Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = glucotoxicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 18411 KB  
Review
Physiological Conditions, Bioactive Ingredients, and Drugs Stimulating Non-Shivering Thermogenesis as a Promising Treatment Against Diabesity
by Diego Salagre, Ciskey V. Ayala-Mosqueda, Samira Aouichat and Ahmad Agil
Pharmaceuticals 2025, 18(9), 1247; https://doi.org/10.3390/ph18091247 - 22 Aug 2025
Viewed by 949
Abstract
Obesity (lipotoxicity) results from a chronic imbalance between energy intake and expenditure. It is strongly associated with type 2 diabetes mellitus (T2DM, glucotoxicity) and considered a major risk factor for the development of metabolic complications. Their convergence constitutes “diabesity”, representing a major challenge [...] Read more.
Obesity (lipotoxicity) results from a chronic imbalance between energy intake and expenditure. It is strongly associated with type 2 diabetes mellitus (T2DM, glucotoxicity) and considered a major risk factor for the development of metabolic complications. Their convergence constitutes “diabesity”, representing a major challenge for public health worldwide. Limited treatment efficacy highlights the need for novel, multi-targeted therapies. Non-shivering thermogenesis (NST), mediated by brown and beige adipose tissue and skeletal muscle, has emerged as a promising therapy due to its capacity to increase energy expenditure and improve metabolic health. Also, skeletal muscle plays a central role in glucose uptake and lipid oxidation, further highlighting its relevance in diabesity. This review explores current and emerging knowledge on physiological stimuli, including cold exposure, physical activity, and fasting, as well as bioactive ingredients and drugs that stimulate NST in thermogenic tissues. Special emphasis is placed on melatonin as a potential regulator of mitochondrial function and energy balance. The literature search was conducted using MEDLINE and Web of Science. Studies were selected based on scientific relevance, novelty, and mechanistic insight; prioritizing human and high-quality rodent research published in peer-reviewed journals. Evidence shows that multiple interventions enhance NST, leading to improved glucose metabolism, reduced fat accumulation, and increased energy expenditure in humans and/or rodents. Melatonin, in particular, shows promise in modulating thermogenesis through organelle-molecular pathways and mitochondrial protective effects. In conclusion, a multi-target approach through the activation of NST by physiological, nutritional, and pharmacological agents offers an effective and safe treatment for diabesity. Further research is needed to confirm these effects in clinical practice and support their use as effective therapeutic strategies. Full article
Show Figures

Graphical abstract

27 pages, 1747 KB  
Review
Role of Quercetin in Diabetic Cardiomyopathy
by Nor Hidayah Mustafa, Hawa Nordin Siti and Yusof Kamisah
Plants 2025, 14(1), 25; https://doi.org/10.3390/plants14010025 - 25 Dec 2024
Cited by 3 | Viewed by 1989
Abstract
Diabetic cardiomyopathy is a significant and severe complication of diabetes that affects a large portion of the global population, with its prevalence continuing to rise. Secondary metabolites, including quercetin, have shown promising effects in mitigating the progression of diabetic cardiomyopathy by targeting multiple [...] Read more.
Diabetic cardiomyopathy is a significant and severe complication of diabetes that affects a large portion of the global population, with its prevalence continuing to rise. Secondary metabolites, including quercetin, have shown promising effects in mitigating the progression of diabetic cardiomyopathy by targeting multiple pathological mechanisms, including impaired insulin signaling, glucotoxicity, lipotoxicity, oxidative stress, inflammation, fibrosis, apoptosis, autophagy, mitochondrial dysfunction, cardiac stiffness, and disrupted calcium handling. Addressing these mechanisms is crucial to prevent left ventricular diastolic and systolic dysfunction in advanced stages of diabetic heart disease. Scientific evidence has highlighted the cardioprotective properties of quercetin at both the myocardial and cellular/molecular levels in diabetic models. Therefore, this review aims to present a comprehensive overview of the proposed mechanisms underlying quercetin’s beneficial effects, providing valuable insights that could inform future drug discovery efforts specific to diabetic cardiomyopathy. Full article
Show Figures

Figure 1

14 pages, 4325 KB  
Article
NMDA Suppresses Pancreatic ABCA1 Expression through the MEK/ERK/LXR Pathway in Pancreatic Beta Cells
by Takanobu Saheki, Hitomi Imachi, Kensaku Fukunaga, Seisuke Sato, Toshihiro Kobayashi, Takafumi Yoshimura, Nao Saheki and Koji Murao
Nutrients 2024, 16(17), 2865; https://doi.org/10.3390/nu16172865 - 27 Aug 2024
Viewed by 1858
Abstract
Dysfunction or loss of pancreatic β cells can cause insulin deficiency and impaired glucose regulation, resulting in conditions like type 2 diabetes. The ATP-binding cassette transporter A1 (ABCA1) plays a key role in the reverse cholesterol transport system, and its decreased expression is [...] Read more.
Dysfunction or loss of pancreatic β cells can cause insulin deficiency and impaired glucose regulation, resulting in conditions like type 2 diabetes. The ATP-binding cassette transporter A1 (ABCA1) plays a key role in the reverse cholesterol transport system, and its decreased expression is associated with pancreatic β cell lipotoxicity, resulting in abnormal insulin synthesis and secretion. Increased glutamate release can cause glucotoxicity in β cells, though the detailed mechanisms remain unclear. This study investigated the effect of N-methyl-D-aspartic acid (NMDA) on ABCA1 expression in INS-1 cells and primary pancreatic islets to elucidate the signaling mechanisms that suppress insulin secretion. Using Western blotting, microscopy, and biochemical analyses, we found that NMDA activated the mitogen-activated protein kinase (MEK)-dependent pathway, suppressing ABCA1 protein and mRNA expression. The MEK-specific inhibitor PD98059 restored ABCA1 promoter activity, indicating the involvement of the extracellular signal-regulated kinase (MEK/ERK) pathway. Furthermore, we identified the liver X receptor (LXR) as an effector transcription factor in NMDA regulation of ABCA1 transcription. NMDA treatment increased cholesterol and triglyceride levels while decreasing insulin secretion, even under high-glucose conditions. These effects were abrogated by treatment with PD98059. This study reveals that NMDA suppresses ABCA1 expression via the MEK/ERK/LXR pathway, providing new insights into the pathological suppression of insulin secretion in pancreatic β cells and emphasizing the importance of investigating the role of NMDA in β cell dysfunction. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

14 pages, 3119 KB  
Article
Protector Role of Cx30.2 in Pancreatic β-Cell against Glucotoxicity-Induced Apoptosis
by Daniel Ortega-Cuellar, Ignacio González-Sánchez, Gabriela Piñón-Zárate, Marco A. Cerbón, Víctor De la Rosa, Yuliana Franco-Juárez, Andrés Castell-Rodríguez, León D. Islas and Cristina Coronel-Cruz
Biology 2024, 13(7), 468; https://doi.org/10.3390/biology13070468 - 25 Jun 2024
Cited by 1 | Viewed by 1912
Abstract
Glucotoxicity may exert its deleterious effects on pancreatic β-cell function via a myriad of mechanisms, leading to impaired insulin secretion and, eventually, type 2 diabetes. β-cell communication requires gap junction channels to be present among these cells. Gap junctions are constituted by transmembrane [...] Read more.
Glucotoxicity may exert its deleterious effects on pancreatic β-cell function via a myriad of mechanisms, leading to impaired insulin secretion and, eventually, type 2 diabetes. β-cell communication requires gap junction channels to be present among these cells. Gap junctions are constituted by transmembrane proteins of the connexins (Cxs) family. Two Cx genes have been identified in β cells, Cx36 and Cx30.2. We have found evidence that the glucose concentration on its own is sufficient to regulate Cx30.2 gene expression in mouse islets. In this work, we examine the involvement of the Cx30.2 protein in the survival of β cells (RIN-m5F). Methods: RIN-m5F cells were cultured in 5 mM D-glucose (normal) or 30 mM D-glucose (high glucose) for 24 h. Cx30.2 siRNAs was used to downregulate Cx30.2 expression. Apoptosis was measured by means of TUNEL, an annexin V staining method, and the cleaved form of the caspase-3 protein was determined using Western blot. Results: High glucose did not induce apoptosis in RIN-m5F β cells after 24 h; interestingly, high glucose increased the Cx30.2 total protein levels. Moreover, this work found that the downregulation of Cx30.2 expression in high glucose promoted apoptosis in RIN-m5F cells. Conclusion: The data suggest that the upregulation of Cx30.2 protects β cells from hyperglycemia-induced apoptosis. Furthermore, Cx30.2 may be a promising avenue of therapeutic investigation for the treatment of glucose metabolic disorders. Full article
Show Figures

Graphical abstract

22 pages, 4063 KB  
Review
Improvement of Theaflavins on Glucose and Lipid Metabolism in Diabetes Mellitus
by Shiyu Xu, Ying Chen and Yushun Gong
Foods 2024, 13(11), 1763; https://doi.org/10.3390/foods13111763 - 4 Jun 2024
Cited by 6 | Viewed by 3174
Abstract
In diabetes mellitus, disordered glucose and lipid metabolisms precipitate diverse complications, including nonalcoholic fatty liver disease, contributing to a rising global mortality rate. Theaflavins (TFs) can improve disorders of glycolipid metabolism in diabetic patients and reduce various types of damage, including glucotoxicity, lipotoxicity, [...] Read more.
In diabetes mellitus, disordered glucose and lipid metabolisms precipitate diverse complications, including nonalcoholic fatty liver disease, contributing to a rising global mortality rate. Theaflavins (TFs) can improve disorders of glycolipid metabolism in diabetic patients and reduce various types of damage, including glucotoxicity, lipotoxicity, and other associated secondary adverse effects. TFs exert effects to lower blood glucose and lipids levels, partly by regulating digestive enzyme activities, activation of OATP-MCT pathway and increasing secretion of incretins such as GIP. By the Ca2+-CaMKK ꞵ-AMPK and PI3K-AKT pathway, TFs promote glucose utilization and inhibit endogenous glucose production. Along with the regulation of energy metabolism by AMPK-SIRT1 pathway, TFs enhance fatty acids oxidation and reduce de novo lipogenesis. As such, the administration of TFs holds significant promise for both the prevention and amelioration of diabetes mellitus. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

10 pages, 2347 KB  
Review
Roles of β-Cell Hypoxia in the Progression of Type 2 Diabetes
by Kazuya Yamagata, Tomonori Tsuyama and Yoshifumi Sato
Int. J. Mol. Sci. 2024, 25(8), 4186; https://doi.org/10.3390/ijms25084186 - 10 Apr 2024
Cited by 8 | Viewed by 3359
Abstract
Type 2 diabetes is a chronic disease marked by hyperglycemia; impaired insulin secretion by pancreatic β-cells is a hallmark of this disease. Recent studies have shown that hypoxia occurs in the β-cells of patients with type 2 diabetes and hypoxia, in turn, contributes [...] Read more.
Type 2 diabetes is a chronic disease marked by hyperglycemia; impaired insulin secretion by pancreatic β-cells is a hallmark of this disease. Recent studies have shown that hypoxia occurs in the β-cells of patients with type 2 diabetes and hypoxia, in turn, contributes to the insulin secretion defect and β-cell loss through various mechanisms, including the activation of hypoxia-inducible factors, induction of transcriptional repressors, and activation of AMP-activated protein kinase. This review focuses on advances in our understanding of the contribution of β-cell hypoxia to the development of β-cell dysfunction in type 2 diabetes. A better understanding of β-cell hypoxia might be useful in the development of new strategies for treating type 2 diabetes. Full article
(This article belongs to the Special Issue Diabetes: Regulation of Insulin Secretion in Pancreatic Beta Cells)
Show Figures

Figure 1

18 pages, 7105 KB  
Article
Glutathione Induces Keap1 S-Glutathionylation and Mitigates Oscillating Glucose-Induced β-Cell Dysfunction by Activating Nrf2
by Xiufang Chen, Qian Zhou, Huamin Chen, Juan Bai, Ruike An, Keyi Zhang, Xinyue Zhang, Hui An, Jitai Zhang, Yongyu Wang and Ming Li
Antioxidants 2024, 13(4), 400; https://doi.org/10.3390/antiox13040400 - 27 Mar 2024
Cited by 9 | Viewed by 2357
Abstract
Glutathione (GSH), a robust endogenous antioxidant, actively participates in the modulation of the redox status of cysteine residues in proteins. Previous studies have indicated that GSH can prevent β-cell failure and prediabetes caused by chronic oscillating glucose (OsG) administration. However, the precise mechanism [...] Read more.
Glutathione (GSH), a robust endogenous antioxidant, actively participates in the modulation of the redox status of cysteine residues in proteins. Previous studies have indicated that GSH can prevent β-cell failure and prediabetes caused by chronic oscillating glucose (OsG) administration. However, the precise mechanism underlying the protective effect is not well understood. Our current research reveals that GSH is capable of reversing the reduction in Nrf2 levels, as well as downstream genes Grx1 and HO-1, in the islet β-cells of rats induced by chronic OsG. In vitro experiments have further demonstrated that GSH can prevent β-cell dedifferentiation, apoptosis, and impaired insulin secretion caused by OsG. Additionally, GSH facilitates the translocation of Nrf2 into the nucleus, resulting in an upregulation of Nrf2-targeted genes such as GCLC, Grx1, HO-1, and NQO1. Notably, when the Nrf2 inhibitor ML385 is employed, the effects of GSH on OsG-treated β-cells are abrogated. Moreover, GSH enhances the S-glutathionylation of Keap1 at Cys273 and Cys288, but not Cys151, in OsG-treated β-cells, leading to the dissociation of Nrf2 from Keap1 and facilitating Nrf2 nuclear translocation. In conclusion, the protective role of GSH against OsG-induced β-cell failure can be partially attributed to its capacity to enhance Keap1 S-glutathionylation, thereby activating the Nrf2 signaling pathway. These findings provide novel insights into the prevention and treatment of β-cell failure in the context of prediabetes/diabetes, highlighting the potential of GSH. Full article
Show Figures

Figure 1

15 pages, 1132 KB  
Review
The Effects of Sodium-Glucose Cotransporter 2-Inhibitors on Steatosis and Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease or Steatohepatitis and Type 2 Diabetes: A Systematic Review of Randomized Controlled Trials
by Ioana-Cristina Bica, Roxana Adriana Stoica, Teodor Salmen, Andrej Janež, Špela Volčanšek, Djordje Popovic, Emir Muzurovic, Manfredi Rizzo and Anca Pantea Stoian
Medicina 2023, 59(6), 1136; https://doi.org/10.3390/medicina59061136 - 12 Jun 2023
Cited by 31 | Viewed by 7124
Abstract
Type 2 Diabetes Mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) are part of metabolic syndrome and share multiple causal associations. Both conditions have an alarmingly increasing incidence and lead to multiple complications, which have an impact on a variety of organs and [...] Read more.
Type 2 Diabetes Mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) are part of metabolic syndrome and share multiple causal associations. Both conditions have an alarmingly increasing incidence and lead to multiple complications, which have an impact on a variety of organs and systems, such as the kidneys, eyes, and nervous and cardiovascular systems, or may cause metabolic disruptions. Sodium-glucose cotransporter 2-inhibitors (SGLT2-i), as an antidiabetic class with well-established cardiovascular benefits, and its class members have also been studied for their presumed effects on steatosis and fibrosis improvement in patients with NAFLD or non-alcoholic steatohepatitis (NASH). The MEDLINE and Cochrane databases were searched for randomized controlled trials examining the efficacy of SGLT2-i on the treatment of NAFLD/NASH in patients with T2DM. Of the originally identified 179 articles, 21 articles were included for final data analysis. Dapagliflozin, empagliflozin, and canagliflozin are some of the most used and studied SGLT2-i agents which have proven efficacy in treating patients with NAFLD/NASH by addressing/targeting different pathophysiological targets/mechanisms: insulin sensitivity improvement, weight loss, especially visceral fat loss, glucotoxicity, and lipotoxicity improvement or even improvement of chronic inflammation. Despite the considerable variability in study duration, sample size, and diagnostic method, the SGLT2-i agents used resulted in improvements in non-invasive markers of steatosis or even fibrosis in patients with T2DM. This systematic review offers encouraging results that place the SGLT2-i class at the top of the therapeutic arsenal for patients diagnosed with T2DM and NAFLD/NASH. Full article
Show Figures

Figure 1

22 pages, 2111 KB  
Review
Significance of Endothelial Dysfunction Amelioration for Sodium–Glucose Cotransporter 2 Inhibitor-Induced Improvements in Heart Failure and Chronic Kidney Disease in Diabetic Patients
by Hidekatsu Yanai, Hiroki Adachi, Mariko Hakoshima and Hisayuki Katsuyama
Metabolites 2023, 13(6), 736; https://doi.org/10.3390/metabo13060736 - 8 Jun 2023
Cited by 10 | Viewed by 3358
Abstract
Beyond lowering plasma glucose levels, sodium–glucose cotransporter 2 inhibitors (SGLT2is) significantly reduce hospitalization for heart failure (HF) and retard the progression of chronic kidney disease (CKD) in patients with type 2 diabetes. Endothelial dysfunction is not only involved in the development and progression [...] Read more.
Beyond lowering plasma glucose levels, sodium–glucose cotransporter 2 inhibitors (SGLT2is) significantly reduce hospitalization for heart failure (HF) and retard the progression of chronic kidney disease (CKD) in patients with type 2 diabetes. Endothelial dysfunction is not only involved in the development and progression of cardiovascular disease (CVD), but is also associated with the progression of CKD. In patients with type 2 diabetes, hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia induce the development of endothelial dysfunction. SGLT2is have been shown to improve endothelial dysfunction, as assessed by flow-mediated vasodilation, in individuals at high risk of CVD. Along with an improvement in endothelial dysfunction, SGLT2is have been shown to improve oxidative stress, inflammation, mitochondrial dysfunction, glucotoxicity, such as the advanced signaling of glycation end products, and nitric oxide bioavailability. The improvements in endothelial dysfunction and such endothelium-derived factors may play an important role in preventing the development of coronary artery disease, coronary microvascular dysfunction and diabetic cardiomyopathy, which cause HF, and play a role in retarding CKD. The suppression of the development of HF and the progression of CKD achieved by SGLT2is might have been largely induced by their capacity to improve vascular endothelial function. Full article
(This article belongs to the Special Issue Endothelial Metabolism in Health and Disease)
Show Figures

Figure 1

16 pages, 7233 KB  
Article
Antidiabetic and Hypolipidemic Properties of Newly Isolated Wild Lacticaseibacillus paracasei Strains in Mature Adipocytes
by Natalia Grigorova, Zhenya Ivanova, Ekaterina Vachkova, Valeria Petrova and Georgi Beev
Appl. Sci. 2023, 13(11), 6489; https://doi.org/10.3390/app13116489 - 25 May 2023
Cited by 2 | Viewed by 1989
Abstract
This study investigates the antidiabetic and hypolipidemic potential of newly isolated Lacticaseibacillus paracasei strains in mature adipocytes. Differentiated 3T3-L1 cells are treated with 10% cell-free supernatants (CFSs) from four autochthonous (wild) strains (M2.1, C8, C15, and P4) of Lacticaseibacillus paracasei. Glucose consumption, [...] Read more.
This study investigates the antidiabetic and hypolipidemic potential of newly isolated Lacticaseibacillus paracasei strains in mature adipocytes. Differentiated 3T3-L1 cells are treated with 10% cell-free supernatants (CFSs) from four autochthonous (wild) strains (M2.1, C8, C15, and P4) of Lacticaseibacillus paracasei. Glucose consumption, intracellular lipid deposition, lipolysis rates, and some gene expressions related to adipocyte insulin sensitivity are evaluated. The results show that all CFS-treated groups experienced a substantial increase in glucose uptake, indicating a promising potential for countering glucotoxicity and insulin resistance. The different strains had notable differences in metabolic pathway modulation. Generally, the P4 CFS supplementation seems to enhance insulin-dependent glucose inflow, while M2.1, C8, and C15 supernatants stimulate insulin-independent glucose consumption by mature adipocytes. M2.1 CFSs ameliorate the mature adipocyte buffer capacity by enhancing intracellular lipid accumulation and reducing the lipolysis rate—an advantageous therapeutic effect in overweight individuals subjected to substantial obesity-predisposing factors. Notably, C8 and C15 CFSs suppressed the gene expression of crucial adipocyte insulin sensitivity markers, indicating an unfavorable outcome risk with prolonged treatment. Overall, our findings suggest that M2.1 and P4 Lacticaseibacillus paracasei strains may be implemented as nutraceuticals to counteract glucotoxicity and insulin resistance, potentially easing the health status of obese individuals. Full article
Show Figures

Figure 1

34 pages, 1640 KB  
Review
Anti-Glucotoxicity Effect of Phytoconstituents via Inhibiting MGO-AGEs Formation and Breaking MGO-AGEs
by Neera Yadav, Jyoti Dnyaneshwar Palkhede and Sun-Yeou Kim
Int. J. Mol. Sci. 2023, 24(8), 7672; https://doi.org/10.3390/ijms24087672 - 21 Apr 2023
Cited by 18 | Viewed by 5457
Abstract
The therapeutic benefits of phytochemicals in the treatment of various illnesses and disorders are well documented. They show significant promise for the discovery and creation of novel medications for treating a variety of human diseases. Numerous phytoconstituents have shown antibiotic, antioxidant, and wound-healing [...] Read more.
The therapeutic benefits of phytochemicals in the treatment of various illnesses and disorders are well documented. They show significant promise for the discovery and creation of novel medications for treating a variety of human diseases. Numerous phytoconstituents have shown antibiotic, antioxidant, and wound-healing effects in the conventional system. Traditional medicines based on alkaloids, phenolics, tannins, saponins, terpenes, steroids, flavonoids, glycosides, and phytosterols have been in use for a long time and are crucial as alternative treatments. These phytochemical elements are crucial for scavenging free radicals, capturing reactive carbonyl species, changing protein glycation sites, inactivating carbohydrate hydrolases, fighting pathological conditions, and accelerating the healing of wounds. In this review, 221 research papers have been reviewed. This research sought to provide an update on the types and methods of formation of methylglyoxal-advanced glycation end products (MGO-AGEs) and molecular pathways induced by AGEs during the progression of the chronic complications of diabetes and associated diseases as well as to discuss the role of phytoconstituents in MGO scavenging and AGEs breaking. The development and commercialization of functional foods using these natural compounds can provide potential health benefits. Full article
(This article belongs to the Special Issue Novel Natural Compound for Wound and Tissue Repair and Regeneration)
Show Figures

Figure 1

14 pages, 3055 KB  
Article
Ablation of GPR56 Causes β-Cell Dysfunction by ATP Loss through Mistargeting of Mitochondrial VDAC1 to the Plasma Membrane
by Israa Mohammad Al-Amily, Marie Sjögren, Pontus Duner, Mohammad Tariq, Claes B. Wollheim and Albert Salehi
Biomolecules 2023, 13(3), 557; https://doi.org/10.3390/biom13030557 - 18 Mar 2023
Cited by 2 | Viewed by 3695
Abstract
The activation of G Protein-Coupled Receptor 56 (GPR56), also referred to as Adhesion G-Protein-Coupled Ceceptor G1 (ADGRG1), by Collagen Type III (Coll III) prompts cell growth, proliferation, and survival, among other attributes. We investigated the signaling cascades mediating this functional effect in relation [...] Read more.
The activation of G Protein-Coupled Receptor 56 (GPR56), also referred to as Adhesion G-Protein-Coupled Ceceptor G1 (ADGRG1), by Collagen Type III (Coll III) prompts cell growth, proliferation, and survival, among other attributes. We investigated the signaling cascades mediating this functional effect in relation to the mitochondrial outer membrane voltage-dependent anion Channel-1 (VDAC1) expression in pancreatic β-cells. GPR56KD attenuated the Coll III-induced suppression of P70S6K, JNK, AKT, NFκB, STAT3, and STAT5 phosphorylation/activity in INS-1 cells cultured at 20 mM glucose (glucotoxicity) for 72 h. GPR56-KD also increased Chrebp, Txnip, and Vdac1 while decreasing Vdac2 mRNA expression. In GPR56-KD islet β-cells, Vdac1 was co-localized with SNAP-25, demonstrating its plasma membrane translocation. This resulted in ATP loss, reduced cAMP production and impaired glucose-stimulated insulin secretion (GSIS) in INS-1 and human EndoC βH1 cells. The latter defects were reversed by an acute inhibition of VDAC1 with an antibody or the VDAC1 inhibitor VBIT-4. We demonstrate that Coll III potentiates GSIS by increasing cAMP and preserving β-cell functionality under glucotoxic conditions in a GPR56-dependent manner by attenuating the inflammatory response. These results emphasize GPR56 and VDAC1 as drug targets in conditions with impaired β-cell function. Full article
(This article belongs to the Special Issue Advances in Mitochondrial Transport Research)
Show Figures

Figure 1

15 pages, 1133 KB  
Review
Renal and Cardiovascular Metabolic Impact Caused by Ketogenesis of the SGLT2 Inhibitors
by Ariana P. Vargas-Delgado, Estefania Arteaga Herrera, Cesar Tumbaco Mite, Patricia Delgado Cedeno, Maria Cristina Van Loon and Juan J. Badimon
Int. J. Mol. Sci. 2023, 24(4), 4144; https://doi.org/10.3390/ijms24044144 - 18 Feb 2023
Cited by 15 | Viewed by 4747
Abstract
Sodium–glucose cotransporter type 2 inhibitors (SGLT2i) are glycosuric drugs that were originally developed for the treatment of type 2 diabetes mellitus (T2DM). There is a hypothesis that SGLT2i are drugs that are capable of increasing ketone bodies and free fatty acids. The idea [...] Read more.
Sodium–glucose cotransporter type 2 inhibitors (SGLT2i) are glycosuric drugs that were originally developed for the treatment of type 2 diabetes mellitus (T2DM). There is a hypothesis that SGLT2i are drugs that are capable of increasing ketone bodies and free fatty acids. The idea is that they could serve as the necessary fuel, instead of glucose, for the purposes of cardiac muscle requirements and could explain antihypertensive effects, which are independent of renal function. The adult heart, under normal conditions, consumes around 60% to 90% of the cardiac energy that is derived from the oxidation of free fatty acids. In addition, a small proportion also comes from other available substrates. In order to meet energy demands with respect to achieving adequate cardiac function, the heart is known to possess metabolic flexibility. This allows it to switch between different available substrates in order to obtain the energy molecule adenosine triphosphate (ATP), thereby rendering it highly adaptive. It must be noted that oxidative phosphorylation in aerobic organisms is the main source of ATP, which is a result of reduced cofactors. These cofactors include nicotine adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2), which are the result of electron transfer and are used as the enzymatic cofactors that are involved in the respiratory chain. When there is an excessive increase in energy nutrients—such as glucose and fatty acids—which occur in the absence of a parallel increase in demand, a state of nutrient surplus (which is better known as an excess in supply) is created. The use of SGLT2i at the renal level has also been shown to generate beneficial metabolic alterations, which are obtained by reducing the glucotoxicity that is induced by glycosuria. Together with the reduction in perivisceral fat in various organs, such alterations also lead to the use of free fatty acids in the initial stages of the affected heart. Subsequently, this results in an increase in production with respect to ketoacids, which are a more available energy fuel at the cellular level. In addition, even though their mechanism is not fully understood, their vast benefits render them of incredible importance for the purposes of further research. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Cardiac Development and Disease)
Show Figures

Figure 1

18 pages, 2660 KB  
Article
The Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Empagliflozin Reverses Hyperglycemia-Induced Monocyte and Endothelial Dysfunction Primarily through Glucose Transport-Independent but Redox-Dependent Mechanisms
by Dilvin Semo, Julius Obergassel, Marc Dorenkamp, Pia Hemling, Jasmin Strutz, Ursula Hiden, Nicolle Müller, Ulrich Alfons Müller, Sajan Ahmad Zulfikar, Rinesh Godfrey and Johannes Waltenberger
J. Clin. Med. 2023, 12(4), 1356; https://doi.org/10.3390/jcm12041356 - 8 Feb 2023
Cited by 20 | Viewed by 4020
Abstract
Purpose: Hyperglycaemia-induced oxidative stress and inflammation contribute to vascular cell dysfunction and subsequent cardiovascular events in T2DM. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin significantly improves cardiovascular mortality in T2DM patients (EMPA-REG trial). Since SGLT-2 is known to be expressed on cells other than [...] Read more.
Purpose: Hyperglycaemia-induced oxidative stress and inflammation contribute to vascular cell dysfunction and subsequent cardiovascular events in T2DM. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin significantly improves cardiovascular mortality in T2DM patients (EMPA-REG trial). Since SGLT-2 is known to be expressed on cells other than the kidney cells, we investigated the potential ability of empagliflozin to regulate glucose transport and alleviate hyperglycaemia-induced dysfunction of these cells. Methods: Primary human monocytes were isolated from the peripheral blood of T2DM patients and healthy individuals. Primary human umbilical vein endothelial cells (HUVECs) and primary human coronary artery endothelial cells (HCAECs), and fetoplacental endothelial cells (HPECs) were used as the EC model cells. Cells were exposed to hyperglycaemic conditions in vitro in 40 ng/mL or 100 ng/mL empagliflozin. The expression levels of the relevant molecules were analysed by RT-qPCR and confirmed by FACS. Glucose uptake assays were carried out with a fluorescent derivative of glucose, 2-NBDG. Reactive oxygen species (ROS) accumulation was measured using the H2DFFDA method. Monocyte and endothelial cell chemotaxis were measured using modified Boyden chamber assays. Results: Both primary human monocytes and endothelial cells express SGLT-2. Hyperglycaemic conditions did not significantly alter the SGLT-2 levels in monocytes and ECs in vitro or in T2DM conditions. Glucose uptake assays carried out in the presence of GLUT inhibitors revealed that SGLT-2 inhibition very mildly, but not significantly, suppressed glucose uptake by monocytes and endothelial cells. However, we detected the significant suppression of hyperglycaemia-induced ROS accumulation in monocytes and ECs when empagliflozin was used to inhibit SGLT-2 function. Hyperglycaemic monocytes and endothelial cells readily exhibited impaired chemotaxis behaviour. The co-treatment with empagliflozin reversed the PlGF-1 resistance phenotype of hyperglycaemic monocytes. Similarly, the blunted VEGF-A responses of hyperglycaemic ECs were also restored by empagliflozin, which could be attributed to the restoration of the VEGFR-2 receptor levels on the EC surface. The induction of oxidative stress completely recapitulated most of the aberrant phenotypes exhibited by hyperglycaemic monocytes and endothelial cells, and a general antioxidant N-acetyl-L-cysteine (NAC) was able to mimic the effects of empagliflozin. Conclusions: This study provides data indicating the beneficial role of empagliflozin in reversing hyperglycaemia-induced vascular cell dysfunction. Even though both monocytes and endothelial cells express functional SGLT-2, SGLT-2 is not the primary glucose transporter in these cells. Therefore, it seems likely that empagliflozin does not directly prevent hyperglycaemia-mediated enhanced glucotoxicity in these cells by inhibiting glucose uptake. We identified the reduction of oxidative stress by empagliflozin as a primary reason for the improved function of monocytes and endothelial cells in hyperglycaemic conditions. In conclusion, empagliflozin reverses vascular cell dysfunction independent of glucose transport but could partially contribute to its beneficial cardiovascular effects. Full article
(This article belongs to the Special Issue Clinical Research on Type 2 Diabetes and Its Complications)
Show Figures

Figure 1

16 pages, 985 KB  
Review
Unexplored Roles of Erythrocytes in Atherothrombotic Stroke
by Charalampos Papadopoulos, Konstantinos Anagnostopoulos, Dimitrios Tsiptsios, Stella Karatzetzou, Eirini Liaptsi, Irene Zacharo Lazaridou, Christos Kokkotis, Evangelia Makri, Maria Ioannidou, Nikolaos Aggelousis and Konstantinos Vadikolias
Neurol. Int. 2023, 15(1), 124-139; https://doi.org/10.3390/neurolint15010011 - 23 Jan 2023
Cited by 10 | Viewed by 5403
Abstract
Stroke constitutes the second highest cause of morbidity and mortality worldwide while also impacting the world economy, triggering substantial financial burden in national health systems. High levels of blood glucose, homocysteine, and cholesterol are causative factors for atherothrombosis. These molecules induce erythrocyte dysfunction, [...] Read more.
Stroke constitutes the second highest cause of morbidity and mortality worldwide while also impacting the world economy, triggering substantial financial burden in national health systems. High levels of blood glucose, homocysteine, and cholesterol are causative factors for atherothrombosis. These molecules induce erythrocyte dysfunction, which can culminate in atherosclerosis, thrombosis, thrombus stabilization, and post-stroke hypoxia. Glucose, toxic lipids, and homocysteine result in erythrocyte oxidative stress. This leads to phosphatidylserine exposure, promoting phagocytosis. Phagocytosis by endothelial cells, intraplaque macrophages, and vascular smooth muscle cells contribute to the expansion of the atherosclerotic plaque. In addition, oxidative stress-induced erythrocytes and endothelial cell arginase upregulation limit the pool for nitric oxide synthesis, leading to endothelial activation. Increased arginase activity may also lead to the formation of polyamines, which limit the deformability of red blood cells, hence facilitating erythrophagocytosis. Erythrocytes can also participate in the activation of platelets through the release of ADP and ATP and the activation of death receptors and pro-thrombin. Damaged erythrocytes can also associate with neutrophil extracellular traps and subsequently activate T lymphocytes. In addition, reduced levels of CD47 protein in the surface of red blood cells can also lead to erythrophagocytosis and a reduced association with fibrinogen. In the ischemic tissue, impaired erythrocyte 2,3 biphosphoglycerate, because of obesity or aging, can also favor hypoxic brain inflammation, while the release of damage molecules can lead to further erythrocyte dysfunction and death. Full article
(This article belongs to the Special Issue Stroke: From Pathophysiology to Therapy)
Show Figures

Figure 1

Back to TopTop