Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,533)

Search Parameters:
Keywords = green extraction processes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 831 KB  
Article
Development of a Green Extraction Process from Residues of Assyrtiko Wine Production for Cosmetic Applications
by Styliani Kalafateli, Agni-Areti Freri, Georgios Stavropoulos, Andromachi Tzani and Anastasia Detsi
Separations 2025, 12(10), 265; https://doi.org/10.3390/separations12100265 - 30 Sep 2025
Abstract
Vitis vinifera L. cultivar, “Assyrtiko”, is a famous grape variety native to Santorini island. Its wine production residues are rich in bioactive polyphenols, making them valuable for extraction and use in cosmetics. The aim of this work was the development and optimization of [...] Read more.
Vitis vinifera L. cultivar, “Assyrtiko”, is a famous grape variety native to Santorini island. Its wine production residues are rich in bioactive polyphenols, making them valuable for extraction and use in cosmetics. The aim of this work was the development and optimization of an extraction process from “Assyrtiko” Wine Production Residue (AWPR), using a Natural Deep Eutectic Solvent (NaDES) as the extraction medium. Four NaDESs were synthesized and screened for the extraction, and the extracts were evaluated for Total Phenolic Content (TPC) and Total Flavonoid Content (TFC). The NaDES comprising betaine and 1,3-propanediol was chosen for further analysis because of its effectiveness as an extraction solvent. The extraction process was optimized using a Box–Behnken experimental design. The NaDES %w/w content in the NaDES/water system was found to play the most statistically significant role in the quality of the extracts, assessed via TPC and TFC values. The quality of the extract obtained from the optimal conditions was practically stable with respect to TPC and TFC after long storage, suggesting that NaDESs have a potential “protective” effect for the extracted phytochemicals and give energy-efficient character to the process. This extract was also directly incorporated into a moisturizing cosmetic formulation, which remained homogeneous and stable after testing, demonstrating the extract’s potential for cosmetic applications. Full article
(This article belongs to the Special Issue Novel Solvents and Methods for Extraction of Chemicals)
21 pages, 7696 KB  
Article
Multi-Objective Optimization of Mechanical Properties of Banana Pseudostem Fibers Using Sludge Retting Pretreatment
by Dong Liang, Zeqin Yang, Wei Fu, Yijun Shen, Shaojie Yu, Wei Zeng and Ji Liu
Agriculture 2025, 15(19), 2057; https://doi.org/10.3390/agriculture15192057 - 30 Sep 2025
Abstract
In this study, sludge retting was used as a pretreatment method for extracting banana pseudostem fibers. A Box–Behnken response surface design was employed to optimize the retting conditions. Three variables—Bacillus subtilis concentration, treatment time, and pH—were selected for analysis. Their effects on [...] Read more.
In this study, sludge retting was used as a pretreatment method for extracting banana pseudostem fibers. A Box–Behnken response surface design was employed to optimize the retting conditions. Three variables—Bacillus subtilis concentration, treatment time, and pH—were selected for analysis. Their effects on the mechanical properties of the fibers were systematically evaluated. Experimental data were analyzed using ANOVA in Design-Expert 13, and a regression model was established for parameter optimization. The optimal conditions were determined to be a Bacillus subtilis concentration of 1.18%, a treatment time of 20 days, and a pH of 7. Under these conditions, the tensile strength, elastic modulus, and elongation at break of the fibers reached 1161.63 MPa, 50.68 GPa, and 2.32%, respectively—representing improvements of 46.23%, 42.48%, and 34.1% compared to untreated samples. In addition, the fibers were analyzed using SEM, TGA-DTG, FTIR, and XRD to investigate changes in surface topography, thermal behavior, chemical bonding, and crystalline structure. Results showed that sludge retting effectively removed non-cellulosic components, enhanced thermal stability and crystallinity, and significantly improved the mechanical performance of the fibers. This study demonstrates that sludge retting is a green and sustainable pretreatment technique with strong potential for banana pseudostem fiber processing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 1274 KB  
Article
Study on the Effect of Grinding Media Material and Proportion on the Cyanide Gold Extraction Process
by Guiqiang Niu, Yunfeng Shao, Qingfei Xiao, Mengtao Wang, Saizhen Jin, Guobin Wang and Yijun Cao
Minerals 2025, 15(10), 1031; https://doi.org/10.3390/min15101031 - 28 Sep 2025
Abstract
Laboratory and industrial tests were conducted to study the impact of grinding media material on key indicators such as grinding product particle size, sodium cyanide consumption, gold recovery rate, unit power consumption, and ball consumption. Laboratory test results indicate that the reasonable mixing [...] Read more.
Laboratory and industrial tests were conducted to study the impact of grinding media material on key indicators such as grinding product particle size, sodium cyanide consumption, gold recovery rate, unit power consumption, and ball consumption. Laboratory test results indicate that the reasonable mixing of ceramic and steel balls can achieve an increase of more than 2.8% in the fineness of the grinding product (−0.038 mm), an increase of 0.3% in the gold recovery rate, and a decrease of 1.3 kg/t in the consumption of sodium cyanide. Industrial trial studies indicate that, compared to the traditional steel ball scheme, using a ceramic ball to steel ball mass ratio of 3:1 under conditions of processing 50,000 tons of gold concentrate annually can save a total of 1.31 million yuan in annual ball consumption, electricity consumption, and cyanide consumption costs. Additionally, the improved recovery rate generates an additional economic benefit of 3.63 million yuan, resulting in an annual comprehensive economic benefit increase of 4.94 million yuan. In summary, in gold cyanide leaching grinding, the mixture ratio between ceramic balls and steel balls demonstrates significant potential for energy conservation, cost reduction, and efficiency enhancement, providing a theoretical basis and technical support for subsequent process optimization and green gold extraction. Full article
(This article belongs to the Collection Advances in Comminution: From Crushing to Grinding Optimization)
Show Figures

Figure 1

19 pages, 7778 KB  
Article
Key Technologies for and Cases of Open-Stope-to-Backfill Transition in China’s Small and Medium Mines
by Shuai Li, Zhenlong Li, Zhenyu Dan, Tubing Yin and Haoxuan Yu
Processes 2025, 13(10), 3096; https://doi.org/10.3390/pr13103096 - 27 Sep 2025
Abstract
Globally, the open-stope method is used in over 60% of small- and medium-sized mines because of its low cost and high initial efficiency, but it has issues like high ore loss and a great goaf-collapse risk, becoming a core bottleneck for mines’ green [...] Read more.
Globally, the open-stope method is used in over 60% of small- and medium-sized mines because of its low cost and high initial efficiency, but it has issues like high ore loss and a great goaf-collapse risk, becoming a core bottleneck for mines’ green and sustainable development. Thus, accelerating its transition to the green backfilling method is an urgent industry need. This study focuses on Shishudi Gold Mine, Xingan Fluorite Mine, and Suichang Gold Mine, adopting a “problem diagnosis–scheme design–case verification–experience extraction” framework to analyze their economic and ecological indicators pre- and post-transition. Our results show remarkable effects: Shishudi’s ore recovery rose from 75% to 88.5%, with 300,000 tons of residual ore recovered and 100% tailing utilization; Xingan’s ore loss dropped by 12%, annual output increased by 60,000 tons, and 200,000 tons of tailings was consumed to achieve a “tailless mine”; and Suichang’s mining capacity rose from 30 tons per day (t/d) to 120 t/d, using 150,000 tons of cyanide-free tailings yearly. In this paper, the key problems of open-stope mining are identified and a transition path of “process innovation–system construction–tailing utilization–mechanization support” is summarized. Our results provide promotable technical solutions and practical references for global small- and medium-sized mines that are of great significance for driving their green and sustainable development. Full article
Show Figures

Figure 1

25 pages, 5008 KB  
Article
Biochemical Modification of Poly-Vinyl-Alcohol-Based Bioplastics with Citrus By-Product to Increase Its Food Packaging Application
by Giuseppe Tancredi Patanè, Stefano Putaggio, Davide Barreca, Annamaria Russo, Annamaria Visco, Cristina Scolaro, Rosalia Maria Cigala, Francesco Crea, Salvatore Abate, Federica De Luca, Silvana Ficarra, Ester Tellone, Giuseppina Laganà and Antonella Calderaro
Int. J. Mol. Sci. 2025, 26(19), 9470; https://doi.org/10.3390/ijms26199470 - 27 Sep 2025
Abstract
The necessity to produce new biodegradable polymeric materials, to overcome the economic model, based on the linear economy, and to apply the circular economy model is a global problem. As a result, components unutilized derived from industrial processes are becoming increasingly valuable and [...] Read more.
The necessity to produce new biodegradable polymeric materials, to overcome the economic model, based on the linear economy, and to apply the circular economy model is a global problem. As a result, components unutilized derived from industrial processes are becoming increasingly valuable and useful to create new materials. This work focuses on the production of bioplastics based on poly (vinyl) alcohol (PVA) that have been modified with flavonoid fraction, liquid fraction obtained after digestion with cellulase and pectinase, and the solid material remaining after enzyme treatment, obtained from Citrus bergamia by-product (the so-called “pastazzo”). This last one is an almost completely unutilized product, although it is a potential rich source of biological active compounds. Enzymatic and non-enzymatic green extraction protocol have been employed to separate the different fractions and to make it more suitable to functionalize the PVA, suppling new properties to the bioplastics in a dose-dependent manner. Morpho-functional analysis was conducted by SEM, XRD, colorimetry, UV–visible and ATR-FTIR spectroscopy. Regarding optical properties, the obtained results show that transparency of the film in terms of light transmittance (T%) for PVA alone is very high, but when functionalized it had a reduced T%. From the data obtained, the functionalized films acquire antioxidant activity, as well as good mechanical properties, making them good candidates for biodegradable packaging for preserving the shelf life of different fruits and vegetables as confirmed by the food fresh-keeping test performed on apple samples. Full article
(This article belongs to the Special Issue Design of Bioactive Agents and Interaction with Biological Systems)
Show Figures

Figure 1

16 pages, 2007 KB  
Article
Natural Oils as Green Solvents for Reactive Extraction of 7-Aminocephalosporanic Acid: A Sustainable Approach to Bioproduct Recovery in Environmental Biotechnology
by Delia Turcov, Madalina Paraschiv, Alexandra Cristina Blaga, Alexandra Tucaliuc, Dan Cascaval and Anca-Irina Galaction
Biomolecules 2025, 15(10), 1371; https://doi.org/10.3390/biom15101371 - 26 Sep 2025
Abstract
The growing need for environmentally friendly separation processes has motivated the search for alternative solvents to petroleum-derived chemicals for the recovery of biosynthesized products. Although effective, conventional petroleum-based solvents pose major environmental and sustainability concerns, including pollution, ecotoxicity, human health risks, and high [...] Read more.
The growing need for environmentally friendly separation processes has motivated the search for alternative solvents to petroleum-derived chemicals for the recovery of biosynthesized products. Although effective, conventional petroleum-based solvents pose major environmental and sustainability concerns, including pollution, ecotoxicity, human health risks, and high costs and energy demands for recycling. Consequently, current research and industrial practice increasingly focus on their replacement with safer and more sustainable alternatives. This study investigates the use of natural oils (i.e., grapeseed, sweet almond, and flaxseed oils) as renewable, biodegradable, and non-toxic diluents in reactive extraction systems for the separation of 7-aminocephalosporanic acid (7-ACA). The combination of these oils with tri-n-octylamine (TOA) as extractant enabled high extraction efficiencies, exceeding 50%. The system comprising 120 g/L tri-n-octylamine in grapeseed oil, an aqueous phase pH of 4.5, a contact time of 1 min, and a temperature of 25 °C resulted in a 7-ACA extraction efficiency of 63.4%. Slope analysis suggests that complex formation likely involves approximately one molecule each of tri-n-octylamine and 7-ACA, although the apparent order of the amine is reduced in systems using natural oils. This study highlights the potential of natural oil-based reactive extraction as a scalable and environmentally friendly method for 7-ACA separation, aligning with the principles of green chemistry and environmental biotechnology. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

23 pages, 2485 KB  
Article
Ultrasound-Assisted Green Natural Deep Eutectic Solvent Extraction of Flavonoids from Wild Blueberry: Process Optimization, Composition Identification, and Antioxidant Activity
by Le Ouyang, Weiwei Liang, Chun Bian, Yi Shan and Shumei Wang
Foods 2025, 14(19), 3325; https://doi.org/10.3390/foods14193325 - 25 Sep 2025
Abstract
To improve the deep processing and utilization of wild blueberries, this study presents a green and highly efficient method for extracting flavonoids from blueberries. The approach combines natural deep eutectic solvents (NADESs) with ultrasound-assisted extraction. Among the 22 tested NADES, Betaine/urea (BU), was [...] Read more.
To improve the deep processing and utilization of wild blueberries, this study presents a green and highly efficient method for extracting flavonoids from blueberries. The approach combines natural deep eutectic solvents (NADESs) with ultrasound-assisted extraction. Among the 22 tested NADES, Betaine/urea (BU), was the most effective solvent for extracting flavonoids from blueberries. The extraction parameters of ultrasound-assisted betaine/urea (UABU) were optimized using a response surface methodology (RSM). This optimization procedure yielded the optimized conditions outlined below: a molar ratio of urea to betaine of 3.3:1, a water content of 60% (m/v), an ultrasonic power of 330 W, a solid-to-liquid ratio of 1:30, an extraction temperature of 50 °C, and an ultrasonic extraction duration of 30 min. Under these conditions, the total flavonoid content (TFC) extracted using UABU reached 6.06 ± 0.024 mg_RE/g_DW, a 1.44-fold increase compared to ultrasound-assisted 70% (v/v) ethanol (UAE). Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) nontargeted metabolomics analysis revealed that the flavonoids extracted by UABU had highly relative content (RC) of Oenin, 3′-methoxy-4′,5,7-trihydroxyflavonol, Isorhamnetin-3-O-glucoside and Isoquercitrin. Significant disparities exist regarding the types and RC of flavonoids obtained via UAE. Results from in vitro antioxidant assays demonstrated that UABU has superior antioxidant activity relative to UAE. This study demonstrated the feasibility of using NADESs, specifically BU, as an efficient and eco-friendly extraction medium for flavonoids from wild blueberries. The yield of flavonoids was increased by this method, and bioactive compounds were also protected—findings that underscore the potential of green solvents for application in the food industry. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

19 pages, 4753 KB  
Article
Exploring the Green Synthesis Process of 2-Mercaptobenzothiazole for Industrial Production
by Yan Zhang, Qi Zhang, Xiansuo Li, Ruiguo Dong, Xiaolai Zhang and Qinggang Sun
Processes 2025, 13(10), 3071; https://doi.org/10.3390/pr13103071 - 25 Sep 2025
Abstract
This study outlines a high-yield green method for synthesizing MBT using aniline, carbon disulfide and sulfur as raw materials via a one-step reaction combined with high–low-temperature extraction. The process is supported by experimental results and lab-scale tests, and the operating conditions of the [...] Read more.
This study outlines a high-yield green method for synthesizing MBT using aniline, carbon disulfide and sulfur as raw materials via a one-step reaction combined with high–low-temperature extraction. The process is supported by experimental results and lab-scale tests, and the operating conditions of the amplification process are evaluated using Aspen Plus simulation software, supplemented with Gaussian09 calculations. The sensitivity analysis results indicate that the MBT yield reaches its maximum value when the feed mass ratio of S:CS2:C6H7N:C7H8 is 6:17:20:90. Additionally, setting the reaction temperature to 240 °C and pressure to 10 MPa improves the MBT synthesis yield from 58% to 82.5%. Optimal condensation and extraction conditions are achieved at −30 °C and 1 atm, followed by a separation step at 40 °C. The simulation results provide valuable guidance for the industrial production of MBT. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 846 KB  
Article
A Biologically Informed Wavelength Extraction (BIWE) Method for Hyperspectral Classification of Olive Cultivars and Ripening Stages
by Miriam Distefano, Giovanni Avola, Claudio Cantini, Beniamino Gioli, Alice Cavaliere and Ezio Riggi
Remote Sens. 2025, 17(19), 3277; https://doi.org/10.3390/rs17193277 - 24 Sep 2025
Viewed by 140
Abstract
Reliable tools for cultivar discrimination and ripening stage evaluation are critical to optimize harvest timing and support milling process focused on olive oil quality. This research examines the spectral properties of olive drupes throughout different maturation stages, ranging from green to full purple-black [...] Read more.
Reliable tools for cultivar discrimination and ripening stage evaluation are critical to optimize harvest timing and support milling process focused on olive oil quality. This research examines the spectral properties of olive drupes throughout different maturation stages, ranging from green to full purple-black pigmentation, across 29 distinct cultivars. High-resolution spectrometric analysis was conducted within the 380–1080 nm wavelength range. Multiple analytical approaches were employed to optimize wavelength selection from hyperspectral reflectance data to obtain discriminating tools for olive classification. A Biologically Informed Wavelength Extraction method (BIWE) was developed, focusing on cultivar and ripening stages identification, and pivoted on biologically informed single wavelengths and Vegetation Indices (VIs) selection. The methodology integrated multi-scale spectral analysis with biochemically weighted scoring and a multi-criteria evaluation framework, employing a two-iteration refinement process to identify optimal spectral features with high discriminatory power and biological relevance. Analysis revealed spectral variations associated with maturation. A characteristic reflectance peak at approximately 550 nm observed during early ripening stages underwent a notable shift, developing into distinct spectral behavior within the 700–780 nm range in intermediate and advanced ripening stages and reaching a plateau for all the samples between 800 and 950 nm. The BIWE method achieved exceptional efficiency in olive classification, utilizing only 25 single wavelengths compared to 114 required by Principal Component Analysis (PCA) and 131 by Recursive Feature Elimination (RFE), representing 4.6-fold and 5.2-fold reductions, respectively. Despite this reduction, BIWE’s overall accuracy (0.5634) remained competitive compared to RFE (−10%) and PCA (−8%) alternative approaches requiring larger wavelengths dataset acquisition. The integration of biochemically relevant VIs enhanced accuracy across all methodologies, with BIWE demonstrating notable improvement (+19.2%). BIWE demonstrated effective olive identification capacity with a reduction in required wavelengths and VIs dataset, affecting the technological needs (spectrometer offset and real-time classification applications) for a tool oriented to olive cultivars and ripening stage discrimination. Full article
Show Figures

Graphical abstract

34 pages, 20406 KB  
Article
Designing Sustainable Packaging Materials: Citric Acid-Modified TPS/PLA Blends with Enhanced Functional and Eco-Performance
by Vesna Ocelić Bulatović, Mario Kovač, Dajana Kučić Grgić, Vilko Mandić and Antun Jozinović
Polymers 2025, 17(19), 2571; https://doi.org/10.3390/polym17192571 - 23 Sep 2025
Viewed by 119
Abstract
Starch extracted from the domestically cultivated Scala potato variety was explored as a renewable resource for the formulation of biodegradable thermoplastic starch (TPS)/polylactic acid (PLA) blends intended for environmentally friendly food packaging applications. The isolated starch underwent comprehensive physicochemical and structural characterization to [...] Read more.
Starch extracted from the domestically cultivated Scala potato variety was explored as a renewable resource for the formulation of biodegradable thermoplastic starch (TPS)/polylactic acid (PLA) blends intended for environmentally friendly food packaging applications. The isolated starch underwent comprehensive physicochemical and structural characterization to assess its suitability for polymer processing. TPS derived from Scala starch was compounded with PLA, both with and without citric acid (CA) as a green compatibilizer to enhance phase compatibility. The resulting polymer blends were systematically analyzed using Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR–ATR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) to evaluate thermal and structural properties. Mechanical performance, water vapor permeability (WVP), water absorption (WA), and biodegradability in soil over 56 days were also assessed. The incorporation of citric acid improved phase miscibility, leading to enhanced structural uniformity, thermal stability, mechanical strength, and barrier efficiency. Bio-degradation tests confirmed the environmental compatibility of the developed blends. Overall, the results demonstrate the potential of Scala-based TPS/PLA systems, particularly those modified with citric acid, as viable candidates for sustainable food packaging, while highlighting the importance of further formulation optimization to balance functional and biodegradative performance. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polymers for Sustainable Food Applications)
Show Figures

Graphical abstract

22 pages, 2910 KB  
Review
Global Research Trends in Catalysis for Green Hydrogen Production from Wastewater: A Bibliometric Study (2010–2024)
by Motasem Y. D. Alazaiza, Al-Anoud Al-Yazeedi, Talal Al Wahaibi, Farouk Mjalli, Abdulkareem Abubakar, Mohammed Abd El Hameed and Mohammed Javeed Siddique
Catalysts 2025, 15(9), 915; https://doi.org/10.3390/catal15090915 - 22 Sep 2025
Viewed by 240
Abstract
By turning a waste stream into a clean energy source, green hydrogen generation from wastewater provides a dual solution to energy and environmental problems. This study presents a thorough bibliometric analysis of research trends in the field of green hydrogen generation from wastewater [...] Read more.
By turning a waste stream into a clean energy source, green hydrogen generation from wastewater provides a dual solution to energy and environmental problems. This study presents a thorough bibliometric analysis of research trends in the field of green hydrogen generation from wastewater between 2010 and 2024. A total of 221 publications were extracted from Scopus database, and VOSviewer (1.6.20) was used as a visualization tool to identify influential authors, institutions, collaborations, and thematic focus areas. The analysis revealed a significant increase in research output, with a peak of 122 publications in 2024, with a total of 705 citations. China had the most contributions with 60 publications, followed by India (30) and South Korea (26), indicating substantial regional involvement in Asia. Keyword co-occurrence and coauthorship network mapping revealed 779 distinct keywords grouped around key themes like electrolysis, hydrogen evolution reactions, and wastewater treatment. Significantly, this work was supported by contributions from 115 publication venues, with the International Journal of Hydrogen Energy emerging as the most active and cited source (40 articles, 539 citations). The multidisciplinary aspect of the area was highlighted by keyword co-occurrence analysis, which identified recurring themes including electrolysis, wastewater treatment, and hydrogen evolution processes. Interestingly, the most-cited study garnered 131 citations and discussed the availability of unconventional water sources for electrolysis. Although there is growing interest in the field, it is still in its initial phases, indicating a need for additional research, particularly in developing countries. This work offers a basic overview for researchers and policymakers who are focused on promoting the sustainable generation of green hydrogen from wastewater. Full article
Show Figures

Figure 1

16 pages, 1603 KB  
Article
Ultrasound-Assisted Eutectic Solvent-Based Process Intensification for Sustainable Recovery of Oleuropein from Olive Leaves
by Andrea Sánchez-Monedero, María González-Miquel and Emilio J. González
Molecules 2025, 30(18), 3829; https://doi.org/10.3390/molecules30183829 - 21 Sep 2025
Viewed by 256
Abstract
Olive leaves, a significant source of agri-food waste, can be valorized as feedstock in biorefineries due to their high content of antioxidant compounds, mainly polyphenols. This study aims to valorize olive leaves through an efficient solid/liquid extraction of oleuropein, its main polyphenol, using [...] Read more.
Olive leaves, a significant source of agri-food waste, can be valorized as feedstock in biorefineries due to their high content of antioxidant compounds, mainly polyphenols. This study aims to valorize olive leaves through an efficient solid/liquid extraction of oleuropein, its main polyphenol, using green solvents and advanced technologies. Accordingly, three natural eutectic solvents formed with 1,2-butanediol and choline chloride, betaine, or proline, which incorporated water or ethanol as cosolvents, and ultrasound-assisted extraction to enhance the process were used in this work. Additionally, the effect of the cosolvent composition on the physical properties of the solvent mixtures (i.e., density and viscosity as a function of temperature) was evaluated. The extraction time was optimized for both conventional and intensified extractions, and the antioxidant activity of the extracts was assessed over time to determine their stability. Measurements through high-performance liquid chromatography and antioxidant activity assays concluded that ultrasound-assisted extraction using the solvent proline:1,2-butanediol prepared with ethanol at 25–75% composition yielded the best results at 37.00 mg of oleuropein per gram of dry sample (g/ds), obtained after just 1 min of intensified extraction, with a notable reduction in both time and energy consumption from conventional extraction, while providing significant antioxidant activity and stability. Full article
Show Figures

Figure 1

20 pages, 2967 KB  
Article
Effect of Precipitated Extracellular Marennine on Angiogenesis and Tumour Cell Proliferation
by Mostefa Fodil, Javier Muñoz-Garcia, Amel-Khitem Benali, Jasmina Rogozarski, Virginie Mignon, Honora Labrana, Anna Lokajczyk, Pamela Pasetto, Jean-Luc Mouget, Catherine Boisson-Vidal and Dominique Heymann
Mar. Drugs 2025, 23(9), 364; https://doi.org/10.3390/md23090364 - 19 Sep 2025
Viewed by 269
Abstract
Angiogenesis is a fundamental biological process involved in the formation of new blood vessels from the pre-existing vascular network. In addition to physiological processes, angiogenesis is also implicated in pathological conditions such as tumour growth and metastatic progression. Research on marennine, a water-soluble [...] Read more.
Angiogenesis is a fundamental biological process involved in the formation of new blood vessels from the pre-existing vascular network. In addition to physiological processes, angiogenesis is also implicated in pathological conditions such as tumour growth and metastatic progression. Research on marennine, a water-soluble blue-green pigment produced by the marine diatom Haslea ostrearia, has highlighted various promising biological activities. In vivo studies have suggested the potential of marennine in cancer treatment. However, these studies were conducted with crude extracts, the exact composition of which remained poorly defined. In this context, our study aimed to explore the effects of marennine on angiogenesis and tumour proliferation by using a Precipitated Extracellular Marennine (PEMn) extract. Our results confirmed the antiproliferative properties of PEMn on several cancer cell lines associated with angiogenic tumours. We then analysed its impact on the key steps of the angiogenic process, including Endothelial Colony-Forming Cells (ECFCs) proliferation, migration, and tubulogenesis. In parallel, we investigated the underlying mechanisms of its action, notably by assessing its effects on cell cycle regulation, senescence, and apoptosis. PEMn significantly inhibited tumour cell proliferation, induced ECFC senescence and apoptosis, impaired migration and tubulogenesis, and downregulated VEGFR-1 expression, highlighting its potential as a novel marine-derived antiangiogenic compound. These findings provide deeper insights into the mechanisms of action of marennine, identifying this bioactive natural compound as a novel bioactive compound in cancer treatment. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Plankton)
Show Figures

Figure 1

63 pages, 828 KB  
Review
Extraction of Marine Bioactive Compounds from Seaweed: Coupling Environmental Concerns and High Yields
by Carlos Cardoso, Joana Matos and Cláudia Afonso
Mar. Drugs 2025, 23(9), 366; https://doi.org/10.3390/md23090366 - 19 Sep 2025
Viewed by 561
Abstract
This review examines recent advances in the extraction of valuable compounds from seaweed biomass, focusing on practical feasibility and environmental sustainability. There is a growing importance of seaweed biomass in terms of the study and acknowledgment of its untapped biotechnological potential (multiple compounds [...] Read more.
This review examines recent advances in the extraction of valuable compounds from seaweed biomass, focusing on practical feasibility and environmental sustainability. There is a growing importance of seaweed biomass in terms of the study and acknowledgment of its untapped biotechnological potential (multiple compounds and biological activities) and in terms of economic impact. Conventional extraction techniques largely fail to address this challenge, even if optimized. This has led to the development and testing of innovative technologies as solutions for a ‘green’ and effective extraction of components from seaweed biomass and to biorefinery processes. There are large differences in outcomes between alternative processes, depending on the matrix, operational parameters, and targeted compounds and activities. Despite the positive results of some techniques, such as those based on physical mechanisms, namely Microwave-Assisted Extraction (MAE) and Ultrasound-Assisted Extraction (UAE), and on enzymatic selectivity, i.e., Enzyme-Assisted Extraction (EAE), there is no universally effective technique and approach, thus justifying integrated approaches combining different techniques. The application of ‘green’ solvents was also assessed and proven to harbor a large potential, just as the wet route. Although technical difficulties, outcome variability, and economic viability problems are relevant, recent progress in seaweed processing paves the way for a future blue economy. Full article
Show Figures

Figure 1

22 pages, 696 KB  
Article
Application of Alkyl Polyglucosides as Components of the Extraction Medium in the Preparation of a Shampoo Cosmetic Formulation Containing Substances Isolated from Red Grape Pomace
by Tomasz Wasilewski, Zofia Hordyjewicz-Baran, Ewa Sabura, Katarzyna Malorna, Ewa Dresler, Maciej Zegarski and Natalia Stanek-Wandzel
Molecules 2025, 30(18), 3817; https://doi.org/10.3390/molecules30183817 - 19 Sep 2025
Viewed by 282
Abstract
This study highlights the use of alkyl polyglucosides (APGs) as sustainable and mild surfactants in cosmetic preparations, such as shampoos, following the principles of green chemistry and environmentally friendly development. APGs are non-ionic surfactants of plant origin. Their favorable dermatological and toxicological profile, [...] Read more.
This study highlights the use of alkyl polyglucosides (APGs) as sustainable and mild surfactants in cosmetic preparations, such as shampoos, following the principles of green chemistry and environmentally friendly development. APGs are non-ionic surfactants of plant origin. Their favorable dermatological and toxicological profile, as well as their high skin compatibility, make them an excellent alternative to conventional surfactants used in cosmetic products. To increase the sustainability and functionality of cosmetic preparations, the concept of loan extraction was applied, in which the extraction medium is borrowed from the final cosmetic formulation. After the extraction process, the medium enriched with the extracted compounds is returned to the cosmetic. The APGs, as part of cosmetic formulations, were used in the micellar extraction process of grape pomace, a by-product of wine production. The study evaluated the effect of different types of APGs—coco-glucoside and decyl glucoside—and their concentrations on extraction efficiency, measured by LC-MS/MS based on the content of phenolic compounds and amino acids, as well as the total phenolic content, total anthocyanin content and antioxidant activity assessed by UV-Vis spectroscopy. The designed extraction medium was then used to develop a shampoo, which showed a significantly lower zein value compared to the reference preparation without extract, indicating a reduced skin irritation potential. These results highlight the potential of APG in the development of milder, sustainable cosmetic products with the ability to extract bioactive components, supporting their use in the production of environmentally friendly cosmetics. Full article
Show Figures

Figure 1

Back to TopTop