Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (414)

Search Parameters:
Keywords = flux density distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5504 KiB  
Article
Influence of Light Intensity and Nutrient Concentration on Soybean (Glycine max (L.) Merr.) Seedling Growth
by Kiet Anh Huynh, Márton Jolánkai, Mária Katalin Kassai, Gergő Péter Kovács, Csaba Gyuricza and László Balázs
Agronomy 2025, 15(5), 1037; https://doi.org/10.3390/agronomy15051037 - 25 Apr 2025
Viewed by 133
Abstract
Light and nutrient availability are critical factors of plant growth and development, particularly at the early stages, where they significantly influence the establishment and survival of young seedlings. The morphological parameters and the biomass accumulation of soybean were measured in a hydroponic vertical [...] Read more.
Light and nutrient availability are critical factors of plant growth and development, particularly at the early stages, where they significantly influence the establishment and survival of young seedlings. The morphological parameters and the biomass accumulation of soybean were measured in a hydroponic vertical farm in the first 14 days of seedling growth in two successive experiments under two types of lighting environments and at three nutrient concentration levels. The lighting conditions were set by two parallel variable-spectrum linear luminaires positioned above the lower and upper edges of the cultivation trays. In the first lighting environment, seedlings were exposed to a constant photosynthetic photon flux density (PPFD) with red and blue photon irradiance ratio (R/B) varying in broad range from the lower to the upper end of the cultivation trays. In the second environment, the spatial R/B distribution was uniform, and the PPFD varied between two maxima at the edges and a minimum in the middle of the trays. The R/B ratio within the 0.6–6 interval had little or no effect on plant development. We report the dependence of growth traits as a function of PPFD in the range of 30–290 µmol m−2 s−1 in full-strength, half-strength, and blank nutrient solutions. The light response for shoot height and the first internode length was mainly influenced by blue light. We observed a rapid decline in growth between 6–20 µmol m−2 s−1 blue photon irradiance. The shoot height and first internode length did not change significantly at higher blue light intensities. The lengths of the first internode and the root dry mass did depend on the nutrient solution strength. All other growth traits, including stem diameter, leaf size, shoot mass, root mass, and SPAD readings, showed a linear correlation with PPFD and electrical conductivity. The leaf mass and root mass ratios indicated that soybeans adopt a nutrient search strategy by giving preference for root growth while increasing shoot height at the expense of the shoot diameter in conditions of low nutrient availability and low light intensity. The functional relationships determined in the experiments provide valuable inputs to plant growth models. The methodology we employed could also be used to study other plant species and to investigate the interactive effects of specific nutrients and lighting conditions. Full article
Show Figures

Figure 1

23 pages, 2616 KiB  
Article
Investigation of Harmonic Losses to Reduce Rotor Copper Loss in Induction Motors for Traction Applications
by Muhammad Salik Siddique, Hulusi Bülent Ertan, Muhammad Shahab Alam and Muhammad Umer Khan
World Electr. Veh. J. 2025, 16(5), 248; https://doi.org/10.3390/wevj16050248 - 25 Apr 2025
Viewed by 256
Abstract
The focus of this paper is to seek means of increasing induction motor efficiency to a comparable level to a permanent magnet motor. Harmonic and high-frequency losses increase the rotor core and copper loss, often limiting IM efficiency. The research in this study [...] Read more.
The focus of this paper is to seek means of increasing induction motor efficiency to a comparable level to a permanent magnet motor. Harmonic and high-frequency losses increase the rotor core and copper loss, often limiting IM efficiency. The research in this study focuses on reducing rotor core and copper losses for this purpose. An accurate finite element model of a prototype motor is developed. The accuracy of this model in predicting the performance and losses of the prototype motor is verified with experiments over a 32 Hz–125 Hz supply frequency range. The verified model of the motor is used to identify the causes of the rotor core and copper losses of the motor. It is found that the air gap flux density of the motor contains many harmonics, and the slot harmonics are dominant. The distribution of the core loss and the copper loss is investigated on the rotor side. It is discovered that up to 35% of the rotor copper losses and 90% rotor core losses occur in the regions up to 4 mm from the airgap where the harmonics penetrate. To reduce these losses, one solution is to reduce the magnitude of the air gap flux density harmonics. For this purpose, placing a sleeve to cover the slot openings is investigated. The FEA indicates that this measure reduces the harmonic magnitudes and reduces the core and bar losses. However, its effect on efficiency is observed to be limited. This is attributed to the penetration depth of flux density harmonics inside the rotor conductors. To remedy this problem, several FEA-based modifications to the rotor slot shape are investigated to place rotor bars deeper than the harmonic penetration. It is found that placing the bars further away from the rotor surface is very effective. Using a 1 mm sleeve across the stator’s open slots combined with a rotor tapered slot lip positions the bars slightly deeper than the major harmonic penetration depth, making it the optimal solution. This reduces the bar loss by 70% and increases the motor efficiency by 1%. Similar loss reduction is observed over the tested supply frequency range. Full article
(This article belongs to the Special Issue Propulsion Systems of EVs 2.0)
Show Figures

Figure 1

22 pages, 12626 KiB  
Article
Comparative Studies of Three-Dimensional Complex Flow Field Designs in a Proton Exchange Membrane Hydrogen Fuel Cell
by Dilyan Gavrailov and Silviya Boycheva
Energies 2025, 18(9), 2165; https://doi.org/10.3390/en18092165 - 23 Apr 2025
Viewed by 153
Abstract
The performance and durability of proton-exchange membrane fuel cells (PEMFCs) are dependent on fuel flow, humidifying water, and outgoing water management. Unlike conventional flow fields with linear channels, the complex 3D flow field—featuring repeating baffles along the channel, known as the baffle design—induces [...] Read more.
The performance and durability of proton-exchange membrane fuel cells (PEMFCs) are dependent on fuel flow, humidifying water, and outgoing water management. Unlike conventional flow fields with linear channels, the complex 3D flow field—featuring repeating baffles along the channel, known as the baffle design—induces a micro-scale interface flux between the gas diffusion layer (GDL) and the flow fields. Thus, an intensive oxygen flow is created that removes excess water from the GDL, thereby improving the fuel cell efficiency. Another approach for channel design is the Turing flow field, which resembles the organization of fluid flows in natural objects such as leaves, lungs, and the blood system. This design enhances the distribution of inlet flow significantly compared with traditional designs. The present study aims to combine the advantages of both Turing and baffle flow field designs and to provide model investigations on the influence of the mixed flow field design on the efficiency of PEMFCs. It was established that the mixed design achieves the highest electrode current density of 1.2 A/cm2, outperforming the other designs. Specifically, it achieves 20% improvement over the Turing design, reaching 1.0 A/cm2 and generating three times more current than the baffle design, which delivers 0.4 A/cm2. In contrast, the conventional serpentine designs exhibit the lowest current density. The mixed flow field design provides better oxygen utilization in the electrochemical reaction, offers optimal membrane hydration, and contributes to superior electrode current density performance. These data illustrate how flow field structure directly impacts fuel cell efficiency through enhancement of current density. Full article
(This article belongs to the Special Issue Renewable Fuels and Chemicals)
Show Figures

Figure 1

30 pages, 23769 KiB  
Article
A 2D Generalized Equivalent Magnetic Network Model for Electromagnetic Performance Analysis of Surface-Mounted Permanent Magnet Electric Machines
by Zhixin Liu, Chenqi Tang, Yisong He and Junquan Chen
Electronics 2025, 14(8), 1642; https://doi.org/10.3390/electronics14081642 - 18 Apr 2025
Viewed by 205
Abstract
This paper proposes a two-dimensional (2D) generalized equivalent magnetic network (GEMN) model suitable for surface-mounted permanent magnet electric machines (SPEMs). The model divides the SPEM into eight types of regions: stator yoke, stator tooth body, stator tooth tips, stator slot body, stator slot [...] Read more.
This paper proposes a two-dimensional (2D) generalized equivalent magnetic network (GEMN) model suitable for surface-mounted permanent magnet electric machines (SPEMs). The model divides the SPEM into eight types of regions: stator yoke, stator tooth body, stator tooth tips, stator slot body, stator slot openings, air gap, rotor permanent magnets, and rotor yoke. Each region is subdivided radially and tangentially into multiple 2D magnetic network units containing radial and tangential magnetic circuit parameters, forming a regular magnetic network covering all regions of the SPEM. The topology of this magnetic network remains unchanged during rotor rotation and can accommodate various surface-mounted permanent magnet structures including Halbach arrays, which enhances the generality of the model significantly. The proposed model can be used to calculate the 2D magnetic flux density distribution, winding electromotive force, electromagnetic torque, stator iron loss, and permanent magnet demagnetization in the influence of magnetic saturation, stator slotting, and current harmonic. Comparative analysis with the accurate subdomain method (ASDM) and finite element method (FEM) demonstrates that the GEMN model achieves a good balance between computational speed and accuracy, making it particularly suitable for efficient electromagnetic performance evaluation of SPEMs. Full article
Show Figures

Figure 1

20 pages, 3961 KiB  
Article
Spatial Heterogeneity of Soil Respiration and Its Relationship with the Spatial Distribution of the Forest Ecosystem at the Fine Scale
by Zhihao Chen, Yue Cai, Chunyu Pan, Hangjun Jiang, Zichen Jia, Chong Li and Guomo Zhou
Forests 2025, 16(4), 678; https://doi.org/10.3390/f16040678 - 12 Apr 2025
Viewed by 264
Abstract
Forest soil respiration plays a crucial role in the global carbon cycle. However, accurately estimating regional soil carbon fluxes is challenging due to the spatial heterogeneity of soil respiration at the stand level. This study examines the spatial variation of soil respiration and [...] Read more.
Forest soil respiration plays a crucial role in the global carbon cycle. However, accurately estimating regional soil carbon fluxes is challenging due to the spatial heterogeneity of soil respiration at the stand level. This study examines the spatial variation of soil respiration and its driving factors in subtropical coniferous and broad-leaved mixed forests in southern China, aiming to provide insights into accurately estimating regional carbon fluxes. The findings reveal that the coefficient of variation (CV) of soil respiration at a scale of 50 m × 50 m is 18.82%, indicating a moderate degree of spatial variation. Furthermore, 52% of the spatial variation in soil respiration can be explained by the variables under investigation. The standardized total effects of the main influencing factors are as follows: soil organic carbon (0.71), diameter at breast height within a radius of 5 m (0.31), soil temperature (0.27), and soil bulk density (−0.25). These results imply that even in relatively homogeneous areas with flat terrain, fine-scale soil respiration exhibits significant spatial heterogeneity. The spatial distribution of woody plant resources predominantly regulates this variation, with root distribution, shading effects, and changes in soil physical and chemical properties being the main influencing mechanisms. The study emphasizes the importance of simulations at different microscales to unravel the potential mechanisms governing macroscopic phenomena. Additionally, it highlights the need for incorporating a more comprehensive range of variables to provide more meaningful references for regional soil carbon flux assessment. Full article
Show Figures

Figure 1

27 pages, 7550 KiB  
Article
Effect of Nano TiO2 Flux on Depth of Penetration and Mechanical Properties of TIG-Welded SA516 Grade 70 Steel Joints—An Experimental Investigation
by Rakesh Narayanan, Krishnaswamy Rameshkumar, Arangot Sumesh, Balakrishnan Shankar and Dinu Thomas Thekkuden
Metals 2025, 15(4), 399; https://doi.org/10.3390/met15040399 - 3 Apr 2025
Viewed by 423
Abstract
This research investigates the application of activated tungsten inert gas (A-TIG) welding on boiler grade SA516 Grade 70 carbon steel using nano titanium dioxide (TiO2) nano flux to enhance weld penetration depth, microstructure, and mechanical properties. A unique flux application technique [...] Read more.
This research investigates the application of activated tungsten inert gas (A-TIG) welding on boiler grade SA516 Grade 70 carbon steel using nano titanium dioxide (TiO2) nano flux to enhance weld penetration depth, microstructure, and mechanical properties. A unique flux application technique was devised and experiments were carried out. Response Surface Methodology (RSM) was utilized to optimize weld parameters, namely arc length, welding current, and travel speed.The selection between A-TIG and TIG welding significantly influences penetration depth, as A-TIG benefits from arc constriction and elevated current density. The welding speed is crucial for controlling heat input, whereas current and arc length enhance penetration by influencing arc force and energy distribution. Optimizing all three parameters guarantees optimal penetration and weld quality. Microstructural research revealed enhanced mechanical properties in A-TIG weldments, distinguished by acicular ferrite in the fusion zone, which augmented toughness and tensile strength (520 MPa) compared to TIG weldments (470 MPa) and the base metal (480 MPa). Although A-TIG welds exhibited reduced impact toughness (68 J) relative to the base metal (128 J), A-TIG joints had superior ductility. The findings of this research clearly demonstrate the A-TIG welding process improved the depth of penetration and mechanical strength of the weld joints. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

17 pages, 1059 KiB  
Review
Metabolic Changes in Patients with Premature Ovarian Insufficiency: Adipose Tissue Focus—A Narrative Review
by Miriam Sánchez-García, Kapy León-Wu, Regina de Miguel-Ibáñez, Nitzia López-Juárez, Claudia Ramírez-Rentería, Etual Espinosa-Cárdenas, Ernesto Sosa-Eroza and Manuel R. García-Sáenz
Metabolites 2025, 15(4), 242; https://doi.org/10.3390/metabo15040242 - 2 Apr 2025
Viewed by 1042
Abstract
Background: Estrogen plays a crucial role in adipose tissue homeostasis, influencing fat distribution, lipid metabolism, and insulin sensitivity. Through estrogen receptor (ER) activation, particularly ERα, estradiol (E2) regulates adipogenesis, inhibits adipocyte hypertrophy, and promotes insulin signaling. It enhances lipid oxidation, reduces lipogenesis, and [...] Read more.
Background: Estrogen plays a crucial role in adipose tissue homeostasis, influencing fat distribution, lipid metabolism, and insulin sensitivity. Through estrogen receptor (ER) activation, particularly ERα, estradiol (E2) regulates adipogenesis, inhibits adipocyte hypertrophy, and promotes insulin signaling. It enhances lipid oxidation, reduces lipogenesis, and suppresses pro-inflammatory cytokine production, thereby maintaining metabolic health. Primary ovarian insufficiency (POI), characterized by estrogen deficiency before the age of 40, disrupts this regulatory network, leading to adverse metabolic effects. Objetives: This review examines the effects of estrogen on adipose tissue, lipid metabolism, and carbohydrate metabolism, with a particular focus on clinical evidence in women with POI. Methods: A narrative review of the metabolic alterations associated with POI, emphasizing the molecular, biochemical, and metabolic mechanisms underlying estrogen deficiency, with a special focus on adipose tissue. Results: Women with POI exhibit increased visceral fat accumulation, reduced lean mass, and alterations in adipokine secretion, resembling the metabolic phenotype of postmenopausal women. The decline in estrogen levels contributes to central adiposity, impaired lipid metabolism, and insulin resistance, exacerbating the risk of type 2 diabetes (T2D) and cardiovascular disease (CVD). The loss of estrogenic regulation leads to enhanced lipolysis in visceral fat, raising free fatty acid flux to the liver, promoting hepatic steatosis, and worsening insulin resistance. Studies indicate that POI patients have significantly higher total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides compared to age-matched controls, reinforcing their heightened CVD risk. Reduced sex hormone-binding globulin (SHBG) levels increase free androgen availability, aggravating central fat deposition. These metabolic disturbances can potentially accelerate atherosclerosis and vascular aging, increasing morbidity and mortality in POI patients. Conclusions: Understanding the role of estrogen in adipose tissue and its disruption in POI highlights the importance of early intervention. Although the available evidence is limited and largely extrapolated from menopause studies, strategies such as hormone replacement therapy, lifestyle modifications, and lipid profile optimization are essential to mitigate metabolic consequences and improve long-term health outcomes in women with POI. Full article
(This article belongs to the Special Issue Adipose Tissue, Reproduction and Metabolic Health in Women)
Show Figures

Figure 1

16 pages, 4124 KiB  
Article
An Explanation of the Poleward Mass Flux in the Stratosphere
by Aarnout J. van Delden
Atmosphere 2025, 16(3), 343; https://doi.org/10.3390/atmos16030343 - 18 Mar 2025
Viewed by 197
Abstract
This paper offers a new perspective on the explanation of the poleward mass flux in the stratosphere. This mass flux represents the upper leg of the so-called Brewer–Dobson circulation. This new perspective is based on the following hypothesis. A positive potential vorticity anomaly, [...] Read more.
This paper offers a new perspective on the explanation of the poleward mass flux in the stratosphere. This mass flux represents the upper leg of the so-called Brewer–Dobson circulation. This new perspective is based on the following hypothesis. A positive potential vorticity anomaly, centered over the North Pole, exists in the stratosphere during the winter half-year. This positive potential vorticity anomaly is associated with a negative isentropic density anomaly, which forms due to cross-isentropic downwelling associated with radiative cooling. Isentropic potential vorticity mixing due to breaking planetary waves weakens this potential vorticity anomaly while zonal-mean thermal wind balance is maintained. This requires a weakening of the negative Polar cap isentropic density anomaly, which in turn requires a poleward isentropic mass flux. Support for this hypothesis is found in a case study of a major Sudden Stratospheric Warming event, as an example of intense potential vorticity mixing. It is shown that the stratosphere, both before and after this event, is very close to zonal-mean thermal wind balance, despite the disruptive potential vorticity mixing, while mass is shifted poleward during this event. Solutions of the potential vorticity-inversion equation, which is an expression of thermal wind balance, for zonal-mean potential vorticity distributions before and after the Sudden Stratospheric Warming, demonstrate that mass must shift poleward to maintain zonal-mean thermal wind balance when the positive potential vorticity anomaly is eliminated by mixing. This perspective on the reasons for the poleward stratospheric mass flux also explains the observed isobaric warming as well as the Polar cap zonal-mean zonal wind reversal during a major Sudden Stratospheric Warming. Full article
(This article belongs to the Special Issue The 15th Anniversary of Atmosphere)
Show Figures

Figure 1

17 pages, 6382 KiB  
Article
Prediction of Solar Flux Density Distribution Concentrated by a Heliostat Using a Ray Tracing-Assisted Generative Adversarial Neural Network
by Fen Xu, Yanpeng Sun and Minghuan Guo
Energies 2025, 18(6), 1451; https://doi.org/10.3390/en18061451 - 15 Mar 2025
Viewed by 521
Abstract
Predicting the solar flux density distribution formed by heliostats in a concentrated solar tower power (CSP) plant is important for the optimization and stable operation of a CSP plant. However, the high temperature and blackbody attribute of the receiver makes direct measurement of [...] Read more.
Predicting the solar flux density distribution formed by heliostats in a concentrated solar tower power (CSP) plant is important for the optimization and stable operation of a CSP plant. However, the high temperature and blackbody attribute of the receiver makes direct measurement of the concentrated solar irradiance distribution a difficult task. To address this issue, indirect methods have been proposed. Nevertheless, these methods are either costly or not accurate enough. This study proposes a ray tracing-assisted deep learning method for the prediction of the concentrated solar flux density distribution formed by a heliostat. Namely, a generative adversarial neural network (GAN) model using Monte Carlo ray tracing results as the input was built for the prediction of solar flux density distribution concentrated by a heliostat. Experiments showed that the predicted solar flux density distributions were highly consistent with the concentrated solar spots on the Lambertian target formed by the same heliostat. This ray tracing-assisted deep learning method can be extended to other heliostats in the CSP plant and pave the way for the prediction of the solar flux density distribution concentrated by the whole heliostat field in a CSP plant. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

18 pages, 3048 KiB  
Article
Evaporation of Non-Isothermal Wall Microlayer Based on the Lattice Boltzmann Method
by Mengyuan Dang, Ming Gao, Jianhua Yang, Wuhan Dong and Lixin Zhang
Processes 2025, 13(3), 872; https://doi.org/10.3390/pr13030872 - 15 Mar 2025
Viewed by 423
Abstract
In the process of boiling heat transfer, the microlayer is not only a crucial medium for enhancing heat transfer but also directly determines the heat flux distribution, dry zone expansion, and overall heat transfer efficiency through its morphological evolution and evaporation behavior. Building [...] Read more.
In the process of boiling heat transfer, the microlayer is not only a crucial medium for enhancing heat transfer but also directly determines the heat flux distribution, dry zone expansion, and overall heat transfer efficiency through its morphological evolution and evaporation behavior. Building on this, this study employs the Lattice Boltzmann Method (LBM) with a single-component multiphase model to numerically simulate the evaporation process of microlayers on non-isothermal walls. The results show that, due to the uneven velocity distribution in the flow field, the microlayer exhibits significant contraction behavior during evaporation, particularly at the three-phase contact point, where velocity differences lead to fluid accumulation and the formation of a “cap-like” structure. The initial growth of the dry zone follows a linear trend, but its growth rate gradually decreases as the microlayer thickness increases, while near-wall density effects result in residual thickness within the dry zone. Additionally, the microlayer height first increases and then decreases over time, accompanied by a noticeable time lag. Heat flux analysis reveals that, during the formation of the dry spot, the lowest heat flux occurs at the three-phase contact point, followed by a sudden increase. A cold air ring forms above the dry zone, expanding and splitting as it moves with the dry spot. Higher temperatures promote microlayer evaporation, with the evaporation volume exhibiting nearly linear growth and the total fluid mass decreasing linearly. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 4437 KiB  
Article
A Positioning System Design Based on Tunnel Magnetoresistance Sensors for Rapid Zoom Optical Lens
by Junqiang Gong, Dameng Liu and Jianbin Luo
Sensors 2025, 25(6), 1820; https://doi.org/10.3390/s25061820 - 14 Mar 2025
Viewed by 481
Abstract
In response to the accurate positioning issue for high-speed moving lens groups in rapid zoom optical lenses with voice coil motors (VCMs), we demonstrate a positioning system design based on tunnel magnetoresistance sensors. The equivalent magnetic charge method and finite element method (FEM) [...] Read more.
In response to the accurate positioning issue for high-speed moving lens groups in rapid zoom optical lenses with voice coil motors (VCMs), we demonstrate a positioning system design based on tunnel magnetoresistance sensors. The equivalent magnetic charge method and finite element method (FEM) simulations were utilized to compute the magnetic field distribution of the magnetic grating encoder. Based on analytical computation, the optimal air gap δS between the sensor and magnetic grating is determined to be δS = 0.15 mm, which balances magnetic flux density amplitude and total harmonic distortion. In addition, a simplified fitting model is proposed to reduce computational complexity. We quantify the magnetic interference of VCM through three-dimensional flux leakage mapping by FEM analysis, deriving an optimal sensor position OS, with a 24 mm y-offset and 20 mm z-offset relative to the VCM’s origin OV. The position error caused by interference remains below 5 μm with maximum deviations at trajectory endpoints of the moving group. The original signal output is processed and corrected, and eventually, the measured displacement exhibits a linear relationship with actual displacement. Our study provides a comprehensive framework for the design and optimization of magnetic positioning systems in optical applications with electromagnetic motors. Full article
Show Figures

Figure 1

23 pages, 11086 KiB  
Article
Thermal Energy Storage Possibilities in the Composite Trombe Wall Modified with a Phase Change Material
by Joanna Krasoń, Przemysław Miąsik, Aleksander Starakiewicz and Lech Lichołai
Energies 2025, 18(6), 1433; https://doi.org/10.3390/en18061433 - 14 Mar 2025
Viewed by 348
Abstract
Energy savings issues are important in the context of building operation. An interesting solution for the southern external walls of the building envelope is the thermal storage wall (TSW), also known as the Trombe wall. The article considers four variants of the wall [...] Read more.
Energy savings issues are important in the context of building operation. An interesting solution for the southern external walls of the building envelope is the thermal storage wall (TSW), also known as the Trombe wall. The article considers four variants of the wall structure, including three containing phase change material (PCM). The purpose of this study was to determine the influence of the amount and location of phase change material in the masonry layer on the storage and flow of heat through the barrier. Each wall is equipped with a double-glazed external collector system with identical physical parameters. The research was carried out in specially dedicated testing stations in the form of external solar energy chambers, subjected to real climatic loads. The distribution of the heat flux density values was determined using experimental tests and was subjected to comparative analysis for the various variants considered using statistical analytical methods. A comparative analysis was performed between the heat flux density values obtained for each barrier in the assumed time interval from the one-year research period. The Kruskal–Wallis test and the median test were used for analyses performed in the Statistica 13.3 programme. The purpose of these analyses was to determine the occurrence of significant differences between individual heat flux flows through the barriers tested. The results obtained indicate that the use of PCM in thermal storage walls extends the time required to transfer the accumulated heat in the barrier to the internal environment while reducing the amplitude of the internal air temperature. Full article
Show Figures

Figure 1

16 pages, 6650 KiB  
Article
Analysis and Optimization of a Moving Magnet Permanent Magnet Synchronous Planar Motor with Split Halbach Arrays
by Ronglu Wang, Lu Zhang, Chenyang Shi, Chunqiu Zhao and Kai Yang
Energies 2025, 18(6), 1388; https://doi.org/10.3390/en18061388 - 11 Mar 2025
Viewed by 481
Abstract
This paper investigates an improved permanent magnet synchronous planar motor (PMSPM) featuring a moving magnet configuration to enhance thrust density and positioning accuracy. A novel split Halbach permanent magnet (PM) array is introduced, and the optimization begins with adjusting the pole size ratio [...] Read more.
This paper investigates an improved permanent magnet synchronous planar motor (PMSPM) featuring a moving magnet configuration to enhance thrust density and positioning accuracy. A novel split Halbach permanent magnet (PM) array is introduced, and the optimization begins with adjusting the pole size ratio α, analyzing the flux density distribution, and calculating thrust using an electromagnetic force model. Results demonstrate that the optimized Halbach array reduces thrust fluctuations and improves the uniformity of the air gap magnetic field. Multi-objective optimization using the non-dominated sorting genetic algorithm-II (NSGA-II) fine-tunes auxiliary magnet width and magnetization angles, resulting in a segmented auxiliary permanent magnet structure that achieves a 9.1% improvement in thrust density over conventional designs. Additionally, the optimized Halbach array effectively reduces thrust fluctuations and improves the uniformity of the air gap magnetic field, addressing key challenges in planar motor design. Extensive simulations and experimental validation demonstrate the superior performance of the proposed structure in terms of thrust density and positioning precision. These enhancements make the PMSPM suitable for high-precision, high-dynamic industrial applications. A detailed comparison of motor parameters and thrust performance validates the effectiveness of the proposed structure. Full article
Show Figures

Figure 1

8 pages, 1370 KiB  
Article
An Implicit Flux-Corrected Transport Algorithm Used for Gas Discharge Calculations
by Richard Morrow
Plasma 2025, 8(1), 7; https://doi.org/10.3390/plasma8010007 - 28 Feb 2025
Viewed by 440
Abstract
An implicit flux-corrected transport (FCT) and diffusion algorithm was developed and used in many gas discharge calculations. Such calculations require the use of a fine mesh where the electric field changes rapidly; that is, near electrodes or in a streamer front. If diffusion [...] Read more.
An implicit flux-corrected transport (FCT) and diffusion algorithm was developed and used in many gas discharge calculations. Such calculations require the use of a fine mesh where the electric field changes rapidly; that is, near electrodes or in a streamer front. If diffusion is included using an explicit method, then the von Neumann stability condition severely limits the time-step that can be used; however, this limitation does not apply to implicit methods. Further, for gas discharge calculations including space-charge effects, it is necessary to solve the continuity equations with no negative number densities nor point-by-point oscillation in the number density. This is because the electron number densities are finely balanced with the ion number densities to determine the space-charge distribution and hence the electric field which drives the motion of the particles. An efficient way to solve the particle transport equation, with the required properties, is to use FCT. The most accurate form of FCT developed by the author is implicit fourth-order FCT; hence, the method presented incorporates implicit diffusion into the implicit fourth-order FCT scheme to produce a robust algorithm that has been successfully used in many calculations. Full article
(This article belongs to the Special Issue Recent Advances of Dielectric Barrier Discharges)
Show Figures

Figure 1

23 pages, 6086 KiB  
Article
Effect of Wall Roughness in the Middle Zone of Spiral Concentrator on the Flow Field Evolution of Hematite–Quartz Slurry and Particle Separation Behaviour
by Shuling Gao, Xiaohong Zhou, Bochao Li, Qian Wang and Chunyu Liu
Minerals 2025, 15(3), 208; https://doi.org/10.3390/min15030208 - 21 Feb 2025
Viewed by 302
Abstract
The spiral concentrator is usually the first operation in the combined process of iron ore beneficiation. The industrial separation index decreases as the trough surface undergoes increased wear. A combination of surface roughness measurement and numerical experimental methods is utilized to systematically investigate [...] Read more.
The spiral concentrator is usually the first operation in the combined process of iron ore beneficiation. The industrial separation index decreases as the trough surface undergoes increased wear. A combination of surface roughness measurement and numerical experimental methods is utilized to systematically investigate the effect of wall roughness in the middle zone on the evolution of the flow field of a slurry consisting of hematite, quartz and water in a spiral concentrator. The radial migration and distribution characteristics of hematite and quartz particles are analysed, and the separation indexes are further evaluated. The results show that an increase in wall roughness (Ks value) in the middle zone has been shown to decrease the depth of slurry flow, the velocity and radial flux of secondary flow in the inner and middle zones of the trough, and to narrow the space of inward flow. The variation in hydrodynamic parameters is particularly pronounced as the Ks value increases from 0.1 mm to 0.2 mm, resulting in a significant reduction in the space available to the separation fluid and an observable interruption in the inward flow. The migration tendency of hematite and quartz particles to the inner trough is reduced depending on the flow field parameters, and their enrichment zones are both shifted outward. The migration amount and distance of particles show apparent differences in density and size. The separation indexes decrease slightly as the wall roughness (Ks value) in the middle zone increases in the 0.01 to 0.1 mm range, but the iron grade of concentrate decreases significantly, and the separation effect worsens as the Ks value increases from 0.1 mm to 0.2 mm. The separation effect of hematite and quartz particles in the spiral concentrator is influenced by the comprehensive interaction of feed size and wall roughness in the middle zone. The results of this study provide a theoretical basis for the selection of trough material, surface structure design and the production process control of the spiral concentrator. Full article
(This article belongs to the Special Issue Advances in the Theory and Technology of Physical Separation)
Show Figures

Graphical abstract

Back to TopTop