Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = grading capacitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5524 KB  
Article
The Mechanism of Short-Circuit Oscillations in Automotive-Grade Multi-Chip Parallel Power Modules and an Effective Mitigation Approach
by Kun Ma, Yameng Sun, Xun Liu, Yifan Song, Xuehan Li, Huimin Shi, Zheng Feng, Xiao Zhang, Yang Zhou and Sheng Liu
Sensors 2024, 24(9), 2858; https://doi.org/10.3390/s24092858 - 30 Apr 2024
Viewed by 1530
Abstract
This paper presents an in-depth analysis of the oscillation phenomenon occurring in multi-chip parallel automotive-grade power modules under short-circuit conditions and investigates three suppression methods. We tested and analyzed two commercial automotive-grade power modules, one containing two chips and the other containing a [...] Read more.
This paper presents an in-depth analysis of the oscillation phenomenon occurring in multi-chip parallel automotive-grade power modules under short-circuit conditions and investigates three suppression methods. We tested and analyzed two commercial automotive-grade power modules, one containing two chips and the other containing a single chip, and found that short-circuit gate oscillations were more likely to occur in multi-chip parallel packaged modules than in single-chip packaged modules. Through experimental and simulation analyses, we observed that gate oscillations were mainly caused by the interaction between internal parasitic parameters of the module and the external drive circuit, and we found that high drive resistance and low common emitter inductance between parallel chips could effectively suppress gate voltage oscillations. We also analyzed the two mainstream suppression schemes, increasing the drive gate resistance and placing the drive capacitors in parallel. Unfortunately, we found that these suppression schemes were not ideal solutions because both schemes changed the switching characteristics of the power module. As an alternative, we propose a simple and effective solution that involves adding parallel connections between the parallel chips. Simulation calculations showed that this optimized method reduced the emitter inductance between parallel chips in the upper bridge arm by about 30% and in the lower bridge arm by 35%. Through short-circuit experiments conducted at different DC bus voltages, it has been verified that the new optimized solution effectively resolves gate oscillation issues without affecting the switching characteristics of the power module. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

28 pages, 12324 KB  
Article
Commutation Behavior and Stray Inductance Analysis of a FC-3L-BDC Phase-Leg PEBB
by Haitao Liu, Shunmeng Xie, Zechun Dou, Yu Qi, Feng Liu and Yifan Tan
Energies 2022, 15(24), 9651; https://doi.org/10.3390/en15249651 - 19 Dec 2022
Cited by 1 | Viewed by 2673
Abstract
The bidirectional dc-dc converter is a critical component for extending the use of renewable energy and improving the efficiency of high-power electronic systems. This paper presents the analysis of the stray inductance of a commutation loop and the commutation behavior of IGBT devices [...] Read more.
The bidirectional dc-dc converter is a critical component for extending the use of renewable energy and improving the efficiency of high-power electronic systems. This paper presents the analysis of the stray inductance of a commutation loop and the commutation behavior of IGBT devices in a flying capacitor three-level bidirectional DC-DC converter (FC-3L-BDC) phase-leg power electronic building block (PEBB). An FC-3L-BDC phase-leg PEBB was designed as an example, which can be used to build 400 kW to MW-grade light rail train chargers, battery energy storage interface converters, or metro regenerative braking energy recovery converters with a single PEBB or several PEBBs interleaved parallel. In order to optimize the stray inductance of commutation paths and realize snubberless operation, a five-layer laminated bus bar was carefully designed, and the stray inductance of the bus bar was extracted by three-dimensional finite element analysis simulation. To obtain higher accuracy, the stray inductances of IGBT devices and capacitors were extracted from the test instead of their datasheets. Then, the accuracy of the commutation loop stray inductance analysis method was verified by practical experiments. The impact of the stray inductance of the commutation loop on the commutation behavior of IGBT devices was analyzed, and the switching characteristics of IGBT devices were measured under maximum DC-link voltage and entire current rating range at the temperatures of −40 °C, 25 °C, and 150 °C, respectively, finding that neither the excessive turn-off overvoltage of IGBTs nor the snappy reverse recovery of FWDs was observed. Full article
(This article belongs to the Special Issue Recent Studies in Power Electronic Devices and Applications)
Show Figures

Figure 1

18 pages, 5420 KB  
Article
DC-Link Electrolytic Capacitors Monitoring Techniques Based on Advanced Learning Intelligence Techniques for Three-Phase Inverters
by Hoanglong Dang, Hyejin Park, Sangshin Kwak and Seungdeog Choi
Machines 2022, 10(12), 1174; https://doi.org/10.3390/machines10121174 - 7 Dec 2022
Cited by 9 | Viewed by 2524
Abstract
The reliability of the electronic converter is a vital concern in an industrialized area. Capacitors are critical in electronic converters and are more likely to fail than other electronic gears. Due to aging, the capacitor progressively loses its original quality and capacitance, and [...] Read more.
The reliability of the electronic converter is a vital concern in an industrialized area. Capacitors are critical in electronic converters and are more likely to fail than other electronic gears. Due to aging, the capacitor progressively loses its original quality and capacitance, and the equivalent series resistance escalates. Hence, condition monitoring is a fundamental procedure for evaluating capacitor health that affords prognostic repairs to guarantee stability in power networks. The ESR and capacitance of the capacitor are commonly employed to estimate the condition grade. This study proposes an estimation scheme that utilizes the source current to assess the health condition of an aluminum capacitor. Several advanced intelligence techniques are adopted to estimate the parameters of an AEC in a three-phase inverter system. First, different signals used as inputs, such as input power, capacitor current, voltage, and power, output current, voltage, and power, are analyzed using fast Fourier transform and discrete wavelet transform analysis. Then, various indexes of the analyzed signals, such as RMS, average, median, and variance, are used as the inputs in learning models to monitor the AEC’s parameters. In addition, various input signals are combined to obtain the best combinations for capacitor monitoring. The estimated results prove that utilizing the source current combined with selected indexes improves the monitoring accuracy of the AEC’s health status. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

13 pages, 2479 KB  
Article
Effect of the Particle Size and Layer Thickness of GNP Fillers on the Dielectric Properties and Actuated Strain of GNP–PDMS Composites
by Jin-Sung Seo, Do-Hyeon Kim, Heon-Seob Jung, Ho-Dong Kim, Jaewon Choi, Minjae Kim, Sung-Hyeon Baeck and Sang-Eun Shim
Polymers 2022, 14(18), 3824; https://doi.org/10.3390/polym14183824 - 13 Sep 2022
Cited by 3 | Viewed by 2641
Abstract
Dielectric elastomer actuators (DEAs), a type of electroactive polymers (EAPs), are smart materials that are used in various fields such as artificial muscles and biomimetic robots. In this study, graphene nanoplatelets (GNPs), which are conductive carbon fillers, were added to a widely used [...] Read more.
Dielectric elastomer actuators (DEAs), a type of electroactive polymers (EAPs), are smart materials that are used in various fields such as artificial muscles and biomimetic robots. In this study, graphene nanoplatelets (GNPs), which are conductive carbon fillers, were added to a widely used DEA, namely, polydimethylsiloxane (PDMS), to improve its low actuated strain. Four grades of GNPs were used: H5, H25, M5, and M25 (here, the number following the letter indicates the average particle size of the GNPs in μm). The average layer thickness of the H grade is 13–14 nm and that of the M grade is 5–7 nm. PDMS composites were prepared by adding 0.5, 1, 2, and 3 wt% of each GNP, following which the mechanical properties, dielectric properties, and actuated strain of the composites were measured. The mechanical properties were found to increase as the particle size increased. Regarding the dielectric characteristics, it was found that the higher the aspect ratio of the filler, the easier the formation of a micro-capacitor network in the composite—this led to an increase in the dielectric constant. In addition, the higher amounts of GNPs in the composites also led to an increase in the dielectric constant. For the actuated strain analysis, the electromechanical sensitivity was calculated using the ratio of the dielectric constant to the Young’s modulus, which is proportional to the strain. However, it was found that when the loss tangent was high, the performance of the actuated strain decreased owing to the conversion of electric energy into thermal energy and leakage current loss. As a result, the highest actuated strain was exhibited by the M25 composite, with an actuated strain value of 3.01% measured at a low electric field (<4 kV/mm). In conclusion, we proved that the GNP–PDMS composites with a thin layer and large particle size exhibited high deformation. Full article
Show Figures

Figure 1

18 pages, 6153 KB  
Article
Ionic Gelatin-Based Flexible Thermoelectric Generator with Scalability for Human Body Heat Harvesting
by Shucheng Wang, Liuyang Han, Hanxiao Liu, Ying Dong and Xiaohao Wang
Energies 2022, 15(9), 3441; https://doi.org/10.3390/en15093441 - 8 May 2022
Cited by 5 | Viewed by 3445
Abstract
The prosperity of intelligent wearables brings an increasingly critical problem of power supply. Regular rechargeable lithium or disposable button batteries have some problems, such as limited capacity, frequent replacement, environmental pollution, etc. Wearable energy harvester (WEH) can fundamentally solve these problems. Among WEHs, [...] Read more.
The prosperity of intelligent wearables brings an increasingly critical problem of power supply. Regular rechargeable lithium or disposable button batteries have some problems, such as limited capacity, frequent replacement, environmental pollution, etc. Wearable energy harvester (WEH) can fundamentally solve these problems. Among WEHs, thermoelectric generator (TEG) is a promising option due to its independence of light condition or the motion of the wearer, and thermoelectric conversion (TEC) has the characteristics of quietness and continuity. Therefore, TEG has become a suitable choice for harvesting low-grade heat energy such as human body heat. Ionic thermoelectric gel (iTEG) has the advantages of a large Seebeck coefficient, freely defined shape and size, low processing cost, wide material sources, easy encapsulation, etc. In this paper, the gelatin-based iTEG is regulated and optimized by silica nanoparticles (SiO2 NPs). The optimal compound quantity of SiO2 NPs is determined, and the optimization mechanism is discussed through a series of characterization tests. Based on the iTEG, a kind of scalable flexible TEGs is proposed, and its preparation method is described in detail. A small wristband TEG (STEG) was made, and its Seebeck coefficient is 74.5 mV/K. Its bendability and stretchability were verified, and the impedance matching experiment was carried out. By charging a capacitor, the STEG successfully lights up an LED at a temperature difference (ΔT) of ~15.5 K. Subsequently, a large extended oversleeve TEG (LTEG) was prepared, and a set of heat sinks was added at the cooling end of the LTEG. Being worn on a volunteer’s forearm, the LTEG output a voltage of more than 3 V at ~20 °C. Through storing the converted energy in a capacitor, the LTEG directly drove a calculator without a DC–DC booster. The proposed iTEG and TEGs in this paper have the prospect of mass production, extending to people’s clothes, harvesting human body heat and directly powering wearable electronics. Full article
(This article belongs to the Topic Thermoelectric Energy Harvesting)
Show Figures

Figure 1

17 pages, 2202 KB  
Review
Evaluating the Application of Rock Breakage without Explosives in Underground Construction—A Critical Review of Chemical Demolition Agents
by Kelly-Meriam Habib, Shahé Shnorhokian and Hani Mitri
Minerals 2022, 12(2), 220; https://doi.org/10.3390/min12020220 - 9 Feb 2022
Cited by 26 | Viewed by 9231
Abstract
The method of drilling and blasting with explosives is widely used in rock fragmentation applications in underground construction projects, such as tunnels and caverns. However, the use of explosives is associated with rigorous safety and environmental constraints, since blasting creates toxic fumes, ground [...] Read more.
The method of drilling and blasting with explosives is widely used in rock fragmentation applications in underground construction projects, such as tunnels and caverns. However, the use of explosives is associated with rigorous safety and environmental constraints, since blasting creates toxic fumes, ground vibrations, and dust. Because of these constraints, there has been a growing interest in transitioning away from explosives-based rock fragmentation. The use of explosives-free methods could lead to continuous operation by eliminating the need for idle time with additional ventilation required to exhaust the blast fumes. This paper first presents a critical review of various methods that have been developed so far for rock fragmentation without explosives. Such methods include thermal fragmentation, plasma blasting, controlled foam injection, radial-axial splitter, and supercritical carbon dioxide. Thermal fragmentation, as the name implies, uses high heat to spall high-grade ore. However, it requires high heat energy, which requires additional ventilation as compared to normal conditions to cool the work area. Plasma blasting uses a high temperature and pressure plasma to fracture rock in a safe manner. While this method may be environmentally friendly, its usage may significantly slow tunnel development due to the need to haul one or more large energy capacitor banks into and out of the work area repeatedly. Controlled foam injection is another chemical method, whereby foam is the medium for fracturing. Although claimed to be environmentally friendly, it may still pose safety risks such as air blast or flyrock due to its dynamic nature. A radial-axial splitter (RASP) is an instrument specially designed to fracture a borehole in the rock face but only at the pace of one hole at a time. Supercritical carbon dioxide is used with the equipment designed to provide a high-pressure jet stream to fracture rock, and replaces water in these instruments. The method of soundless chemical demolition agents (SCDA) is evaluated in more detail and its merits over others are highlighted, making it a potentially viable alternative to blasting with explosives in underground excavation applications. Future work involves the optimization of SCDA for implementation in underground mines. The discussion compares the key features and limitations, and future work needs are underlined. Full article
Show Figures

Figure 1

11 pages, 3976 KB  
Article
A Novel Bidirectional AlGaN/GaN ESD Protection Diode
by Bin Yao, Yijun Shi, Hongyue Wang, Xinbin Xu, Yiqiang Chen, Zhiyuan He, Qingzhong Xiao, Lei Wang, Guoguang Lu, Hao Li, Yun Huang and Bo Zhang
Micromachines 2022, 13(1), 135; https://doi.org/10.3390/mi13010135 - 15 Jan 2022
Cited by 8 | Viewed by 3846
Abstract
Despite the superior working properties, GaN-based HEMTs and systems are still confronted with the threat of a transient ESD event, especially for the vulnerable gate structure of the p-GaN or MOS HEMTs. Therefore, there is still an urgent need for a bidirectional ESD [...] Read more.
Despite the superior working properties, GaN-based HEMTs and systems are still confronted with the threat of a transient ESD event, especially for the vulnerable gate structure of the p-GaN or MOS HEMTs. Therefore, there is still an urgent need for a bidirectional ESD protection diode to improve the ESD robustness of a GaN power system. In this study, an AlGaN/GaN ESD protection diode with bidirectional clamp capability was proposed and investigated. Through the combination of two floating gate electrodes and two pF-grade capacitors connected in parallel between anode or cathode electrodes and the adjacent floating gate electrodes (CGA (CGC)), the proposed diode could be triggered by a required voltage and possesses a high secondary breakdown current (IS) in both forward and reverse transient ESD events. Based on the experimental verification, it was found that the bidirectional triggering voltages (Vtrig) and IS of the proposed diode were strongly related to CGA (CGC). With CGA (CGC) increasing from 5 pF to 25 pF, Vtrig and IS decreased from ~18 V to ~7 V and from ~7 A to ~3 A, respectively. The diode’s high performance demonstrated a good reference for the ESD design of a GaN power system. Full article
(This article belongs to the Special Issue GaN-Based Semiconductor Devices)
Show Figures

Figure 1

14 pages, 3247 KB  
Article
Development and Testing of a 252 kV/2500 A-40 kA Multi-Break Bus-Coupler Fast Vacuum Circuit Breaker
by Kui Ma, Xiaofei Yao, Luyang Zhang, Shaogui Ai, Shuhong Wang, Jianhua Wang, Yingsan Geng and Zhiyuan Liu
Energies 2021, 14(14), 4285; https://doi.org/10.3390/en14144285 - 15 Jul 2021
Cited by 7 | Viewed by 2924
Abstract
It is effective to open the bus-coupler circuit breaker in case of a short-circuit fault. A fast vacuum circuit breaker (FVCB) is an ideal bus-coupler circuit breaker due to its high velocity. The objective of this study was to develop and test a [...] Read more.
It is effective to open the bus-coupler circuit breaker in case of a short-circuit fault. A fast vacuum circuit breaker (FVCB) is an ideal bus-coupler circuit breaker due to its high velocity. The objective of this study was to develop and test a 252 kV/2500 A-40 kA multi-break bus-coupler FVCB. The 252 kV FVCB contained 12 FVCB units. Each phase consisted of four FVCB units connected in series. Each FVCB unit had an electromagnetic repulsion mechanism with an average opening velocity reaching 6.5 m/s. Test results showed the opening time was 1.11 ± 0.08 ms. The capacitance of the voltage grading capacitor of each break was determined to be 10 nF. The prototype 252 kV bus-coupler FVCB passed all partial test duties according to the IEC 62271-100: 2008 and IEC 62271-1: 2007 standards, which include an insulation test and a terminal fault test among others. A 252 kV/2500 A-40 kA multi-break bus-coupler FVCB can be used to quickly cut off a short-circuit fault and effectively limit a short-circuit current. Full article
Show Figures

Figure 1

21 pages, 9703 KB  
Article
A Single-Chip High-Voltage Integrated Actuator for Biomedical Ultrasound Scanners
by Chin Hsia, Yi-Chi Hsiao and Yen-Chung Huang
Sensors 2019, 19(23), 5063; https://doi.org/10.3390/s19235063 - 20 Nov 2019
Cited by 7 | Viewed by 5841
Abstract
This article presents a high-voltage (HV) pulse driver based on silicon-on-insulator (SOI) technology for biomedical ultrasound actuators and multi-channel portable imaging systems specifically. The pulse driver, which receives an external low-voltage drive signal and produces high-voltage pulses with a balanced rising and falling [...] Read more.
This article presents a high-voltage (HV) pulse driver based on silicon-on-insulator (SOI) technology for biomedical ultrasound actuators and multi-channel portable imaging systems specifically. The pulse driver, which receives an external low-voltage drive signal and produces high-voltage pulses with a balanced rising and falling edge, is designed by synthesizing high-speed, capacitor-coupled level-shifters with a high-voltage H-bridge output stage. In addition, an on-chip floating power supply has also been developed to simplify powering the entire system and reduce static power consumption. The electrical and acoustic performance of the integrated eight-channel pulse driver has been verified by using medical-grade ultrasound probes to acquire the transmit/echo signals. The driver can produce pulse signals >100 Vpp with rise and fall times within 18.6 and 18.5 ns, respectively. The static power required to support the overall system is less than 3.6 mW, and the power consumption of the system during excitation is less than 50 mW per channel. The second harmonic distortion of the output pulse signal is as low as −40 dBc, indicating that the integrated multi-channel pulse driver can be used in advanced portable ultrasonic imaging systems. Full article
Show Figures

Figure 1

12 pages, 3269 KB  
Article
Static Voltage Sharing Design of a Sextuple-Break 363 kV Vacuum Circuit Breaker
by Xiao Yu, Fan Yang, Xing Li, Shaogui Ai, Yongning Huang, Yiping Fan and Wei Du
Energies 2019, 12(13), 2512; https://doi.org/10.3390/en12132512 - 29 Jun 2019
Cited by 15 | Viewed by 3949
Abstract
A balanced voltage distribution for each break is required for normal operation of a multi-break vacuum circuit breaker (VCB) This paper presented a novel 363 kV/5000 A/63 kA sextuple-break VCB with a series-parallel structure. To determine the static voltage distribution of each break, [...] Read more.
A balanced voltage distribution for each break is required for normal operation of a multi-break vacuum circuit breaker (VCB) This paper presented a novel 363 kV/5000 A/63 kA sextuple-break VCB with a series-parallel structure. To determine the static voltage distribution of each break, a 3D finite element method (FEM) model was established to calculate the voltage distribution and the electric field of each break at the fully open state. Our results showed that the applied voltage was unevenly distributed at each break, and that the first break shared the most voltage, about 86.3%. The maximum electric field of the first break was 18.9 kV/mm, which contributed to the reduction of the breaking capacity. The distributed and stray capacitance parameters of the proposed structure were calculated based on the FEM model. According to the distributed capacitance parameters, the equivalent circuit simulation model of the static voltage distribution of this 363 kV VCB was established in PSCAD. Subsequently, the influence of the grading capacitor on the voltage distribution of each break was investigated, and the best value of the grading capacitors for the 363 kV sextuple-break VCB was confirmed to be 10 nF. Finally, the breaking tests of a single-phase unit was conducted both in a minor loop and a major loop. The 363 kV VCB prototype broke both the 63 kA and the 80 kA short circuit currents successfully, which confirmed the validity of the voltage sharing design. Full article
Show Figures

Figure 1

11 pages, 4837 KB  
Article
Investigation of Bipolar Plate Forming with Various Die Configurations by Magnetic Pulse Method
by Huimin Wang and Yuliang Wang
Metals 2019, 9(4), 453; https://doi.org/10.3390/met9040453 - 17 Apr 2019
Cited by 13 | Viewed by 4333
Abstract
Bipolar plates are a major part of fuel cells, which are a clean and recyclable energy source. This study was carried out with two dies for a bipolar plate forming investigation with the magnetic pulse method: a bipolar plate die and a 10-channel [...] Read more.
Bipolar plates are a major part of fuel cells, which are a clean and recyclable energy source. This study was carried out with two dies for a bipolar plate forming investigation with the magnetic pulse method: a bipolar plate die and a 10-channel die. With the bipolar plate die, the forming of bipolar plates with a Cu110 sheet and a Grade 2 Ti sheet indicated that the bipolar plate die needed optimization for a full replication. The obtained maximum average depth percentage was 86% for a Cu110 sheet, while it was 54% for a Grade 2 Ti sheet in this study. A further increase of the depth percentage is possible but requires a much higher capacitor bank energy. The increase of the capacitor bank energy would result in severe tearing, while the depth percentage increase was little. The primary current and flyer velocity were measured at various capacitor bank energies. With the 10-channel die, the die parameters’ effect on metal sheet forming was investigated with a Cu110 sheet and an SS201 sheet. The draft angle had a significant effect on the replication of the die surface. The full replication was achieved for channels with proper parameters with both a Cu110 sheet and an SS201 sheet. Therefore, the bipolar plate die could be optimized based on the 10-channel die results. Full article
(This article belongs to the Special Issue Forming and Heat Treatment of Modern Metallic Materials)
Show Figures

Figure 1

16 pages, 3582 KB  
Article
Energy Management Strategy for the Hybrid Energy Storage System of Pure Electric Vehicle Considering Traffic Information
by Jianjun Hu, Xingyue Jiang, Meixia Jia and Yong Zheng
Appl. Sci. 2018, 8(8), 1266; https://doi.org/10.3390/app8081266 - 31 Jul 2018
Cited by 25 | Viewed by 3870
Abstract
The main challenge for the pure electric vehicles (PEVs) with a hybrid energy storage system (HESS), consisting of a battery pack and an ultra-capacitor pack, is to develop a real-time controller that can achieve a significant adaptability to the real road. In this [...] Read more.
The main challenge for the pure electric vehicles (PEVs) with a hybrid energy storage system (HESS), consisting of a battery pack and an ultra-capacitor pack, is to develop a real-time controller that can achieve a significant adaptability to the real road. In this paper, a comprehensive controller considering the traffic information is proposed, which is composed of an adaptive rule-based controller (main controller) and a fuzzy logic controller (auxiliary controller). Through analyzing the dynamic programming (DP) based power allocation of HESS, a general law for the power allocation of HESS is acquired and an adaptive rule-based controller is established. Then, to further enhance the real-time performance of the adaptive rule-based controller, traffic information, which consists of the traffic condition and road grade, is considered, and a novel method combining a K-means clustering algorithm and traffic condition is proposed to predict the future trend of vehicle speed. On the basis of the obtained traffic information, a fuzzy logic controller is constructed to provide the correction for the power allocation in the adaptive rule-based controller. Ultimately, the comparative simulations among the traditional rule-based controller, the adaptive rule-based controller, and the comprehensive controller are conducted, and the results indicate that the proposed adaptive rule-based controller reduces battery life loss by 3.76% and the state of change (SOC) consumption by 3.55% in comparison with the traditional rule-based controller. Furthermore, the comprehensive controller possesses the most excellent performance and reduces the battery life loss by 2.98% and the SOC consumption of the battery by 1.88%, when compared to the adaptive rule-based controller. Full article
(This article belongs to the Special Issue Smart Home and Energy Management Systems)
Show Figures

Figure 1

Back to TopTop