Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (541)

Search Parameters:
Keywords = glucose biosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1932 KB  
Article
Universal Platform Based on Carbon Nanotubes Functionalised with Carboxylic Acid Groups for Multi-Analyte Enzymatic Biosensing
by Edmundas Lukoševičius, Julija Kravčenko, Grėta Mikėnaitė, Augustas Markevičius and Gintautas Bagdžiūnas
Biosensors 2025, 15(10), 686; https://doi.org/10.3390/bios15100686 - 10 Oct 2025
Viewed by 180
Abstract
This work presents the development of carbon nanotubes functionalised with carboxylic acid groups (CNT-COOH) as an oxygen-sensitive electrochemical platform for parallel multi-analyte enzymatic biosensing. The platform was constructed by depositing carboxylic-acid-functionalised single-walled carbon nanotubes covalently onto nanostructured gold electrodes modified with a self-assembled [...] Read more.
This work presents the development of carbon nanotubes functionalised with carboxylic acid groups (CNT-COOH) as an oxygen-sensitive electrochemical platform for parallel multi-analyte enzymatic biosensing. The platform was constructed by depositing carboxylic-acid-functionalised single-walled carbon nanotubes covalently onto nanostructured gold electrodes modified with a self-assembled monolayer of 4-aminothiophenol. Atomic force microscopy characterization revealed that the nanotubes attached via their ends to the surface and had a predominantly horizontal orientation. Glucose oxidase, lactate oxidase, glutamate oxidase, and tyrosinase were immobilised onto the electrodes to create selective biosensor for lactate, glucose, glutamate, and dopamine, respectively. A key finding is that incorporating catalase significantly extends the linear detection range for analytes by mitigating the accumulation of hydrogen peroxide. The resulting multifunctional biosensor demonstrated its capability for the simultaneous and independent measurement of glucose, lactate as the key bioanalytes under uniform conditions in blood plasma samples, highlighting its potential for applications in health and food technologies. Full article
Show Figures

Figure 1

56 pages, 7355 KB  
Review
Carbon Nanomaterial-Based Electrochemical Biosensors for Alzheimer’s Disease Biomarkers: Progress, Challenges, and Future Perspectives
by Berfin Şak, Helena B. A. Sousa and João A. V. Prior
Biosensors 2025, 15(10), 684; https://doi.org/10.3390/bios15100684 - 9 Oct 2025
Viewed by 421
Abstract
Alzheimer’s disease (AD) requires early and accurate identification of affected brain regions, which can be achieved through the detection of specific biomarkers to enable timely intervention. Carbon nanomaterials (CNMs), including graphene derivatives, carbon nanotubes, graphitic carbon nitride, carbon black, fullerenes, and carbon dots, [...] Read more.
Alzheimer’s disease (AD) requires early and accurate identification of affected brain regions, which can be achieved through the detection of specific biomarkers to enable timely intervention. Carbon nanomaterials (CNMs), including graphene derivatives, carbon nanotubes, graphitic carbon nitride, carbon black, fullerenes, and carbon dots, offer high conductivity, large electroactive surface area, and versatile surface chemistry that enhance biosensor performance. While such properties benefit a wide range of transduction principles (e.g., electrochemical, optical, and plasmonic), this review focuses on their role in electrochemical biosensors. This review summarizes CNM-based electrochemical platforms reported from 2020 to mid-2025, employing aptamers, antibodies, and molecularly imprinted polymers for AD biomarker detection. Covered topics include fabrication strategies, transduction formats, analytical performance in complex matrices, and validation. Reported devices achieve limits of detection from the femtomolar to picogram per milliliter range, with linear ranges typically spanning 2–3 orders of magnitude (e.g., from femtomolar to picomolar, or from picogram to nanogram per milliliter levels). They exhibit high selectivity against common interferents such as BSA, glucose, uric acid, ascorbic acid, dopamine, and non-target peptides, along with growing capabilities for multiplexing and portable operation. Remaining challenges include complex fabrication, limited long-term stability and reproducibility data, scarce clinical cohort testing, and sustainability issues. Opportunities for scalable production and integration into point-of-care workflows are outlined. Full article
(This article belongs to the Special Issue Nano/Micro Biosensors for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

14 pages, 5634 KB  
Article
Validation of Analytical Models for the Development of Non-Invasive Glucose Measurement Devices
by Bruna Gabriela Pedro, Fernanda Maltauro de Cordova, Yana Picinin Sandri Lissarassa, Fabricio Noveletto and Pedro Bertemes-Filho
Biosensors 2025, 15(10), 669; https://doi.org/10.3390/bios15100669 - 3 Oct 2025
Viewed by 428
Abstract
Non-invasive glucose monitoring remains a persistent challenge in the scientific literature due to the complexity of biological samples and the limitations of traditional optical methods. Although advances have been made in the use of near-infrared (NIR) spectrophotometry, the direct application of the Lambert–Beer [...] Read more.
Non-invasive glucose monitoring remains a persistent challenge in the scientific literature due to the complexity of biological samples and the limitations of traditional optical methods. Although advances have been made in the use of near-infrared (NIR) spectrophotometry, the direct application of the Lambert–Beer Law (LBL) to such systems has proven problematic, particularly due to the non-linear behavior observed in complex organic solutions. In this context, the objective of this work is to propose and validate a methodology for the determination of the extinction coefficient of glucose in blood, taking into account the limitations of the LBL and the specificities of molecular interactions. The method was optimized through an iterative process to provide consistent results over multiple replicates. Whole blood and plasma samples from two individuals were analyzed using spectrophotometry in the 700 nm to 1400 nm. The results showed that glucose has a high spectral sensitivity close to 975 nm.The extinction coefficients obtained for glucose (αg) ranged from −0.0045 to −0.0053, and for insulin (αi) from 0.000075 to 0.000078, with small inter-individual variations, indicating strong stability of these parameters. The non-linear behaviour observed in the relationship between absorbance, glucose and insulin concentrations might be explained by the changes imposed by both s and p orbitals of organic molecules. In order to make the LBL valid in this context, the extinction coefficients must be functions of the analyte concentrations, and the insulin concentration must also be a function of glucose. A regression model was found which allows to differentiate glucose from insulin concentration, by considering the cuvette thickness and sample absorbance at 965, 975, and 985 nm. It can also be concluded from experiments that wavelength of approximately 975 nm is more suitable for blood glucose calculation by using photometry. The final spectra are consistent with those reported in mid-infrared validation studies, suggesting that the proposed model encompasses the key aspects of glucose behavior in biological media. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

38 pages, 2063 KB  
Review
Nanostructured Materials in Glucose Biosensing: From Fundamentals to Smart Healthcare Applications
by Rajaram Rajamohan and Seho Sun
Biosensors 2025, 15(10), 658; https://doi.org/10.3390/bios15100658 - 2 Oct 2025
Viewed by 606
Abstract
The rapid development of nanotechnology has significantly transformed the design and performance of glucose biosensors, leading to enhanced sensitivity, selectivity, and real-time monitoring capabilities. This review highlights recent advances in glucose-sensing platforms facilitated by nanomaterials, including metal and metal oxide nanoparticles, carbon-based nanostructures, [...] Read more.
The rapid development of nanotechnology has significantly transformed the design and performance of glucose biosensors, leading to enhanced sensitivity, selectivity, and real-time monitoring capabilities. This review highlights recent advances in glucose-sensing platforms facilitated by nanomaterials, including metal and metal oxide nanoparticles, carbon-based nanostructures, two-dimensional materials, and metal–organic frameworks (MOFs). The integration of these nanoscale materials into electrochemical, optical, and wearable biosensors has addressed longstanding challenges associated with enzyme stability, detection limits, and invasiveness. Special emphasis is placed on non-enzymatic glucose sensors, flexible and wearable devices, and hybrid nanocomposite systems. The multifunctional properties of nanomaterials, such as large surface area, excellent conductivity, and biocompatibility, have enabled the development of next-generation sensors for clinical, point-of-care, and personal healthcare applications. The review also discusses emerging trends such as biodegradable nanosensors, AI-integrated platforms, and smart textiles, which are poised to drive the future of glucose monitoring toward more sustainable and personalized healthcare solutions. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

16 pages, 2987 KB  
Article
Rapid and Sensitive Glucose Detection Using Recombinant Corn Mn Peroxidase and Advanced Voltammetric Methods
by Anahita Izadyar, Ezekiel McCain and Elizabeth E. Hood
Sensors 2025, 25(19), 5974; https://doi.org/10.3390/s25195974 - 26 Sep 2025
Viewed by 449
Abstract
We present a novel disposable electrochemical biosensor for highly sensitive and selective glucose detection, employing gold-modified screen-printed electrodes combined with square wave (SWV) and linear sweep voltammetry (LSV). The sensor integrates recombinant corn-derived manganese peroxidase with glucose oxidase, bovine serum albumin, and gold [...] Read more.
We present a novel disposable electrochemical biosensor for highly sensitive and selective glucose detection, employing gold-modified screen-printed electrodes combined with square wave (SWV) and linear sweep voltammetry (LSV). The sensor integrates recombinant corn-derived manganese peroxidase with glucose oxidase, bovine serum albumin, and gold nanoparticles to enhance stability and signal transduction. Glucose detection by LSV covered 0.001–6.5 mM (R2 = 0.9913; LOD = 0.50 µM), while SWV achieved a broader range of 0.0006–6.5 mM (R2 = 0.998; LOD = 0.29 µM). The sensor demonstrated excellent selectivity, showing minimal interference from common electroactive species including caffeine, aspartame, and ascorbic acid, and provided rapid responses, making it ideal for point-of-care and food monitoring applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

16 pages, 3417 KB  
Article
Optical Fiber TFBG Glucose Biosensor via pH-Sensitive Polyelectrolyte Membrane
by Fang Wang, Xinyuan Zhou, Jianzhong Zhang and Shenhang Cheng
Biosensors 2025, 15(10), 642; https://doi.org/10.3390/bios15100642 - 25 Sep 2025
Viewed by 307
Abstract
A novel glucose biosensor is developed based on a tilted fiber Bragg grating (TFBG) functionalized with a pH-responsive polyelectrolyte multilayer membrane, onto which glucose oxidase (GOD) is immobilized. The sensing film is constructed via layer-by-layer self-assembly of poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA), [...] Read more.
A novel glucose biosensor is developed based on a tilted fiber Bragg grating (TFBG) functionalized with a pH-responsive polyelectrolyte multilayer membrane, onto which glucose oxidase (GOD) is immobilized. The sensing film is constructed via layer-by-layer self-assembly of poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA), which undergoes reversible swelling and refractive index (RI) changes in response to local pH variations. These changes are transduced into measurable shifts in the resonance wavelengths of TFBG cladding modes. The catalytic action of GOD oxidizes glucose to gluconic acid, thereby modulating the interfacial pH and actuating the polyelectrolyte membrane. With an optimized (PEI/PAA)4(PEI/GOD)1 structure, the biosensor achieves highly sensitive glucose detection, featuring a wide measurement range (10−8 to 10−2 M), a low detection limit of 27.7 nM, and a fast response time of ~60 s. It also demonstrates excellent specificity and robust performance in complex biological matrices such as rabbit serum and artificial urine, with recovery rates of 93–102%, highlighting its strong potential for point-of-care testing applications. This platform offers significant advantages in stability, temperature insensitivity, and miniaturization, making it well-suited for clinical glucose monitoring and disease management. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

52 pages, 4885 KB  
Review
Emerging Biomarkers and Nanobiosensing Strategies in Diabetes
by Anupriya Baranwal, Vipul Bansal and Ravi Shukla
Biosensors 2025, 15(10), 639; https://doi.org/10.3390/bios15100639 - 25 Sep 2025
Viewed by 787
Abstract
Diabetes mellitus is a chronic metabolic disorder characterised by impaired glucose regulation, leading to severe complications affecting multiple organ systems. Current diagnostic approaches primarily rely on glucose monitoring, which, while being effective, fails to capture the underlying molecular changes associated with disease progression. [...] Read more.
Diabetes mellitus is a chronic metabolic disorder characterised by impaired glucose regulation, leading to severe complications affecting multiple organ systems. Current diagnostic approaches primarily rely on glucose monitoring, which, while being effective, fails to capture the underlying molecular changes associated with disease progression. Emerging biomarkers such as microRNAs (miRNAs) and adipokines offer new insights into diabetes pathophysiology, providing potential diagnostic and prognostic value beyond traditional methods. Given this, precise monitoring of the altered levels of miRNAs and adipokines can forge a path towards early diabetes diagnosis and improved disease management. Biosensors have revolutionised diabetes diagnostics, with glucose biosensors dominating the market for decades. However, recent advancements in nanobiosensors have expanded their scope beyond glucose detection, enabling highly sensitive and selective monitoring of biomolecular markers like miRNAs and adipokines. These nanotechnology-driven platforms offer rapid, inexpensive, and minimally invasive detection strategies, paving the way for improved disease management. This review provides an overview of diabetes, along with its pathogenesis, complications, and demographics, and explores the clinical relevance of miRNAs and adipokines as emerging biomarkers. It further examines the evolution of biosensor technologies, highlights recent developments in nanobiosensors for biomarker detection, and critically analyses the challenges and future directions in this growing field. Full article
(This article belongs to the Special Issue Nano/Micro Biosensors for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

19 pages, 2575 KB  
Article
Biosensor-Based Comparison of Stress Responses in Qingtian Paddy Field Carp (Cyprinus carpio var. qingtianensis) and Xingguo Red Carp (Cyprinus carpio var. singuonensis) Under Acute Shallow Water Conditions
by Tengyu Liu, Rui Han, Yuhan Jiang, Jiamin Sun, Haiyun Wu and Qigen Liu
Biology 2025, 14(9), 1303; https://doi.org/10.3390/biology14091303 - 20 Sep 2025
Viewed by 311
Abstract
The domestication of common carp in rice paddies (5–20 cm depth) is challenging, as the fish must withstand drastic fluctuations in temperature and dissolved oxygen, restricted movement, and bird predation without the option of diving. The effects of stress responses in different species [...] Read more.
The domestication of common carp in rice paddies (5–20 cm depth) is challenging, as the fish must withstand drastic fluctuations in temperature and dissolved oxygen, restricted movement, and bird predation without the option of diving. The effects of stress responses in different species of carp in shallow-water environments remain poorly understood, particularly with fluctuating water levels where real-time monitoring is challenging. This study employed a glucose biosensor system enabling real-time monitoring, together with biochemical analysis techniques capable of evaluating multiple physiological indicators, to investigate shallow-water adaptation in Qingtian paddy field carp and Xingguo red carp. Our results quantitatively reveal, for the first time, the differing physiological stress thresholds of the two carp strains under shallow water. The Qingtian paddy field carp exhibited a higher tolerance to shallow water and showed faster recovery from prolonged stress. Furthermore, the total cholesterol and triglyceride contents of Qingtian paddy field carp gradually increased with prolonged shallow-water stress, reflecting the activation of lipid metabolic pathways. These findings highlight the advantages of biosensor technology in aquatic stress research and a strong support of the core element of paddy domesticated carp in the Globally Important Agricultural Heritage Systems. Full article
(This article belongs to the Special Issue Metabolic and Stress Responses in Aquatic Animals)
Show Figures

Figure 1

46 pages, 4316 KB  
Review
3D Printing Assisted Wearable and Implantable Biosensors
by Somnath Maji, Myounggyu Kwak, Reetesh Kumar and Hyungseok Lee
Biosensors 2025, 15(9), 619; https://doi.org/10.3390/bios15090619 - 17 Sep 2025
Viewed by 979
Abstract
Biosensors have undergone transformative advancements, evolving into sophisticated wearable and implantable devices capable of real-time health monitoring. Traditional manufacturing methods, however, face limitations in scalability, cost, and design complexity, particularly for miniaturized, multifunctional biosensors. The integration of 3D printing technology addresses these challenges [...] Read more.
Biosensors have undergone transformative advancements, evolving into sophisticated wearable and implantable devices capable of real-time health monitoring. Traditional manufacturing methods, however, face limitations in scalability, cost, and design complexity, particularly for miniaturized, multifunctional biosensors. The integration of 3D printing technology addresses these challenges by enabling rapid prototyping, customization, and the production of intricate geometries with high precision. This review explores how additive manufacturing techniques facilitate the fabrication of flexible, stretchable, and biocompatible biosensors. By incorporating advanced materials like conductive polymers, nanocomposites, and hydrogels, 3D-printed biosensors achieve enhanced sensitivity, durability, and seamless integration with biological systems. Innovations such as biodegradable substrates and multi-material printing further expand applications in continuous glucose monitoring, neural interfaces, and point-of-care diagnostics. Despite challenges in material optimization and regulatory standardization, the convergence of 3D printing with nanotechnology and smart diagnostics heralds a new era of personalized, proactive healthcare, offering scalable solutions for both clinical and remote settings. This synthesis underscores the pivotal role of additive manufacturing in advancing wearable and implantable biosensor technology, paving the way for next-generation devices that prioritize patient-specific care and real-time health management. Full article
(This article belongs to the Special Issue Biological Sensors Based on 3D Printing Technologies)
Show Figures

Figure 1

22 pages, 1231 KB  
Proceeding Paper
Emerging Trends in Paper-Based Electrochemical Biosensors for Healthcare Applications
by Aparoop Das, Partha Protim Borthakur, Dibyajyoti Das, Jon Jyoti Sahariah, Parimita Kalita and Kalyani Pathak
Eng. Proc. 2025, 106(1), 8; https://doi.org/10.3390/engproc2025106008 - 11 Sep 2025
Viewed by 896
Abstract
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary [...] Read more.
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary action, which make it an ideal candidate for low-cost, functional, and reliable diagnostic devices. The simplicity and cost-effectiveness of paper-based biosensors make them especially suitable for point-of-care (POC) applications, particularly in resource-limited settings where traditional diagnostic tools may be inaccessible. Their lightweight nature and ease of operation allow non-specialized users to perform diagnostic tests without the need for complex laboratory equipment, making them suitable for emergency, field, and remote applications. Technological advancements in paper-based biosensors have significantly enhanced their capabilities. Integration with microfluidic systems has improved fluid handling and reagent storage, resulting in enhanced sensor performance, including greater sensitivity and specificity for target biomarkers. The use of nanomaterials in electrode fabrication, such as reduced graphene oxide and gold nanoparticles, has further elevated their sensitivity, allowing for the precise detection of low-concentration biomarkers. Moreover, the development of multiplexed sensor arrays has enabled the simultaneous detection of multiple biomarkers from a single sample, facilitating comprehensive and rapid diagnostics in clinical settings. These biosensors have found applications in diagnosing a wide range of diseases, including infectious diseases, cancer, and metabolic disorders. They are also effective in genetic analysis and metabolic monitoring, such as tracking glucose, lactate, and uric acid levels, which are crucial for managing chronic conditions like diabetes and kidney diseases. In this review, the latest advancements in paper-based electrochemical biosensors are explored, with a focus on their applications, technological innovations, challenges, and future directions. Full article
Show Figures

Figure 1

17 pages, 2819 KB  
Article
Robust Pt/Au Composite Nanostructures for Abiotic Glucose Sensing
by Asghar Niyazi, Ashley Linden and Mirella Di Lorenzo
Biosensors 2025, 15(9), 588; https://doi.org/10.3390/bios15090588 - 8 Sep 2025
Viewed by 581
Abstract
Effective glucose monitoring is paramount for patients with diabetes to effectively manage their condition and prevent health complications. Electrochemical sensors for glucose monitoring have key advantages over other systems, including cost-effectiveness, miniaturisation and portability, enabling the design of compact and wearable devices. Typically, [...] Read more.
Effective glucose monitoring is paramount for patients with diabetes to effectively manage their condition and prevent health complications. Electrochemical sensors for glucose monitoring have key advantages over other systems, including cost-effectiveness, miniaturisation and portability, enabling the design of compact and wearable devices. Typically, enzymes are used in these sensors, with the limitations of poor stability and high cost. In alternative, this study reports the development of a gold and platinum composite nanostructured electrode and its testing as an abiotic (enzyme-free) electrocatalyst for glucose oxidation. The electrode consists of a film of highly porous gold electrodeposited onto gold-plated electrodes on a printed circuit board (PCB), which is coated with polyaniline decorated with platinum nanoparticles. The resulting nanocomposite structure shows a sensitivity towards glucose as high as 95.12 ± 2.54 µA mM−1 cm−2, nearly twice that of the highly porous gold electrodes, and excellent stability in synthetic interstitial fluid over extended testing, thus demonstrating robustness. Accordingly, this study lays the groundwork for the next generation of durable, selective, and affordable abiotic glucose biosensors. Full article
Show Figures

Figure 1

17 pages, 1545 KB  
Article
Portable Point-of-Care Device for Dual Detection of Glucose-6-Phosphate Dehydrogenase Deficiency and Hemoglobin in Low-Resource Settings
by Rehab Osman Taha, Napaporn Youngvises, Runtikan Pochairach, Papichaya Phompradit and Kesara Na-Bangchang
Biosensors 2025, 15(9), 577; https://doi.org/10.3390/bios15090577 - 3 Sep 2025
Viewed by 693
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymopathy with significant clinical implications, particularly in malaria-endemic regions and in the management of neonatal hyperbilirubinemia. Timely and accurate detection of G6PD deficiency is critical to prevent life-threatening hemolytic events following oxidative drug administration. This study [...] Read more.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymopathy with significant clinical implications, particularly in malaria-endemic regions and in the management of neonatal hyperbilirubinemia. Timely and accurate detection of G6PD deficiency is critical to prevent life-threatening hemolytic events following oxidative drug administration. This study evaluated the MyG6PD device, a quantitative point-of-care (PoC) tool, for the assessment of hemoglobin concentration and G6PD enzyme activity. Analytical performance was benchmarked against laboratory spectrophotometry and the STANDARD G6PD Analyzer™ (SD Biosensor; Suwon-si, Republic of Korea). MyG6PD demonstrated excellent linearity (R2 ≥ 0.99), accuracy (bias < ±15%), and precision (CV < 15%) across normal, intermediate, and deficient activity ranges, including heterozygous females with intermediate phenotypes. The device’s compact, battery-operated design, rapid turnaround, and minimal training requirements support its use in decentralized and resource-limited settings. Furthermore, cost-effective consumables and robust detection of intermediate activity highlight its potential for large-scale deployment. Overall, MyG6PD provides a reliable, accessible, and clinically actionable solution for urgent G6PD deficiency screening, enabling safer administration of oxidative therapies and improving patient outcomes in high-risk populations. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

21 pages, 928 KB  
Proceeding Paper
Advances in Enzyme-Based Biosensors: Emerging Trends and Applications
by Kerolina Sonowal, Partha Protim Borthakur and Kalyani Pathak
Eng. Proc. 2025, 106(1), 5; https://doi.org/10.3390/engproc2025106005 - 29 Aug 2025
Viewed by 2005
Abstract
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, [...] Read more.
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, selective, and portable solutions for real-time analysis. This review explores the key components, detection mechanisms, applications, and future trends in enzyme-based biosensors. Artificial enzymes, such as nanozymes, play a crucial role in enhancing enzyme-based biosensors by mimicking natural enzyme activity while offering improved stability, cost-effectiveness, and scalability. Their integration can significantly boost sensor performance by increasing the catalytic efficiency and durability. Additionally, lab-on-a-chip and microfluidic devices enable the miniaturization of biosensors, allowing for the development of compact, portable devices that require minimal sample volumes for complex diagnostic tests. The functionality of enzyme-based biosensors is built on three essential components: enzymes as biocatalysts, transducers, and immobilization techniques. Enzymes serve as the biological recognition elements, catalyzing specific reactions with target molecules to produce detectable signals. Transducers, including electrochemical, optical, thermal, and mass-sensitive types, convert these biochemical reactions into measurable outputs. Effective immobilization strategies, such as physical adsorption, covalent bonding, and entrapment, enhance the enzyme stability and reusability, enabling consistent performance. In medical diagnostics, they are widely used for glucose monitoring, cholesterol detection, and biomarker identification. Environmental monitoring benefits from these biosensors by detecting pollutants like pesticides, heavy metals, and nerve agents. The food industry employs them for quality control and contamination monitoring. Their advantages include high sensitivity, rapid response times, cost-effectiveness, and adaptability to field applications. Enzyme-based biosensors face challenges such as enzyme instability, interference from biological matrices, and limited operational lifespans. Addressing these issues involves innovations like the use of synthetic enzymes, advanced immobilization techniques, and the integration of nanomaterials, such as graphene and carbon nanotubes. These advancements enhance the enzyme stability, improve sensitivity, and reduce detection limits, making the technology more robust and scalable. Full article
Show Figures

Figure 1

21 pages, 2978 KB  
Article
Photopolymerization 3D-Printed Dual-Modal Flexible Sensor for Glucose and pH Monitoring
by Shao Lin, Yu Li, Zhenyao Yang, Qiuzheng Li, Bohua Pang, Yin Feng, Jianglin Fu, Guangmeng Ma and Yu Long
Sensors 2025, 25(17), 5358; https://doi.org/10.3390/s25175358 - 29 Aug 2025
Viewed by 751
Abstract
Currently, flexible sensors based on electrochemical principles are predominantly limited to single-parameter detection, making it challenging to meet the demand for synchronous monitoring of multiple analytes in complex physiological environments. This study presents a 3D-printed flexible sensor for synchronous glucose/pH detection. Glucose was [...] Read more.
Currently, flexible sensors based on electrochemical principles are predominantly limited to single-parameter detection, making it challenging to meet the demand for synchronous monitoring of multiple analytes in complex physiological environments. This study presents a 3D-printed flexible sensor for synchronous glucose/pH detection. Glucose was quantified via H2O2 oxidation current (GOD-catalyzed reaction), while pH was measured through polyaniline (PANI) resistance changes. The ionogel-based microneedle electrode ensures mechanical robustness. At 0.2 V, optimal signal decoupling was achieved: glucose oxidation current dominates, while PANI’s polarization effect is minimized. Neutral pH minimally affected glucose oxidase (GOD) activity, and low glucose concentrations induced negligible pH interference, ensuring orthogonality. In artificial interstitial fluid, the sensor showed glucose: linear response (0.5–2.5 g·L−1, 0.288 μA·mM−1·cm−2); pH: piecewise-linear sensitivity (0.155 Ω/pH·cm2 for pH > 7; 0.135 Ω/pH·cm2 for pH < 7). The design enables real-time multiparameter monitoring with high selectivity, addressing current limitations in flexible electrochemical sensors. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

18 pages, 2079 KB  
Article
An Amperometric Enzyme–Nanozyme Biosensor for Glucose Detection
by Asta Kausaite-Minkstimiene, Aiste Krikstaponyte, Nataliya Stasyuk, Galina Gayda and Almira Ramanaviciene
Biosensors 2025, 15(8), 545; https://doi.org/10.3390/bios15080545 - 19 Aug 2025
Viewed by 970
Abstract
Amperometric biosensors, due to their high sensitivity, fast response time, low cost, simple control, miniaturization capabilities, and other advantages, are receiving significant attention in the field of medical diagnostics, especially in monitoring blood glucose levels in diabetic patients. In this study, an amperometric [...] Read more.
Amperometric biosensors, due to their high sensitivity, fast response time, low cost, simple control, miniaturization capabilities, and other advantages, are receiving significant attention in the field of medical diagnostics, especially in monitoring blood glucose levels in diabetic patients. In this study, an amperometric glucose biosensor based on immobilized enzyme glucose oxidase (GOx) and bimetallic platinum cobalt (PtCo) nanoparticles was developed. The PtCo nanoparticles, deposited on a graphite rod electrode, exhibited peroxidase-like catalytic properties and were able to electrocatalyze the reduction of H2O2. After immobilization of the GOx, an amperometric signal generated by the biosensor was directly proportional to the glucose concentration in the range of 0.04–2.18 mM. The biosensor demonstrated a sensitivity of 19.38 μA mM−1 cm−2, with a detection limit of 0.021 mM and a quantification limit of 0.064 mM. In addition to this analytical performance, the biosensor exhibited excellent repeatability (relative standard deviation (RSD) was 4.90%); operational and storage stability, retaining 98.93% and 95.33% of its initial response after 26 cycles of glucose detection and over a 14-day period, respectively; and anti-interference ability against electroactive species, as well as exceptional selectivity for glucose and satisfactory reproducibility (RSD 8.90%). Additionally, the biosensor was able to detect glucose levels in blood serum with a high accuracy (RSD 5.89%), indicating potential suitability for glucose determination in real samples. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

Back to TopTop