach to assess vibration impact. Then, a top-down comprehensive design of vibration mitigation based on the transmission path is developed to propose a practical control method. Furthermore, field measurements of vibrations on the ground and in nearby buildings are conducted. The results show that the over-track buildings are significantly affected by train operations, resulting in vertical vibrations with low frequencies ranging from 4 to 20 Hz. The vibration attenuation is different on different building floors, and the response frequency depends on the building’s natural frequency. The natural frequency of the main structures should differ from the main frequency of the vibration source to prevent high building vibration levels. Good comprehensive control strategies significantly reduce train-induced indoor secondary vibrations. Wider isolation trenches can significantly diminish the transfer of vibration transmission from the ground into the structure. These results can provide a guideline for developing transit-oriented buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2258 KB  
Article
Design and Fabrication of a Piezoelectric Bimorph Microphone with High Reliability and Dynamic Range Based on Al0.8Sc0.2N
by Ruixiang Yan, Yucheng Ji, Anyuan Liu, Lei Wang and Songsong Zhang
Micromachines 2025, 16(2), 186; https://doi.org/10.3390/mi16020186 - 4 Feb 2025
Viewed by 3418
Abstract
With the development of technology, MEMS microphones, which are small-sized and highly uniform, have been applied extensively. To improve their reliability in extreme environment and overcome the constraints of traditional microphones, this article presents a piezoelectric bimorph MEMS microphone using [...] Read more.
With the development of technology, MEMS microphones, which are small-sized and highly uniform, have been applied extensively. To improve their reliability in extreme environment and overcome the constraints of traditional microphones, this article presents a piezoelectric bimorph MEMS microphone using Al0.8Sc0.2N. In the article, the high robustness of piezoelectric microphones and the reasons for choosing Al0.8Sc0.2N as piezoelectric materials are described. The sensitivity of an Al0.8Sc0.2N-based piezoelectric bimorph compared with the traditional structure are revealed through FEA. Subsequently, a lumped element microphone model is constructed and all noise sources are evaluated comprehensively. The difference in output noise caused by different structures is calculated. The designed piezoelectric microphone, which comprises eight triangular cantilever beams, was fabricated on a chip with an area of 900 μm × 900 μm. The sensitivity of the designed microphone achieves 1.68 mV/Pa, with a noise floor of −110 dBA and SNR of 54.5 dB. The acoustic overload point of the microphone stands at 147 dB SPL, and following the impact test, the survival rate was 100%. Compared to traditional MEMS microphones, the microphone achieves a dynamic range of 107.5 dB. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

16 pages, 16640 KB  
Article
Experimental Study of Steady Blowing from the Trailing Edge of an Open Cavity Flow
by Naser Al Haddabi, Konstantinos Kontis and Hossein Zare-Behtash
Aerospace 2025, 12(1), 7; https://doi.org/10.3390/aerospace12010007 - 26 Dec 2024
Viewed by 974
Abstract
Cavity flows have a wide range of low-speed applications (M0.3), such as aircraft wheel wells, ground transportations, and pipelines. They induce strong flow oscillations which can substantially increase noise, drag, vibration, and lead to structural fatigue. In the current [...] Read more.
Cavity flows have a wide range of low-speed applications (M0.3), such as aircraft wheel wells, ground transportations, and pipelines. They induce strong flow oscillations which can substantially increase noise, drag, vibration, and lead to structural fatigue. In the current study, a steady jet was forced from the cavity trailing edge with different momentum fluxes (J = 0.11 kg/m·s2, 0.44 kg/m·s2, and 0.96 kg/m·s2). The aim of this study was to investigate the impact of the steady jet on the time-averaged flow field and the cavity separated shear layer oscillations for an open cavity with a length-to-depth ratio of L/D=4 at Reθ=1.28×103. Particle image velocimetry, surface oil flow visualisation, constant temperature anemometry, and pressure measurements were performed. The study found that increasing the jet momentum flux caused a significant increase in thickness and deflection of the cavity separated shear layer. Due to the counterflow interaction between the jet and cavity separated shear layer, the growth rate (dδω/dx) of the cavity separated shear layer increased significantly from 0.193 for the no-jet case to 0.273 for the J = 0.96 kg/m·s2 case. As a result, the return flow rate increased, causing the separation point on the cavity floor to shift upstream from x/L0.2 for the no-jet case to x/L0.1 for the J = 0.96 kg/m·s2 case. Furthermore, increasing the jet momentum flux increased the broadband level of the cavity separated shear layer oscillations. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

15 pages, 2208 KB  
Article
A Case Study of Frequency Analysis of the Contribution of a Single Number Quantity to the Introduction of Rubber Ball Impact Sound and Changes in Assessment Methods
by Hee-Mo Goo, Soon-Seong Moon and Jun-Oh Yeon
Appl. Sci. 2024, 14(24), 11998; https://doi.org/10.3390/app142411998 - 21 Dec 2024
Viewed by 1011
Abstract
This study analyzed the effects of changes in the inter-floor noise assessment system in multi-family housing in Korea on heavy-weight impact sound performance assessment. By comparing the existing pre-approval system with the newly introduced post-verification system, we focused on the effects of the [...] Read more.
This study analyzed the effects of changes in the inter-floor noise assessment system in multi-family housing in Korea on heavy-weight impact sound performance assessment. By comparing the existing pre-approval system with the newly introduced post-verification system, we focused on the effects of the evaluation criteria, impact sources, and frequency band considerations on the single numerical evaluation quantities (Li,Fmax,AW and LiA,Fmax) and contribution rates by frequency band. For the analysis, impact sounds were measured using a bang machine used in the existing pre-approval system and a rubber ball used in the post-verification system, and the performance of the floor structure was evaluated in the 1/1 and 1/3 octave bands. As a result, the pre-approval system showed a high contribution rate mainly in the 63 Hz band, but the post-verification system expanded the contribution rate to the mid-low frequency band of 63–160 Hz. In particular, the evaluation method using the A-weighted maximum floor impact sound level (LiA,Fmax) of the post-verification system was found to reflect the performance in the mid- and high-frequency band of 125–250 Hz more effectively. The post-verification system enables a more accurate evaluation of the performance of high-frequency bands that were overlooked in the existing system, thereby enabling a realistic response to the mitigation of inter-floor noise. Accordingly, construction companies must meet stricter performance standards in floor structure design and resilient materials development, in accordance with the new regulations. For example, designs utilizing sound-absorbing ceiling structures and high-performance resilient materials are expected to be effective in reducing heavy-impact noise. This study provides important basic data for tracking the performance of floor structures according to changes in the system, and selecting key frequency bands for reducing heavy-impact noise. In addition, it emphasizes the need to continuously monitor the performance of multi-family housing constructed under the new system and to derive effective design strategies for solving inter-floor noise problems. In the future, it will be necessary to expand the usability of the results of this study through additional studies targeting more diverse floor plans and floor structures. Full article
(This article belongs to the Special Issue New Design Approaches of Acoustical Environments)
Show Figures

Figure 1

21 pages, 3356 KB  
Article
Indoor Environmental Quality in Portuguese Office Buildings: Influencing Factors and Impact of an Intervention Study
by Fátima Felgueiras, Zenaida Mourão, André Moreira and Marta F. Gabriel
Sustainability 2024, 16(21), 9160; https://doi.org/10.3390/su16219160 - 22 Oct 2024
Cited by 1 | Viewed by 1430
Abstract
Office workers spend a considerable part of their day at the workplace, making it vital to ensure proper indoor environmental quality (IEQ) conditions in office buildings. This work aimed to identify significant factors influencing IEQ and assess the effectiveness of an environmental intervention [...] Read more.
Office workers spend a considerable part of their day at the workplace, making it vital to ensure proper indoor environmental quality (IEQ) conditions in office buildings. This work aimed to identify significant factors influencing IEQ and assess the effectiveness of an environmental intervention program, which included the introduction of indoor plants, carbon dioxide (CO2) sensors, ventilation, and printer relocation (source control), in six modern office buildings in improving IEQ. Thirty office spaces in Porto, Portugal, were randomly divided into intervention and control groups. Indoor air quality, thermal comfort, illuminance, and noise were monitored before and after a 14-day intervention implementation. Occupancy, natural ventilation, floor type, and cleaning time significantly influenced IEQ levels. Biophilic interventions appeared to decrease volatile organic compound concentrations by 30%. Installing CO2 sensors and optimizing ventilation strategies in an office that mainly relies on natural ventilation effectively improved air renewal and resulted in a 28% decrease in CO2 levels. The implementation of a source control intervention led to a decrease in ultrafine particle and ozone concentrations by 14% and 85%, respectively. However, an unexpected increase in airborne particle levels was detected. Overall, for a sample of offices that presented acceptable IEQ levels, the intervention program had only minor or inconsistent impacts. Offices with declared IEQ problems are prime candidates for further research to fully understand the potential of environmental interventions. Full article
Show Figures

Figure 1

18 pages, 6569 KB  
Article
Reduction in Floor Impact Noise Using Resilient Pads Composed of Machining Scraps
by Donghyeon Lee, Jonghoon Jeon, Wanseung Kim, Narae Kim, Minjung Lee and Junhong Park
Polymers 2024, 16(20), 2912; https://doi.org/10.3390/polym16202912 - 16 Oct 2024
Viewed by 1727
Abstract
Floor impact noise is a significant social concern to secure a quiescent living space for multi-story building residents in South Korea. The floating floor, consisting of a concrete structure on resilient pads, is a specifically designed system to minimize noise transmission. This floating [...] Read more.
Floor impact noise is a significant social concern to secure a quiescent living space for multi-story building residents in South Korea. The floating floor, consisting of a concrete structure on resilient pads, is a specifically designed system to minimize noise transmission. This floating structure employs polymeric pads as the resilient materials. In this study, we investigated the utilization of helically shaped machining scraps as a resilient material for an alternative approach to floor noise reduction. The dynamic elastic modulus and loss factor of the scrap pads were measured using the vibration test method. The scrap pads exhibited a low dynamic elastic modulus and a high loss factor compared to the polymeric pads. Heavyweight impact sound experiments in an actual building were conducted to evaluate the noise reduction performance. The proposed pads showed excellent performance on the reduction in the structure-borne vibration of the concrete slab and resulting sound generation. The analytical model was used to simulate the response of the floating floor structure, enabling a parametric study to examine the effects of the resilient layer viscoelastic properties. Both experimental and analytical evidence confirmed that the proposed scrap pads contribute to the development of sustainable solutions for the minimization of floor impact noise. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 4158 KB  
Article
Experimental Investigation on Building Sound Environment: Traffic-Induced Air Noise and Structure-Borne Noise
by Jialiang Chen, Lingshan He, Xuming Li, Bokai Zheng, Teng Wang, Dongyang Wang and Chao Zou
Buildings 2024, 14(8), 2380; https://doi.org/10.3390/buildings14082380 - 1 Aug 2024
Cited by 2 | Viewed by 2446
Abstract
The impact of urban traffic on human health is significant. This research conducts field measurements in Guangzhou, China, focusing on a building situated near subgrade roads and viaducts to investigate the characteristics of airborne and structure-borne noise generated by these infrastructures. The analysis [...] Read more.
The impact of urban traffic on human health is significant. This research conducts field measurements in Guangzhou, China, focusing on a building situated near subgrade roads and viaducts to investigate the characteristics of airborne and structure-borne noise generated by these infrastructures. The analysis involves the use of both sound pressure level and overall sound pressure level, as well as an examination of the transfer function between outdoor and indoor noise levels. The findings indicate that traffic-related airborne noise demonstrates a characteristic frequency at 1000 Hz in this scenario, while viaduct- and building-generated structure-borne noise is predominantly distributed at lower frequencies. Additionally, it is worth noting that structural vibrations generate significantly less energy compared to airborne traffic noise sources. The variation in outdoor road noise across different floors over the entire frequency range demonstrates an initial increase followed by a decrease with rising floor height due to air damping effects as well as sound barriers’ attenuation properties. These results enhance engineers’ understanding of urban traffic-induced airborne or structure-borne noise while establishing foundational data for designing layouts integrating urban buildings with roads. Full article
(This article belongs to the Special Issue Vibration Prediction and Noise Assessment of Building Structures)
Show Figures

Figure 1

15 pages, 4417 KB  
Article
The Improvement in the Floor Impact Noise with Changes in the Glass Transition Temperature of an SBR Latex Mortar
by Chan-Hoon Haan, Won-Hak Lee and Chan-Jae Park
Appl. Sci. 2024, 14(14), 6275; https://doi.org/10.3390/app14146275 - 18 Jul 2024
Viewed by 1136
Abstract
It is most effective to reduce floor impact noise as close to the sound source as possible. In apartments, there are multiple layers in the floor system, from floor finishing to the structural concrete slab. Apart from the floor finishing, mortar lies at [...] Read more.
It is most effective to reduce floor impact noise as close to the sound source as possible. In apartments, there are multiple layers in the floor system, from floor finishing to the structural concrete slab. Apart from the floor finishing, mortar lies at the top layer of the floor system, followed by autoclaved lightweight concrete, insulation, and the concrete slab. The present study aims to identify the reduction characteristics of light and heavy floor impact noises by changing the glass transition temperature of an SBR (styrene–butadiene rubber) latex mortar. To achieve this, structural tests were undertaken to find the appropriate mix proportions of SBR latex in the mortar, meeting the glass transition temperature based on the physical test results regarding the latex mortar. As seen in the study method and process, because this study aimed to both increase and decrease the strength compared to general mortar, a 7% mixture ratio of Tg 4 °C SBR latex was decided upon for the strength increase, while a 5% mixture ratio of Tg −16 °C SBR latex was chosen for the strength reduction. A mock-up specimen was created using the SBR latex-modified mortar according to the identified mix proportions, and the characteristics of light- and heavy-weight floor impact noises of the SBR latex-modified mortar were then examined. Comprehensive analysis of the reduction performance of the floor impact noise revealed that the Tg −16 °C SBR latex-mixed mortar showed a reduction effect of about 2–5 dB for light-weight impact noise and about 7–10 dB for heavy-weight impact noise. Full article
(This article belongs to the Special Issue Recent Advances in Architectural Acoustics and Noise Control)
Show Figures

Figure 1

Back to TopTop