Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = giant component

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2165 KB  
Article
Structural Analysis of Acidic Glycosphingolipids in the Adductor Muscle of the Japanese Giant Scallop (Patinopecten yessoensis)
by Shunsuke Sonoda, Saki Itonori, Mutsumi Sugita, Ayako Higashino, Koki Sugimoto, Ryota Hosomi and Kenji Fukunaga
Fishes 2025, 10(9), 460; https://doi.org/10.3390/fishes10090460 - 12 Sep 2025
Viewed by 428
Abstract
Structural analysis of glycosphingolipids provides novel insights into organismal classification and reveals conserved functional roles that transcend taxonomic boundaries. To elucidate the structural characteristics of acidic glycosphingolipids (AGLs) in the adductor muscle of the Japanese giant scallop (Patinopecten yessoensis), AGLs were [...] Read more.
Structural analysis of glycosphingolipids provides novel insights into organismal classification and reveals conserved functional roles that transcend taxonomic boundaries. To elucidate the structural characteristics of acidic glycosphingolipids (AGLs) in the adductor muscle of the Japanese giant scallop (Patinopecten yessoensis), AGLs were isolated and purified by column chromatography using anion exchange resin and silica gel. Structural characterization was performed using mass spectrometry, proton nuclear magnetic resonance spectroscopy, and immunological techniques. The sugar chain structure was identified as GlcA4Meβ1-4(GalNAc3Meα1-3)Fucα1-4GlcNAcβ1-2Manα1-3Manβ1-4Glcβ1-Cer, consistent with the mollu-series core reported for mollusks. In addition to uronic acid, the structure was distinguished by internal fucose and methylated sugars, features commonly found in bivalves. The presence of xylose in the sugar chains of AGLs was also suggested. In contrast, the ceramide moiety was composed primarily of fatty acids C16:0 and C18:0 and the long-chain base d16:1. This chemical structure provides valuable insights into the biological classification of P. yessoensis and the mollu-series glycolipids containing fucose and methylated sugars, which may serve as bioactive components shared across species in the phylum Mollusca and class Bivalvia. Full article
Show Figures

Graphical abstract

16 pages, 5759 KB  
Article
Mechanisms of Self-Assembly of Giant Unilamellar Vesicles in the Army Liposome Formulation (ALF) Family of Vaccine Adjuvants
by Calin Nicolescu, Essie Komla, Mangala Rao, Gary R. Matyas and Carl R. Alving
Pharmaceutics 2025, 17(9), 1092; https://doi.org/10.3390/pharmaceutics17091092 - 22 Aug 2025
Viewed by 782
Abstract
Background/Objectives: Army Liposome Formulation with QS21 (ALFQ) is a vaccine adjuvant formulation consisting of liposomes that contain saturated zwitterionic and anionic phospholipids, 55 mol% cholesterol, and small molar amounts of monophosphoryl lipid A (MPLA) and QS21 saponin as adjuvants. A unique aspect of [...] Read more.
Background/Objectives: Army Liposome Formulation with QS21 (ALFQ) is a vaccine adjuvant formulation consisting of liposomes that contain saturated zwitterionic and anionic phospholipids, 55 mol% cholesterol, and small molar amounts of monophosphoryl lipid A (MPLA) and QS21 saponin as adjuvants. A unique aspect of ALFQ is that after addition of QS21 to nanoliposomes (<100 nm), the liposomes self-assemble through fusion to form giant (≥1000 nm) unilamellar vesicles (GUVs). The purpose of this study was to introduce and investigate new intermediate structures in the fusion process that we term tethered incomplete microspheres (TIMs), which were discovered by us incidentally as structures that were visible by phase contrast microscopy. Methods: Differential centrifugation; phase contrast microscopy; confocal microscopy of vesicles or TIMs which contain fluorescent chromophores linked to phospholipids or cholesterol; ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis of lipid components of liposomes and TIMs; and dynamic light scattering were all used for the characterization of TIMS. Results and Conclusions: (A) Sizes of TIMs range from overall aggregated structural sizes of ~1 µm to mega sizes of ≥200 µm. (B) Stable TIM structures occur when a fusion process is stopped by depletion of a fusogenic lipid during an evolving fusing of a lipid bilayer membrane. (C) TIMs consist of long-term stable (>2 years), but also metastable, tightly aggregated tear-drop or spherical incomplete GUVs tethered to visible masses of underlying vesicles that are not individually visible. (D) The TIMs and GUVs all contain phospholipid and cholesterol (when present) as bulk lipids. (E) Lyophilized liposomes lacking QS21 saponin, but which still contain MPLA (ALF55lyo), also self-assemble to form GUVs and TIMs. (F) Cholesterol is a required component in nanoliposomes for generation of GUVs and TIMs by addition of QS21. (G) Cholesterol is not required for production of GUVs and TIMs in ALFlyo, but cholesterol greatly reduces and narrows the polydisperse vesicle distribution. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 6509 KB  
Article
Abundance Analysis of the Spectroscopic Binary α Equulei
by Anna Romanovskaya and Sergey Zvyagintsev
Galaxies 2025, 13(4), 88; https://doi.org/10.3390/galaxies13040088 - 6 Aug 2025
Viewed by 654
Abstract
We present the results of a detailed spectroscopic analysis of the double-lined spectroscopic binary system α Equulei. High-resolution spectra obtained with the SOPHIE spectrograph at various orbital phases were used to disentangle the composite spectra into individual components using the spectral line deconvolution [...] Read more.
We present the results of a detailed spectroscopic analysis of the double-lined spectroscopic binary system α Equulei. High-resolution spectra obtained with the SOPHIE spectrograph at various orbital phases were used to disentangle the composite spectra into individual components using the spectral line deconvolution (SLD) iterative technique. The atmospheric parameters of each component were refined with the SME (spectroscopy made easy) package and further validated by following methods: SED (spectral energy distribution), the independence of the abundance of individual Fe iii lines on the reduced equivalent width and ionisation potential, and fitting with the hydrogen line profiles. Our accurate abundance analysis uses a hybrid technique for spectrum synthesis. This is based on classical model atmospheres that are calculated under the assumption of local thermodynamic equilibrium (LTE), together with non-LTE (NLTE) line formation. This is used for 15 out of the 25 species from C to Nd that were investigated. The primary giant component (G7-type) exhibits a typical abundance pattern for normal stars, with elements from He to Fe matching solar values and neutron-capture elements showing overabundances up to 0.5 dex. In contrast, the secondary dwarf component displays characteristics of an early stage Am star. The observed abundance differences imply distinct diffusion processes in their atmospheres. Our results support the scenario in which chemical peculiarities in Am stars develop during the main sequence and may decrease as the stars evolve toward the subgiant branch. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

16 pages, 2715 KB  
Article
Composite Behavior of Nanopore Array Large Memristors
by Ian Reistroffer, Jaden Tolbert, Jeffrey Osterberg and Pingshan Wang
Micromachines 2025, 16(8), 882; https://doi.org/10.3390/mi16080882 - 29 Jul 2025
Viewed by 599
Abstract
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior [...] Read more.
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior of nanopore-array large memristors, formed with different membrane materials, pore sizes, electrolytes, and device arrangements. Anodic aluminum oxide (AAO) membranes with 5 nm and 20 nm diameter pores and track-etched polycarbonate (PCTE) membranes with 10 nm diameter pores are tested and shown to demonstrate memristive and nonlinear behaviors with approximately 107–1010 pores in parallel when electrolyte concentration across the membranes is asymmetric. Ion diffusion through the large number of channels induces time-dependent electrolyte asymmetry that drives the system through different memristive states. The behaviors of series composite memristors with different configurations are also presented. In addition to helping understand fluidic devices and circuits for neuromorphic computing, the results also shed light on the development of field-assisted ion-selection-membrane filtration techniques as well as the investigations of large neurons and giant synapses. Further work is needed to de-embed parasitic components of the measurement setup to obtain intrinsic large memristor properties. Full article
(This article belongs to the Section D4: Glassy Materials and Micro/Nano Devices)
Show Figures

Figure 1

29 pages, 20260 KB  
Review
Geodynamic, Tectonophysical, and Structural Comparison of the South Caspian and Levant Basins: A Review
by Lev Eppelbaum, Youri Katz, Fakhraddin Kadirov, Ibrahim Guliyev and Zvi Ben-Avraham
Geosciences 2025, 15(8), 281; https://doi.org/10.3390/geosciences15080281 - 24 Jul 2025
Viewed by 869
Abstract
The Paratethyan South Caspian and Mediterranean Levant basins relate to the significant hydrocarbon provinces of Eurasia. The giant hydrocarbon reserves of the SCB are well-known. Within the LB, so far, only a few commercial gas fields have been found. Both the LB and [...] Read more.
The Paratethyan South Caspian and Mediterranean Levant basins relate to the significant hydrocarbon provinces of Eurasia. The giant hydrocarbon reserves of the SCB are well-known. Within the LB, so far, only a few commercial gas fields have been found. Both the LB and SCB contain some geological peculiarities. These basins are highly complex tectonically and structurally, requiring a careful, multi-component geological–geophysical analysis. These basins are primarily composed of oceanic crust. The oceanic crust of both the South Caspian and Levant basins formed within the complex Neotethys ocean structure. However, this crust is allochthonous in the Levant Basin (LB) and autochthonous in the South Caspian Basin (SCB). This study presents a comprehensive comparison of numerous tectonic, geodynamic, morphological, sedimentary, and geophysical aspects of these basins. The Levant Basin is located directly above the middle part of the massive, counterclockwise-rotating mantle structure and rotates accordingly in the same direction. To the north of this basin is located the critical latitude 35° of the Earth, with the vast Cyprus Bouguer gravity anomaly. The LB contains the most ancient block of oceanic crust on Earth, which is related to the Kiama paleomagnetic hyperzone. On the western boundary of the SCB, approximately 35% of the world’s mud volcanoes are located; the geological reasons for this are still unclear. The low heat flow values and thick sedimentary layers in both basins provide opportunities to discover commercial hydrocarbon deposits at great depths. The counterclockwise-rotating mantle structure creates an indirect geodynamic influence on the SCB. The lithospheric blocks situated above the eastern branch of the mantle structure trigger a north–northeastward movement of the western segment of the Iranian Plate, which exhibits a complex geometric configuration. Conversely, the movement of the Iranian Plate induced a clockwise rotation of the South Caspian Basin, which lies to the east of the plate. This geodynamic ensemble creates an unstable geodynamic situation in the region. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

32 pages, 32586 KB  
Article
Magmatic Evolution at the Saindak Cu-Au Deposit: Implications for the Formation of Giant Porphyry Deposits
by Jun Hong, Yasir Shaheen Khalil, Asad Ali Narejo, Xiaoyong Yang, Tahseenullah Khan, Zhihua Wang, Huan Tang, Haidi Zhang, Bo Yang and Wenyuan Li
Minerals 2025, 15(8), 768; https://doi.org/10.3390/min15080768 - 22 Jul 2025
Viewed by 2206
Abstract
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these [...] Read more.
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these giant deposits remain poorly understood. Mafic microgranular enclaves (MMEs), mafic dikes, and multiple porphyries have been documented in the Saindak mining area. This work examines both the ore-rich and non-ore intrusions in the Saindak porphyry Cu-Au deposit, using methods like molybdenite Re-Os dating, U-Pb zircon ages, Hf isotopes, and bulk-rock geochemical data. Geochronological results indicate that ore-fertile and barren porphyries yield ages of 22.15 ± 0.22 Ma and 22.21 ± 0.33 Ma, respectively. Both MMEs and mafic dikes have zircons with nearly identical 206Pb/238U weighted mean ages (21.21 ± 0.18 Ma and 21.21 ± 0.16 Ma, respectively), corresponding to the age of the host rock. Geochemical and Sr–Nd–Hf isotopic evidence indicates that the Saindak adakites were generated by the subduction of the Arabian oceanic lithosphere under the Eurasian plate, rather than through continental collision. The adakites were mainly formed by the partial melting of a metasomatized mantle wedge, induced by fluids from the dehydrating subducting slab, with minor input from subducted sediments and later crust–mantle interactions during magma ascent. We conclude that shallow subduction of the Arabian plate during the Oligocene–Miocene may have increased the flow of subducted fluids into the sub-arc mantle source of the Chagai arc. This process may have facilitated the widespread deposition of porphyry copper and copper–gold mineralization in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

19 pages, 5491 KB  
Article
Design of an Angled Single-Excitation Elliptical Vibration System
by Qiang Liu, Xiping He, Weiguo Wang and Yanning Yang
Micromachines 2025, 16(7), 808; https://doi.org/10.3390/mi16070808 - 13 Jul 2025
Viewed by 409
Abstract
An angled single-excitation elliptical vibration system for ultrasonic-assisted machining was developed in this paper, which was composed of a giant magnetostrictive transducer and an angled horn. Based on the continuous boundary conditions between the components, the frequency equation of the angled vibration system [...] Read more.
An angled single-excitation elliptical vibration system for ultrasonic-assisted machining was developed in this paper, which was composed of a giant magnetostrictive transducer and an angled horn. Based on the continuous boundary conditions between the components, the frequency equation of the angled vibration system was derived, and the resonant frequencies of vibration systems with different angles were theoretically calculated. The finite element method was employed to investigate the impact of varying angles on the resonant frequency, elliptical trajectory, phase difference, and output amplitude of the vibration systems. The electrical impedance of the vibration system and the longitudinal and transverse vibration amplitudes at the end face of the horn were tested experimentally. The results show that the resonant frequency and phase difference in the vibration system decreased, the transverse amplitude of the output elliptical trajectory increased, and the longitudinal amplitude decreased with the increase in the included angle. The elliptical trajectories obtained from the test were generally consistent with the calculated results, and the calculated values of the resonant frequencies of the three angled vibration systems were in good agreement with the experimental test values. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

18 pages, 2903 KB  
Article
Characteristic and Adaptive Strategy in Leaf Functional Traits of Giant Panda (Ailuropoda melanoleuca) Staple Bamboo Species
by Xiong Liu, Yilin Zhou, Xingcheng Zou, Weiyu Zhu, Renping Wan, Zhengchuan Liang, Junxi Hu, Liehua Tie, Xinglei Cui, Yuanbin Zhang, Shixing Zhou, Jordi Sardans, Congde Huang and Josep Peñuelas Reixach
Forests 2025, 16(6), 954; https://doi.org/10.3390/f16060954 - 5 Jun 2025
Viewed by 648
Abstract
Leaf functional traits are important indicators that reveal plant adaptation and response to environmental changes. Characteristics and adaptive strategies of leaf functional traits of staple bamboo species (SBSs) for the giant panda (Ailuropoda melanoleuca) remain unclear, which limits conservation management of [...] Read more.
Leaf functional traits are important indicators that reveal plant adaptation and response to environmental changes. Characteristics and adaptive strategies of leaf functional traits of staple bamboo species (SBSs) for the giant panda (Ailuropoda melanoleuca) remain unclear, which limits conservation management of the giant panda and its habitat. Here, this study investigated 10 SBSs in 15 nature reserves across 36 counties, measured eight leaf functional traits, analyzed trait characteristics, variation, and drivers of variation, and examined trait-based strategies and strategy–environmental constraint relationships. Our results indicate that: coefficients of variation in leaf functional traits spanned from 9.58% to 79.16%, and significant differences were found among SBSs for leaf functional traits except chlorophyll concentration. The linear mixed-effects models revealed that the taxonomic factors explained 20.16 to 77.94% of variation, and environmental factors explained 17.03 to 29.12%. Leaf functional traits exhibited distinct environmental associations, primarily driven by geographic location, topography, and soil phosphorus availability. Hierarchical clustering and principal component analysis revealed 10 SBS clustered into two groups, corresponding to conservative and acquisitive resource-use strategies. Canonical correspondence analysis revealed that SBSs with conservative strategies were distributed in warm and moist habitats, and SBSs with acquisition strategies were distributed in habitats with high solar radiation. Our results reveal the key trait characteristics of SBSs and the strategy-environmental constraint model based on traits, which can provide scientific basis for the ecological management practice of SBSs. Full article
Show Figures

Figure 1

20 pages, 3125 KB  
Article
Study on the Influence of Multiple Factors on the CH4/CO2 Adsorption Selective Prediction Model in Coal
by Min Yan, Cheng Wang, Haifei Lin, Pengfei Ji, Shugang Li and Huilin Jia
Processes 2025, 13(6), 1757; https://doi.org/10.3390/pr13061757 - 3 Jun 2025
Viewed by 648
Abstract
More accurate prediction of CO2/CH4 adsorption selectivity coefficients in the CO2 Enhanced Coal Bed CH4 Recovery (CO2-ECBM) project can help to judge the CO2 adsorption concentration and the desorption purity of CH4 during the [...] Read more.
More accurate prediction of CO2/CH4 adsorption selectivity coefficients in the CO2 Enhanced Coal Bed CH4 Recovery (CO2-ECBM) project can help to judge the CO2 adsorption concentration and the desorption purity of CH4 during the CO2 injection process, and to achieve the maximization of CO2 sequestration as well as the optimization of the CH4 recovery rate. To this end, a coal molecular slit model with 16 sizes including micro-, meso-, and macropores was constructed in this study, and the competitive adsorption characteristics of CO2 and CH4 gas mixtures in bituminous coal molecules were investigated using molecular dynamics and giant canonical Monte Carlo simulations. The CO2/CH4 adsorption selectivity coefficients (Sc) as a function of gas ratio, gas pressure, pore size, and temperature were analyzed using a large amount of adsorption isotherm data. Based on the simulation results, considering the neglect of pressure and component changes when calculating the adsorption selectivity coefficient using the traditional extended Langmuir (E-L) model, a correction term regarding the pressure of the mixed gas and the mole fraction of CO2 is set, and a modified equation is proposed. The results show that the adsorption potential energy of CO2 is significantly higher than that of CH4, giving it an absolute advantage in the competition. Through multiple regression analysis, the ranking of the influence weights of the four factors on Sc is as follows: pore size > mixed gas pressure > molar fraction of CO2 > temperature. The negative exponential function can describe the variation of Sc with four factors. The fitting degree between the modified prediction model and the Sc data obtained through simulation reaches 0.84, and the model effect is good. The research results provide theoretical guidance for the optimization of gas injection parameters in the CO2-ECBM project. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 7293 KB  
Article
Comparative Transcriptomic Analysis Between High- and Low-Growth-Rate Meat-Type Rabbits Reveals Key Pathways Associated with Muscle Development
by Chao Yang, Lingxi Zhu, Li Tang, Xiangyu Zhang, Min Lei, Xiaohong Xie, Cuixia Zhang, Dingsheng Yuan, Congyan Li and Ming Zhang
Animals 2025, 15(11), 1585; https://doi.org/10.3390/ani15111585 - 29 May 2025
Viewed by 743
Abstract
Rabbit meat constitutes a high-protein, low-fat nutritional resource demonstrating rising consumption, particularly within the Asia-Pacific region. Consequently, muscle growth and developmental pattern in meat rabbits represent critical economic considerations. To elucidate the primary signaling pathways governing muscle development, we first performed comparative body [...] Read more.
Rabbit meat constitutes a high-protein, low-fat nutritional resource demonstrating rising consumption, particularly within the Asia-Pacific region. Consequently, muscle growth and developmental pattern in meat rabbits represent critical economic considerations. To elucidate the primary signaling pathways governing muscle development, we first performed comparative body weight analyses between two rabbit breeds exhibiting divergent growth rates: the fast-growing Checkered Giant (Ju) and slow-growing Sichuan Ma rabbit. Subsequent, post-natal qualities of thigh and longissimus dorsi muscle fiber were quantified across three developmental phases (28, 56, and 84 days post-natal). The results showed the body weight of Ju rabbit was significantly higher than that of Ma rabbit beyond 3 weeks post-natal (p < 0.05), while Ma rabbit exhibited larger muscle fiber areas in both tissues at 56 days (p < 0.05). The transcriptome analysis showed that 284 and 305 differentially expressed genes (DEGs) (|log2FC| > 1, padj < 0.05) were identified in thigh muscle and longissimus dorsi muscle, respectively. GO (Gene Ontology) analysis of DEGs indicated DEGs in the thigh muscle were enriched in these terms related to biological processes of muscle cell migration and smooth muscle cell migration, cellular components of sarcomere, myofibril, and actin filament bundle, while DEGs in longissimus dorsi muscle were enriched in these terms associated with biological processes of muscle cell migration, smooth muscle cell migration and muscle structure development, cellular component of actin cytoskeleton, contractile fiber, myofibril, myosin complex and molecular function of actin filament binding. Integrated GO, KEGG and PPI analyses of co-expressive DEGs implicated the HIF-1 signaling pathway and Glycolysis/Gluconeogenesis in muscular development. Different expression of energy metabolism hub-genes might be the primary reason for interbreed muscle developmental disparities. Full article
Show Figures

Figure 1

15 pages, 2850 KB  
Article
Dolichocephalovirinae Phages Exist as Episomal Pseudolysogens Across Diverse Soil Bacteria
by Tannaz Mohammadi and Bert Ely
Microorganisms 2025, 13(6), 1239; https://doi.org/10.3390/microorganisms13061239 - 28 May 2025
Viewed by 726
Abstract
Interactions between bacteria and bacteriophages are important for the maintenance of soil communities. In this study, we characterized the giant bacteriophages found within diverse soil bacteria and 14 additional phages isolated directly from soil samples. Based on their genome sizes and genetic composition, [...] Read more.
Interactions between bacteria and bacteriophages are important for the maintenance of soil communities. In this study, we characterized the giant bacteriophages found within diverse soil bacteria and 14 additional phages isolated directly from soil samples. Based on their genome sizes and genetic composition, we concluded that these phages belong to the Dolichocephalovirinae subfamily. In addition, we used pulsed-field gel electrophoresis to show that the genomes of these phages were present as episomal pseudolysogens in the cytoplasm of their host cells. These findings suggest that episomal phages are important components of soil microbial ecosystems. Understanding the interactions between bacteriophages and bacteria is essential for microbial ecology, as they influence nutrient cycling, community composition, and host evolution. Furthermore, these phage-bacteria dynamics offer potential applications in plant disease control, as bacteriophages could serve as biocontrol agents against soilborne pathogens, promoting sustainable agricultural practices. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

11 pages, 682 KB  
Article
A Spectroscopic and Photometric Study of MWC 342 and Its B[e] Phenomenon over the Last 40 Years
by Aigerim Zh. Akniyazova, Anatoly S. Miroshnichenko, Sergey V. Zharikov, Hans Van Winckel, Nadine Manset, Ashish Raj, Stephen Drew Chojnowski, Serik A. Khokhlov, Inna V. Reva, Raushan I. Kokumbaeva, Chingis T. Omarov, Konstantin N. Grankin, Aldiyar T. Agishev and Nadezhda L. Vaidman
Galaxies 2025, 13(3), 63; https://doi.org/10.3390/galaxies13030063 - 20 May 2025
Viewed by 1122
Abstract
MWC 342 (V1972 Cyg) was discovered nearly 90 years ago as an early-type emission-line star. It was among the first hot stars whose strong infrared excess was detected in the early 1970s. Several mostly short-term photometric and spectroscopic studies resulted in contradictory conclusions [...] Read more.
MWC 342 (V1972 Cyg) was discovered nearly 90 years ago as an early-type emission-line star. It was among the first hot stars whose strong infrared excess was detected in the early 1970s. Several mostly short-term photometric and spectroscopic studies resulted in contradictory conclusions about the nature and evolutionary status of MWC 342. It has been classified as a pre-main-sequence Herbig Be star, an evolved suspected binary system, and a long-period variable star. Suggestions on the nature of the secondary component to this B0/B1 primary included a cool M-type giant and an X-ray source. We collected medium- and high-resolution optical spectra of MWC 342 taken in 1994–2024 as well as optical photometric data taken in 1986–2024. Analysis of these data shows strong variations in the object’s brightness and spectral line properties at various time scales, but no strictly periodic phenomena have been found. Inparticular, such a long-term dataset allowed us to reveal the optical brightness variations over a nearly 20-year-long quasi-period, as well as their anti-correlation with the Hα emission-line strength. Also, we did not confirm the presence of He ii emission lines and absorption lines of the star’s atmosphere that were suspected in previously published studies. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

13 pages, 5876 KB  
Article
V694 Mon: A Recent Event of Mass Transfer in the Dynamical Mode
by Vitaly P. Goranskij, Elena A. Barsukova, Aleksandr N. Burenkov, Natalia V. Metlova, Alla V. Zharova and Ilya A. Yakunin
Galaxies 2025, 13(3), 59; https://doi.org/10.3390/galaxies13030059 - 14 May 2025
Viewed by 1152
Abstract
The phenomenon of runaway mass transfers between components of binary systems on a dynamical timescale has been theoretically predicted. However, this phenomenon has been observed for the first time in the history of astronomy just now in a symbiotic system V694 Mon. We [...] Read more.
The phenomenon of runaway mass transfers between components of binary systems on a dynamical timescale has been theoretically predicted. However, this phenomenon has been observed for the first time in the history of astronomy just now in a symbiotic system V694 Mon. We employed medium- and high-dispersion spectroscopy, along with multicolor photometry, to study this event in detail. Over 6 years, beginning in 2018, we observed the cessation of disk accretion, the filling of the accretor’s Roche lobe, and the subsequent formation of an A-type star within it. The pulsating envelope of the M giant donor was transferred to the accretor down to its base. Thus, the products from the hydrogen-burning layer appeared on the donor’s surface, and a flash of an emission-line spectrum enriched with s-process elements was detected. We discuss discrepancies between theoretical predictions and observations, as well as other phenomena potentially related to dynamical mass transfer. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

18 pages, 3609 KB  
Article
Semi-Interpenetrating Polymer Networks Incorporating Polygalacturonic Acid: Physical Characterization and In Vitro Biocompatibility
by Aisling N. O’Carroll, Colin P. McCoy and Louise Carson
Processes 2025, 13(5), 1502; https://doi.org/10.3390/pr13051502 - 14 May 2025
Viewed by 671
Abstract
Polygalacturonic acid (PGA), derived from the natural plant polysaccharide, pectin, has been suggested as a biomaterial for implantable medical devices and tissue engineering; particularly in the field of bone implant materials. As a negatively charged polysaccharide, PGA can be considered similar to hyaluronic [...] Read more.
Polygalacturonic acid (PGA), derived from the natural plant polysaccharide, pectin, has been suggested as a biomaterial for implantable medical devices and tissue engineering; particularly in the field of bone implant materials. As a negatively charged polysaccharide, PGA can be considered similar to hyaluronic acid, a component of the extracellular matrix (ECM). PGA-based biomaterials may therefore exhibit favorable biocompatibility with surface chemistry mimicking the natural ECM. In this study, we synthesized semi-interpenetrating polymer networks (SIPNs) incorporating PGA, and conducted physical characterization and in vitro biocompatibility studies. Biocompatibility testing revealed the SIPNs to be cytocompatible, with the PGA component conferring some resistance to the adherence of the macrophage cell line RAW264.7. In addition, SIPNs did not support the fusion of primary murine macrophages into foreign body giant cells (FBGCs). Macrophage adherence and FBGC formation on implanted biomaterial surfaces are important events in the progression of a foreign body response. Our in vitro studies suggest that PGA-based materials may offer desirable biocompatibility profiles, holding promise for future clinical applications. Full article
Show Figures

Figure 1

21 pages, 3768 KB  
Review
A Multifaceted Giant Protein Microtubule-Actin Cross-Linking Factor 1
by Chung-Ming Lin, Ru-Huei Fu and Hui-Jye Chen
Int. J. Mol. Sci. 2025, 26(7), 3204; https://doi.org/10.3390/ijms26073204 - 30 Mar 2025
Viewed by 1202
Abstract
Microtubule-actin cross-linking factor 1 (MACF1), also known as actin cross-linking family protein 7 (ACF7), is a giant cytolinker protein with multiple conserved domains that can orchestrate cytoskeletal networks of actin and microtubules. MACF1 is involved in various biological processes, including cell polarity, cell–cell [...] Read more.
Microtubule-actin cross-linking factor 1 (MACF1), also known as actin cross-linking family protein 7 (ACF7), is a giant cytolinker protein with multiple conserved domains that can orchestrate cytoskeletal networks of actin and microtubules. MACF1 is involved in various biological processes, including cell polarity, cell–cell connection, cell proliferation, migration, vesicle transport, signal transduction, and neuronal development. In this review, we updated the physiological and pathological roles of MACF1, highlighting the components and signaling pathways involved. Novel evidence showed that MACF1 is involved in diverse human diseases, including multiple neuronal diseases, congenital myasthenic syndrome, premature ovarian insufficiency, spectraplakinopathy, osteoporosis, proliferative diabetic retinopathy, and various types of cancer. We also reviewed the physiological roles of MACF1, including its involvement in adhesome formation, bone formation, neuronal aging, and tooth development. In addition, MACF1 plays other roles, functioning as a biomarker for the prediction of infections in patients with burns and as a marker for genome selection breeding. These studies reinforce the idea that MACF1 is a bona fide versatile, multifaceted giant protein. Identifying additional MACF1 functions would finally help with the treatment of diseases caused by MACF1 defects. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular and Cellular Biology 2024)
Show Figures

Figure 1

Back to TopTop