Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (516)

Search Parameters:
Keywords = foodborne illnesses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 641 KB  
Review
Zoonotic Yersinia enterocolitica in Swine: One Health Implications for Food Safety and Public Health
by Sónia Saraiva, Juan García-Díez, Telma de Sousa, Rita Calouro, Diana Fernandes, Ana V. Mourão, Cristina Saraiva, João R. Mesquita, Ana C. Coelho and Patrícia Poeta
Vet. Sci. 2025, 12(9), 795; https://doi.org/10.3390/vetsci12090795 - 23 Aug 2025
Viewed by 262
Abstract
Y. enterocolitica is a cold-tolerant, foodborne pathogen that poses a significant risk to public health, with pigs identified as its main reservoir. This review explores the current knowledge on the epidemiology, transmission, and virulence of Y. enterocolitica in pigs, highlighting their central role [...] Read more.
Y. enterocolitica is a cold-tolerant, foodborne pathogen that poses a significant risk to public health, with pigs identified as its main reservoir. This review explores the current knowledge on the epidemiology, transmission, and virulence of Y. enterocolitica in pigs, highlighting their central role in spreading the bacterium to humans—primarily through the consumption of raw or undercooked pork. The pathogen is frequently found in pig tonsils and intestines and can contaminate meat during slaughter. Among the various strains, bioserotype 4/O:3 is the most common cause of human illness. Y. enterocolitica carries a diverse set of virulence genes, such as ail, yst, inv, and yad, and evades immune responses. The review also covers major outbreaks, risk factors on farms and in slaughterhouses, and the limitations of current surveillance systems. Reducing the impact of Y. enterocolitica requires a One Health approach linking animal health, food safety, and public health. Full article
(This article belongs to the Special Issue Emerging Bacterial Pathogens in Veterinary Medicine)
Show Figures

Figure 1

18 pages, 2226 KB  
Article
The Clonal Spread and Persistence of Campylobacter in Danish Broiler Farms and Its Association with Human Infections
by Katrine Grimstrup Joensen, Gitte Sørensen, Pernille Gymoese, Louise Gade Dahl and Eva Møller Nielsen
Pathogens 2025, 14(8), 821; https://doi.org/10.3390/pathogens14080821 - 19 Aug 2025
Viewed by 429
Abstract
Campylobacter is the most common cause of bacterial foodborne illness in the EU, primarily linked to poultry. To better understand its transmission dynamics, we applied whole-genome sequencing (WGS) to Campylobacter isolates collected at slaughterhouses over a two-year period from broilers originating from 26 [...] Read more.
Campylobacter is the most common cause of bacterial foodborne illness in the EU, primarily linked to poultry. To better understand its transmission dynamics, we applied whole-genome sequencing (WGS) to Campylobacter isolates collected at slaughterhouses over a two-year period from broilers originating from 26 Danish farms. The samples included cloacal swabs and boot sock samples from broiler houses and surrounding farm environments. We identified 150 distinct cgMLST types among 883 isolates. While most cgMLST types were flock-specific, some persisted across production cycles or appeared at different farms, indicating entrenched contamination or potential common-source introductions. Notably, 39% of broiler-associated cgMLST types overlapped with human clinical isolates from the same period, with the strongest overlap among persistent and cross-farm types, particularly in conventional production systems. Our findings underscore the need for strengthened biosecurity, targeted surveillance of high-risk genotypes, and real-time WGS integration to mitigate the burden of human Campylobacteriosis. This study supports a One Health approach to managing zoonotic risk in poultry production. Full article
(This article belongs to the Special Issue Feature Papers on the Epidemiology of Infectious Diseases)
Show Figures

Figure 1

18 pages, 1575 KB  
Article
Redesigning Food Handler Training: A Gamified Approach Tested in Italy’s Large-Scale Retail
by Martina Sartoni, Francesca Marconi, Beatrice Torracca, Francesca Pedonese, Roberta Nuvoloni and Alessandra Guidi
Foods 2025, 14(16), 2803; https://doi.org/10.3390/foods14162803 - 13 Aug 2025
Viewed by 461
Abstract
Foodborne diseases remain a major global health issue, with over 250 illnesses linked to contaminated food. Effective food safety management relies on well-trained handlers; however, traditional classroom-based, passive learning often lacks engagement and efficacy, limiting awareness and hindering the development of a strong [...] Read more.
Foodborne diseases remain a major global health issue, with over 250 illnesses linked to contaminated food. Effective food safety management relies on well-trained handlers; however, traditional classroom-based, passive learning often lacks engagement and efficacy, limiting awareness and hindering the development of a strong food safety culture. Gamification offers a promising alternative for vocational training, enhancing motivation and engagement through interactive, emotionally engaging learning experiences. This study aims to evaluate the user’s perception of a gamification-based training system (Food Safety Trainer, FST web app) developed and implemented for the training of food handlers in a large-scale retail company in Tuscany, Italy. A total of 249 employees completed a survey after using FST web app for their annual training. Seniority was used as the primary variable to assess differences among respondents. Although some slight variations in opinion emerged, the results indicate that the web app was generally more appreciated than traditional learning. Gamification demonstrated great potential as a tool for enhancing engagement, promoting team building, and supporting the development of a food safety culture. Future studies could extend the evaluation beyond user perception by assessing the system’s effectiveness, comparing outcomes and performance through specific indicators. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

15 pages, 2864 KB  
Article
Rapid Detection of Staphylococcus aureus in Milk Samples by DNA Nanodendrimer-Based Fluorescent Biosensor
by Mukaddas Mijit, Dongxia Pan, Hui Wang, Chaoqun Sun and Liang Yang
Biosensors 2025, 15(8), 527; https://doi.org/10.3390/bios15080527 - 12 Aug 2025
Viewed by 419
Abstract
Staphylococcus aureus is the primary pathogen responsible for mastitis in dairy cows and foodborne illnesses, posing a significant threat to public health and food safety. Here, we developed an enhanced sensor based on solid-phase separation using gold-magnetic nanoparticles (Au@Fe3O4) [...] Read more.
Staphylococcus aureus is the primary pathogen responsible for mastitis in dairy cows and foodborne illnesses, posing a significant threat to public health and food safety. Here, we developed an enhanced sensor based on solid-phase separation using gold-magnetic nanoparticles (Au@Fe3O4) and signal amplification via dendritic DNA nanostructures. The substrate chain was specifically immobilized using thiol–gold coordination, and a three-dimensional dendritic structure was constructed through sequential hybridization of DNAzymes, L chains, and Y chains, resulting in a 2.8-fold increase in initial fluorescence intensity. Upon specific cleavage of the substrate chain at the rA site by S. aureus DNA, the complex dissociates, resulting in fluorescence intensity decay. The fluorescence intensity is negatively correlated with the concentration of Staphylococcus aureus. After optimization, the biosensor maintains a detection limit of 1 CFU/mL within 3 min, with a linear range extended to 1–107 CFU/mL (R2 = 0.998) and recovery rates of 85.6–102.1%, significantly enhancing resistance to matrix interference. This provides an innovative solution for rapid on-site detection of foodborne pathogens. Full article
(This article belongs to the Special Issue The Application of Biomaterials in Electronics and Biosensors)
Show Figures

Figure 1

21 pages, 3124 KB  
Article
Prevalence and Characterization of the Antimicrobial Resistance and Virulence Profiles of Staphylococcus aureus in Ready-to-Eat (Meat, Chicken, and Tuna) Pizzas in Mansoura City, Egypt
by Sara Amgad Elsalkh, Amira Ibrahim Zakaria, Samir Mohammed Abd-Elghany, Kálmán Imre, Adriana Morar and Khalid Ibrahim Sallam
Antibiotics 2025, 14(8), 817; https://doi.org/10.3390/antibiotics14080817 - 10 Aug 2025
Viewed by 606
Abstract
Introduction: Staphylococcus aureus is a high-priority foodborne pathogen contributing to several food poisoning outbreaks. Methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA), pose significant public health concerns due to their potential for serious illness, antibiotic resistance, and transmission within both healthcare and [...] Read more.
Introduction: Staphylococcus aureus is a high-priority foodborne pathogen contributing to several food poisoning outbreaks. Methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA), pose significant public health concerns due to their potential for serious illness, antibiotic resistance, and transmission within both healthcare and community settings. These bacteria can cause numerous infections, ranging from skin and soft tissue infections to life-threatening conditions like bloodstream infections, pneumonia, and endocarditis. Although several publications are concerned with Staphylococcus aureus contamination in ready-to-eat (RTE) food products, little published data is available about its prevalence in pizza, which is widely distributed and consumed worldwide. Methods: The current study is intended to determine the prevalence, virulence genes, and antimicrobial resistance profiles of S. aureus in three hundred ready-to-eat pizza samples (100 each of meat, chicken, and canned tuna pizzas) collected from different restaurants in Mansoura City, Egypt. The typical colonies on Baird–Parker selective agar supplemented with egg yolk tellurite emulsion were counted and further confirmed based on Gram staining, coagulase testing, catalase testing, carbohydrate fermentation, and thermostable nuclease production. The genomic DNA of the confirmed coagulase-positive isolates was prepared and subjected to PCR analyses for detecting the nuc gene, mecA (methicillin resistance gene), and vancomycin resistance gene (vanA), as well as six selected S. aureus virulence genes: sea, seb, sec, sed, hla, and tsst. The antimicrobial resistance profile of the S. aureus isolates was determined against 16 antimicrobial agents belonging to six classes using the agar disc diffusion method according to the Clinical and Laboratory Standards Institute guidelines (CLSI), except for oxacillin and vancomycin, which were assessed using the MIC test. Results: The results revealed that 56% (56/100), 56% (56/100), and 40% (40/100) of chicken, meat, and canned tuna pizzas were positive for S. aureus, with an overall prevalence of 50.7% (152/300). All 560 isolates (100%) were verified as S. aureus based on molecular confirmation of the nuc gene. Interestingly, 48.6% (272/560) and 8.6% (48/560) of the isolates tested were identified as methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA) through detection of mecA and vanA genes, respectively. Among the S. aureus isolates tested, the hla gene was detected in 87.1% (488/560), while the enterotoxin genes sea, seb, sec, and sed were identified in 50% (280/560), 78.6% (440/560), 9.8% (55/560), and 24.5% (137/560) of isolates, respectively. All recovered isolates (n = 560) were classified as multidrug-resistant and were resistant to penicillin, oxacillin, and ampicillin. Moreover, 77% (431/560), 24% (134/560), 8% (45/560), and 8.6% (48/560) of isolates were resistant to cefotaxime, ciprofloxacin, azithromycin, and vancomycin, respectively. Conclusions: The current study emphasizes that ready-to-eat pizza is highly contaminated with multidrug-resistant S. aureus, highlighting the urgent need for rationalizing antibiotic use in both veterinary and human medicine to prevent the transmission of resistant bacteria through the food chain. Additionally, strict adherence to good hygienic practices throughout all stages of the food chain is essential to minimize overall contamination and enhance food safety. Full article
(This article belongs to the Special Issue The Antimicrobial Resistance in the Food Chain)
Show Figures

Figure 1

26 pages, 1989 KB  
Review
Recent Advances in Technologies for Preserving Fresh-Cut Fruits and Vegetables
by Muhammad Faisal, Naeem Arshad, Hui Wang, Chengcheng Li, Jinju Ma, Xiaoxue Kong, Haibo Luo and Lijuan Yu
Foods 2025, 14(16), 2769; https://doi.org/10.3390/foods14162769 - 9 Aug 2025
Viewed by 657
Abstract
Rapid economic growth and changing consumer patterns have made fresh-cut fruits and vegetables household staples because of their high nutritional value, their role in reducing the risk of illnesses and other health problems, and convenience. However, fresh-cut produce is susceptible to the rapid [...] Read more.
Rapid economic growth and changing consumer patterns have made fresh-cut fruits and vegetables household staples because of their high nutritional value, their role in reducing the risk of illnesses and other health problems, and convenience. However, fresh-cut produce is susceptible to the rapid deterioration of sensory quality, nutrient loss, foodborne pathogens contamination, and spoilage caused by microbial growth, which can lead to consumer health risks. Thus, there is an urgent need to improve preservation methods, to increase the shelf life of fresh-cut produce. This review examines the primary mechanisms underlying quality deterioration in fresh-cut produce and critically evaluates emerging preservation technologies including physical, chemical, and biopreservation for their efficacy in reducing microbial growth while maintaining product quality. This paper also discusses key gaps and proposes future research directions to improve preservation methods, extend shelf life, and ensure the safety of fresh-cut produce. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

20 pages, 1404 KB  
Article
Bacteriophage PCSE1 as a Potential Strategy Against Salmonella Enteritidis in Liquid Egg Products
by Márcia Braz, Carla Pereira, Gabriela Matos, Jorge A. Saraiva, Carmen S. R. Freire and Adelaide Almeida
Antibiotics 2025, 14(8), 811; https://doi.org/10.3390/antibiotics14080811 - 8 Aug 2025
Viewed by 446
Abstract
Background/Objectives: The consumption of liquid egg products is rising. While thermal pasteurization improves safety and shelf life, it can affect product quality. Furthermore, egg products continue to cause many foodborne illnesses, especially those caused by Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella [...] Read more.
Background/Objectives: The consumption of liquid egg products is rising. While thermal pasteurization improves safety and shelf life, it can affect product quality. Furthermore, egg products continue to cause many foodborne illnesses, especially those caused by Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella Enteritidis). Bacteriophages (or phages) are an effective alternative to specifically fight foodborne bacteria. This study aimed to evaluate (i) the stability of phage vB_SeEM_UALMA_PCSE1 (PCSE1) under different conditions of temperature and pH; (ii) the effect of multiplicity of infection (MOI) and temperature on phage efficacy; (iii) the bactericidal effect of phage PCSE1 against S. Enteritidis in liquid whole eggs compared to thermal pasteurization; and (iv) the effect of both treatments on the physicochemical and functional properties of liquid whole eggs. Methods: For this, stability tests, bacterial growth inhibition assays in culture media and liquid eggs, and physicochemical and functional analyses were conducted. Results: Phage PCSE1 was (i) stable at pH 7 and 8, and at 4, 25, and 37 °C for 56 days; (ii) effectively prevented S. Enteritidis growth in TSB (reduction of 1.8, 4.5, and 4.5 log colony-forming units (CFU)/mL at 4, 10, and 25 °C, respectively, relative to the bacterial control); (iii) controlled S. Enteritidis in liquid whole eggs at 25 °C (reduction of 5.8 log CFU/mL relative to the bacterial control) comparable to pasteurization (reduction of 5.2 log CFU/mL); and (iv) preserved eggs’ properties, contrarily to pasteurization. Conclusions: These findings suggest PCSE1 is a promising strategy to fight S. Enteritidis in liquid egg products, though further studies on shelf-life are needed. Full article
(This article belongs to the Section Bacteriophages)
Show Figures

Graphical abstract

19 pages, 1579 KB  
Article
Plasma-Treated Water Effect on Sporulating Bacillus cereus vs. Non-Sporulating Listeria monocytogenes Biofilm Cell Vitality
by Samantha Nestel, Robert Wagner, Mareike Meister, Thomas Weihe and Uta Schnabel
Appl. Microbiol. 2025, 5(3), 80; https://doi.org/10.3390/applmicrobiol5030080 - 5 Aug 2025
Viewed by 337
Abstract
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have [...] Read more.
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have compounding effects on the color, texture, flavor, and nutritional quality of the product or do not effectively reduce the pathogens that food can be exposed to. Some bacterial pathogens particularly possess traits and tactics that make them even more difficult to mitigate such as biofilm formation. Non-thermal plasma sanitation techniques, including plasma-treated water (PTW), have proven to be promising methods that significantly reduce pathogenic bacteria that food is exposed to. Published work reveals that PTW can effectively mitigate both gram-positive and gram-negative bacterial biofilms. This study presents a novel analysis of the differences in antimicrobial effects of PTW treatment between biofilm-forming gram-positive bacteria, commonly associated with foodborne illness, that are sporulating (Bacillus cereus) and non-sporulating (Listeria monocytogenes). After treatment with PTW, the results suggest the following hypotheses: (1) that the non-sporulating species experiences less membrane damage but a greater reduction in metabolic activity, leading to a possible viable but non-culturable (VBNC) state, and (2) that the sporulating species undergoes spore formation, which may subsequently convert into vegetative cells over time. PTW treatment on gram-positive bacterial biofilms that persist in food processing environments proves to be effective in reducing the proliferating abilities of the bacteria. However, the variance in PTW’s effects on metabolic activity and cell vitality between sporulating and non-sporulating species suggest that other survival tactics might be induced. This analysis further informs the application of PTW in food processing as an effective sanitation method. Full article
Show Figures

Graphical abstract

20 pages, 4784 KB  
Article
Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella
by Gabriel I. Krüger, Francisca Urbina, Coral Pardo-Esté, Valentina Salinas, Javiera Álvarez, Nicolás Avilés, Ana Oviedo, Catalina Kusch, Valentina Pavez, Rolando Vernal, Mario Tello, Luis Alvarez-Thon, Juan Castro-Severyn, Francisco Remonsellez, Alejandro Hidalgo and Claudia P. Saavedra
Microorganisms 2025, 13(8), 1812; https://doi.org/10.3390/microorganisms13081812 - 3 Aug 2025
Viewed by 503
Abstract
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce [...] Read more.
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce bacterial contaminants below acceptable levels. Despite these preventive actions, Salmonella can survive and consequently affect human health. This study investigates the adaptive capacity of the main Salmonella enterica serotypes isolated from the poultry production line, focusing on their replication, antimicrobial resistance, and biofilm formation under stressors such as acidic conditions, oxidative environment, and high osmolarity. Using growth curve analysis, crystal violet staining, and microscopy, we assessed replication, biofilm formation, and antimicrobial resistance under acidic, oxidative, and osmotic stress conditions. Disinfectant tolerance was evaluated by determining the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of sodium hypochlorite. The antibiotic resistance was assessed using the Kirby–Bauer method. The results indicate that, in general, acidic and osmotic stress reduce the growth of Salmonella. However, no significant differences were observed specifically for serotypes Infantis, Heidelberg, and Corvallis. The S. Infantis isolates were the strongest biofilm producers and showed the highest prevalence of multidrug resistance (71%). Interestingly, S. Infantis forming biofilms required up to 8-fold higher concentrations of sodium hypochlorite for eradication. Furthermore, osmotic and oxidative stress significantly induced biofilm production in industrial S. Infantis isolates compared to a reference strain. Understanding how Salmonella responds to industrial stressors is vital for designing strategies to control the proliferation of these highly adapted, multi-resistant pathogens. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

12 pages, 284 KB  
Communication
Raw Sheep Milk as a Reservoir of Multidrug-Resistant Staphylococcus aureus: Evidence from Traditional Farming Systems in Romania
by Răzvan-Dragoș Roșu, Adriana Morar, Alexandra Ban-Cucerzan, Mirela Imre, Sebastian Alexandru Popa, Răzvan-Tudor Pătrînjan, Alexandra Pocinoc and Kálmán Imre
Antibiotics 2025, 14(8), 787; https://doi.org/10.3390/antibiotics14080787 - 2 Aug 2025
Viewed by 361
Abstract
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk [...] Read more.
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk from traditional farming systems remain limited. This study investigated the presence and antimicrobial resistance of S. aureus in 106 raw sheep milk samples collected from traditional farms in the Banat region of western Romania. Methods: Coagulase-positive staphylococci (CPS) were enumerated using ISO 6888-1:2021 protocols. Isolates were identified at the species level using the Vitek 2 system and molecularly confirmed via PCR targeting the 16S rDNA and nuc genes. Methicillin resistance was assessed by detecting the mecA gene. Antimicrobial susceptibility was determined using the Vitek 2 AST-GP79 card. Results: CPS were detected in 69 samples, with S. aureus confirmed in 34.9%. The mecA gene was identified in 13.5% of S. aureus isolates, indicating the presence of methicillin-resistant S. aureus (MRSA). Resistance to at least two antimicrobials was observed in 97.3% of isolates, and 33 strains (89.2%) met the criteria for multidrug resistance (MDR). The most frequent MDR phenotype involved resistance to lincomycin, macrolides, β-lactams, tetracyclines, and aminoglycosides. Conclusions: The high prevalence of S. aureus, including MRSA and MDR strains, in raw sheep milk from traditional farms represents a potential public health risk, particularly in regions where unpasteurized dairy consumption persists. These findings underscore the need for enhanced hygiene practices, prudent antimicrobial use, and AMR monitoring in small-scale dairy systems. Full article
29 pages, 830 KB  
Review
Persistent Threats: A Comprehensive Review of Biofilm Formation, Control, and Economic Implications in Food Processing Environments
by Alexandra Ban-Cucerzan, Kálmán Imre, Adriana Morar, Adela Marcu, Ionela Hotea, Sebastian-Alexandru Popa, Răzvan-Tudor Pătrînjan, Iulia-Maria Bucur, Cristina Gașpar, Ana-Maria Plotuna and Sergiu-Constantin Ban
Microorganisms 2025, 13(8), 1805; https://doi.org/10.3390/microorganisms13081805 - 1 Aug 2025
Viewed by 844
Abstract
Biofilms are structured microbial communities that pose significant challenges to food safety and quality within the food-processing industry. Their formation on equipment and surfaces enables persistent contamination, microbial resistance, and recurring outbreaks of foodborne illness. This review provides a comprehensive synthesis of current [...] Read more.
Biofilms are structured microbial communities that pose significant challenges to food safety and quality within the food-processing industry. Their formation on equipment and surfaces enables persistent contamination, microbial resistance, and recurring outbreaks of foodborne illness. This review provides a comprehensive synthesis of current knowledge on biofilm formation mechanisms, genetic regulation, and the unique behavior of multi-species biofilms. The review evaluates modern detection and monitoring technologies, including PCR, biosensors, and advanced microscopy, and compares their effectiveness in industrial contexts. Real-world outbreak data and a global economic impact analysis underscore the urgency for more effective regulatory frameworks and sanitation innovations. The findings highlight the critical need for integrated, proactive biofilm management approaches to safeguard food safety, reduce public health risks, and minimize economic losses across global food sectors. Full article
Show Figures

Figure 1

12 pages, 1161 KB  
Article
Power Ultrasound and Organic Acid-Based Hurdle Technology to Reduce Listeria monocytogenes and Salmonella enterica on Fresh Produce
by Megan L. Fay, Priya Biswas, Xinyi Zhou, Bashayer A. Khouja, Diana S. Stewart, Catherine W. Y. Wong, Wei Zhang and Joelle K. Salazar
Microbiol. Res. 2025, 16(8), 172; https://doi.org/10.3390/microbiolres16080172 - 1 Aug 2025
Viewed by 330
Abstract
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. [...] Read more.
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. This study evaluated the effectiveness of organic acids (citric, malic, and lactic acid) and power ultrasound, individually and in combination, for the reduction in Salmonella enterica and Listeria monocytogenes on four fresh produce types: romaine lettuce, cucumber, tomato, and strawberry. Produce samples were inoculated with bacterial cocktails at 8–9 log CFU/unit and treated with organic acids at 2 or 5% for 2 or 5 min, with or without power ultrasound (40 kHz). Results showed that pathogen reductions varied based on the produce matrix with smoother surfaces such as tomato, exhibiting greater reductions than rougher surfaces (e.g., romaine lettuce and strawberry). Lactic and malic acids were the most effective treatments, with 5% lactic acid achieving a reduction of >5 log CFU/unit for S. enterica and 4.53 ± 0.71 log CFU/unit for L. monocytogenes on tomatoes. The combination of organic acids and power ultrasound demonstrated synergistic effects, further enhancing pathogen reduction by <1.87 log CFU/unit. For example, S. enterica on cucumbers was reduced by an additional 1.87 log CFU/unit when treated with 2% malic acid and power ultrasound for 2 min compared to malic acid alone. Similarly, L. monocytogenes on strawberries was further reduced by 1.84 log CFU/unit when treated with 5% malic acid and power ultrasound for 2 min. These findings suggest that organic acids, particularly malic and lactic acids, combined with power ultrasound, may serve as an effective hurdle technology for enhancing the microbial safety of fresh produce. Future research can include validating these treatments in an industrial processing environment. Full article
Show Figures

Figure 1

22 pages, 2147 KB  
Article
Streamlining Bacillus Strain Selection Against Listeria monocytogenes Using a Fluorescence-Based Infection Assay Integrated into a Multi-Tiered Validation Pipeline
by Blanca Lorente-Torres, Pablo Castañera, Helena Á. Ferrero, Sergio Fernández-Martínez, Suleiman Adejoh Ocholi, Jesús Llano-Verdeja, Farzaneh Javadimarand, Yaiza Carnicero-Mayo, Amanda Herrero-González, Alba Puente-Sanz, Irene Sainz Machín, Isabel Karola Voigt, Silvia Guerrero Villanueva, Álvaro López García, Eva Martín Gómez, James C. Ogbonna, José M. Gonzalo-Orden, Jesús F. Aparicio, Luis M. Mateos, Álvaro Mourenza and Michal Letekadd Show full author list remove Hide full author list
Antibiotics 2025, 14(8), 765; https://doi.org/10.3390/antibiotics14080765 - 29 Jul 2025
Viewed by 460
Abstract
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential [...] Read more.
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential against L. monocytogenes. Methods: A total of 26 Bacillus isolates were screened for antimicrobial activity, gastrointestinal resilience, and host cell adhesion. A fluorescence-based infection assay using mCherry-expressing HCT 116 cells was used to assess cytoprotection against L. monocytogenes NCTC 7973. Eight strains significantly improved host cell viability and were validated by quantification of intracellular CFU. Two top candidates were tested in a murine model of listeriosis. The genome of the lead strain was sequenced to evaluate safety and biosynthetic potential. Results: B. subtilis CECT 8266 completely inhibited intracellular replication of L. monocytogenes in HCT 116 cells, reducing bacterial recovery to undetectable levels. In vivo, it decreased splenic bacterial burden by approximately 6-fold. Genomic analysis revealed eight bacteriocin biosynthetic clusters and silent antibiotic resistance genes within predicted genomic islands, as determined by CARD and Alien Hunter analysis. The strain also demonstrated bile and acid tolerance, as well as strong adhesion to epithelial cells. Conclusions: The proposed pipeline enables efficient identification of probiotic Bacillus strains with intracellular protective activity. B. subtilis CECT 8266 is a promising candidate for translational applications in food safety or health due to its efficacy, resilience, and safety profile. Full article
Show Figures

Figure 1

37 pages, 1945 KB  
Review
Staphylococcus aureus in Foodborne Diseases and Alternative Intervention Strategies to Overcome Antibiotic Resistance by Using Natural Antimicrobials
by Anna Phan, Sanjaya Mijar, Catherine Harvey and Debabrata Biswas
Microorganisms 2025, 13(8), 1732; https://doi.org/10.3390/microorganisms13081732 - 24 Jul 2025
Viewed by 664
Abstract
Foodborne diseases are the most common causes of illness worldwide. Bacterial pathogens, including Staphylococcus aureus, are often involved in foodborne disease and pose a serious threat to human health. S. aureus is commonly found in humans and a variety of animal species. [...] Read more.
Foodborne diseases are the most common causes of illness worldwide. Bacterial pathogens, including Staphylococcus aureus, are often involved in foodborne disease and pose a serious threat to human health. S. aureus is commonly found in humans and a variety of animal species. Staphylococcal enteric disease, specifically staphylococcal food poisoning (SFP), accounts for numerous gastrointestinal illnesses, through the contamination of food with its enterotoxins, and its major impact on human health imposes a heavy economic burden in society. Commonly, antibiotics and antimicrobials are used to treat SFP. However, a range of complications may arise with these treatments, impeding the control of S. aureus diseases specifically caused by methicillin-resistant S. aureus (MRSA). Natural alternative options to control S. aureus diseases, such as bacteriophages, plant-based antimicrobials, nanoparticle-based or light-based therapeutics, and probiotics, are promising in terms of overcoming these existing problems as they are environmentally friendly, abundant, unlikely to induce resistance in pathogens, cost-effective, and safe for human health. Recent findings have indicated that these alternatives may reduce the colonization and infection of major foodborne pathogens, including MRSA, which is crucial to overcome the spread of antibiotic resistance in S. aureus. This review focuses on the present scenario of S. aureus in foodborne disease, its economic importance and current interventions and, most importantly, the implications of natural antimicrobials, especially probiotics and synbiotics, as alternative antimicrobial means to combat pathogenic microorganisms particularly, S. aureus and MRSA. Full article
Show Figures

Figure 1

16 pages, 2585 KB  
Article
Cross-Contamination of Foodborne Pathogens During Juice Processing
by Isma Neggazi, Pilar Colás-Medà, Inmaculada Viñas and Isabel Alegre
Biology 2025, 14(8), 932; https://doi.org/10.3390/biology14080932 - 24 Jul 2025
Viewed by 495
Abstract
The demand for unpasteurized fruit juices has grown due to their natural nutritional benefits, but this also increases the risk of foodborne illnesses. This study evaluated the transfer of three pathogens (Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes) from [...] Read more.
The demand for unpasteurized fruit juices has grown due to their natural nutritional benefits, but this also increases the risk of foodborne illnesses. This study evaluated the transfer of three pathogens (Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes) from different surfaces (cutting boards, knives, and gloves) to produce and subsequently across different juice batches. Cutting boards and gloves showed the highest pathogen transfer rates (ranging from 2.03 ± 4.36 to 70.69 ± 23.58% for cutting boards, and from 0.04 ± 0.05 to 70.61 ± 23.51% for gloves), while knives exhibited the lowest (from 1.27 ± 1.35 to 7.87 ± 5.33%), when surface-to-produce transference was evaluated. Among the tested produce, beetroot had the highest pathogen transfer for all the tested pathogens (for the cutting board, from 48.55 ± 21.66 to 70.69 ± 23.58%, for the knife from 7.17 ± 6.17 to 7.87 ± 5.33%, and for the gloves from 48.85 ± 21.66 to 70.61 ± 23.51%). Beetroot juice provided the most favorable conditions for bacterial transfer (δ = 0.53–0.56; kmax1 = 3.09–3.20), whereas strawberry juice led to the fastest microbial decrease (δ = 1.10–1.26; kmax1 = 2.08–2.28) throughout processed juices. Apple juice demonstrated intermediate bacterial decline rates (δ = 0.75–1.10; kmax1 = 2.20–2.61). These findings highlight the need for improved hygiene practices and contamination control in juice processing to minimize food safety risks associated with unpasteurized fruit or vegetable juices. Full article
(This article belongs to the Special Issue Microbial Contamination and Food Safety (Volume II))
Show Figures

Figure 1

Back to TopTop