Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = grinding force fluctuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10596 KB  
Article
Detection of Defects in Solid Carbide Cutting Tools During Creep-Feed Flute Grinding (CFG) Using Recurrence Analysis
by Marcin Sałata, Robert Babiarz and Krzysztof Kęcik
Materials 2025, 18(12), 2743; https://doi.org/10.3390/ma18122743 - 11 Jun 2025
Cited by 1 | Viewed by 544
Abstract
This study presents a comprehensive analysis of defect detection in the manufacturing process of solid carbide milling tools. The creep-feed flute grinding technique was used to fabricate a milling tool, with cutting force signals recorded and examined using recurrence analysis and conventional statistical [...] Read more.
This study presents a comprehensive analysis of defect detection in the manufacturing process of solid carbide milling tools. The creep-feed flute grinding technique was used to fabricate a milling tool, with cutting force signals recorded and examined using recurrence analysis and conventional statistical methods. The analysis identified four distinct dynamic fluctuations (cutting force amplitude jumps), which showed a direct correlation with the formation of microcracks on the flute surface. These jumps exhibited varying levels of reduction, ranging from 5% to 22% in amplitude. A detailed investigation, including recurrence plots and recurrence quantification analysis (RQA) with a moving-window approach, revealed that several recurrence indicators, such as the recurrence rate (RR), determinism (DET), and maximum diagonal line length (LMAX), were highly effective in detecting microcracks, as their values significantly deviated from the reference level. These results were compared with conventional statistical analysis, and interestingly, the recurrence methods demonstrated greater sensitivity, successfully detecting additional very small cutting force jumps that conventional statistical methods could not identify. Full article
(This article belongs to the Special Issue Advanced Materials Machining: Theory and Experiment)
Show Figures

Figure 1

17 pages, 12182 KB  
Article
A Robot Floating Grinding and Rust Removal Approach Based on Composite Force-Position Fuzzy Control
by Tao Li, Qun Sun, Chong Wang, Xiuhua Yuan and Kai Wang
Sensors 2025, 25(7), 2204; https://doi.org/10.3390/s25072204 - 31 Mar 2025
Viewed by 741
Abstract
The removal of rust from large equipment such as trains and ship hulls poses a significant challenge. Traditional methods, such as chemical cleaning, flame rust removal, and laser rust removal, suffer from drawbacks such as high energy consumption, operational complexity, and poor mobility. [...] Read more.
The removal of rust from large equipment such as trains and ship hulls poses a significant challenge. Traditional methods, such as chemical cleaning, flame rust removal, and laser rust removal, suffer from drawbacks such as high energy consumption, operational complexity, and poor mobility. Sandblasting and high-pressure water jet rust removal face issues such as high consumable costs and environmental pollution. Existing robotic grinding systems often rely on precise measurement of the workpiece surface geometry to perform deburring and polishing tasks; however, they lack the sufficient adaptability and robustness required for rust removal operations. To address these limitations, this study proposes a floating grinding actuator scheme based on compound force-position fuzzy control. By implementing simplified path-point planning, continuous grinding and rust removal can be achieved without requiring the pre-measurement of workpiece geometry data. This solution integrates force and laser displacement sensors to provide real-time compensation for path deviations and ensures adaptability to complex surfaces. A fuzzy derivative-leading PID algorithm was employed to control the grinding force, enabling adaptive force regulation and enhancing the control precision. Rust removal test results demonstrate that under varying advancing speeds, fuzzy derivative-leading PID control can significantly reduce fluctuations in both the grinding force and average error compared to traditional PID control. At a speed of 40 mm/s, excellent control performance was maintained, achieving a rust removal rate of 99.73%. This solution provides an efficient, environmentally friendly, and high-precision automated approach to rust removal using large-scale equipment. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

23 pages, 9073 KB  
Article
The Valorization of Fruit and Vegetable Wastes Using an Anaerobic Fixed Biofilm Reactor: A Case of Discarded Tomatoes from a Traditional Market
by Andrea Alvarado-Vallejo, Oscar Marín-Peña, Erik Samuel Rosas-Mendoza, Juan Manuel Méndez-Contreras and Alejandro Alvarado-Lassman
Processes 2024, 12(9), 1923; https://doi.org/10.3390/pr12091923 - 6 Sep 2024
Cited by 2 | Viewed by 2358
Abstract
Tomato waste, characterized by high organic matter and moisture content, offers a promising substrate for anaerobic digestion, though rapid acidification can inhibit methanogenic activity. This study investigated the performance of a 10.25 L anaerobic fixed biofilm reactor for biogas production using liquid tomato [...] Read more.
Tomato waste, characterized by high organic matter and moisture content, offers a promising substrate for anaerobic digestion, though rapid acidification can inhibit methanogenic activity. This study investigated the performance of a 10.25 L anaerobic fixed biofilm reactor for biogas production using liquid tomato waste, processed through grinding and filtration, at high organic loading rates, without external pH control or co-digestion. Four scouring pads were vertically installed as a fixed bed within a fiberglass structure. Reactor performance and buffering capacity were assessed over three stages with progressively increasing organic loading rates (3.2, 4.35, and 6.26 gCOD/L·d). Methane yields of 0.419 LCH4/gCOD and 0.563 LCH4/g VS were achieved during the kinetic study following stabilization. Biogas production rates reached 1586 mL/h, 1804 mL/h, and 4117 mL/h across the three stages, with methane contents of 69%, 65%, and 72.3%, respectively. Partial alkalinity fluctuated, starting above 1500 mg CaCO3/L in Stage 1, dropping below 500 mg CaCO3/L in Stage 2, and surpassing 3000 mg CaCO3/L in Stage 3. Despite periods of forced acidification, the system demonstrated significant resilience and high buffering capacity, maintaining stability through hydraulic retention time adjustments without the need for external pH regulation. The key stability indicators identified include partial alkalinity, effluent chemical oxygen demand, pH, and one-day cumulative biogas. This study highlights the effectiveness of anaerobic fixed biofilm reactors in treating tomato waste and similar fruit and vegetable residues for sustainable biogas production. Full article
(This article belongs to the Special Issue Biomass to Renewable Energy Processes, 2nd Edition)
Show Figures

Figure 1

19 pages, 5430 KB  
Article
Investigating the Influence of Medium Size and Ratio on Grinding Characteristics
by Xin Fang, Caibin Wu, Ningning Liao, Jiuxiang Zhong, Xuqian Duan, Shenglin Zhu, Aijun Liu and Ke Xiao
Minerals 2024, 14(9), 875; https://doi.org/10.3390/min14090875 - 27 Aug 2024
Cited by 3 | Viewed by 1189
Abstract
This study explores the effect of steel ball size and proportion on mineral grinding characteristics using Discrete Element Method (DEM) simulations. Based on batch grinding kinetics, this paper analyzes the contact behavior during grinding, discussing particle breakage conditions and critical breakage energy. The [...] Read more.
This study explores the effect of steel ball size and proportion on mineral grinding characteristics using Discrete Element Method (DEM) simulations. Based on batch grinding kinetics, this paper analyzes the contact behavior during grinding, discussing particle breakage conditions and critical breakage energy. The results indicate that while increasing the size of the steel balls leads to higher collision energy, the collision probability decreases significantly; the opposite is true for smaller steel balls. Simulation results with different ball size combinations show that increasing the proportion of smaller balls does not significantly change the collision energy but greatly increases the collision probability, providing a basis for optimizing ball size distribution to improve grinding performance. Furthermore, appropriately increasing the proportion of smaller balls can reduce fluctuations in grinding energy consumption, thereby enhancing collision energy and collision probability while reducing energy costs. Liner wear results demonstrate that larger ball sizes increase liner wear, but different ball size combinations can effectively distribute the forces on the liner, reducing wear. Full article
Show Figures

Figure 1

15 pages, 12051 KB  
Article
Investigation of Cutting Force and the Material Removal Mechanism in the Ultrasonic Vibration-Assisted Scratching of 2D-SiCf/SiC Composites
by Hao Lin, Ming Zhou, Haotao Wang and Sutong Bai
Micromachines 2023, 14(7), 1350; https://doi.org/10.3390/mi14071350 - 30 Jun 2023
Cited by 8 | Viewed by 2166
Abstract
Ultrasonic-assisted grinding (UAG) is widely used in the manufacture of hard and brittle materials. However, the process removal mechanism was never elucidated and its potential is yet to be fully exploited. In this paper, the mechanism of material removal is analyzed by ultrasonic-assisted [...] Read more.
Ultrasonic-assisted grinding (UAG) is widely used in the manufacture of hard and brittle materials. However, the process removal mechanism was never elucidated and its potential is yet to be fully exploited. In this paper, the mechanism of material removal is analyzed by ultrasonic-assisted scratching. Three distinct surfaces (S1, S2, and S3) were selected on the basis of the braided and laminated structure of fiber bundles. The ultrasonic-assisted scratching experiment is carried out under different conditions, and the scratching force (SF) of the tested surface will fluctuate periodically. Under the conditions of different feed speeds, depths, and ultrasonic amplitudes, the normal scratching force (SFn) is greater than the tangential scratching force (SFt), and the average scratching force on the three surfaces is generally S3 > S2 >S1. Among the three processing parameters, the speed has the most significant influence on the scratching force, while the scratching depth has little influence on the scratching force. Under the same conditions and surface cutting mode, the ultrasonic vibration-assisted scratching force is slightly lower than the conventional scratching force. The scratching force decreases first and then increases with the amplitude of ultrasonic vibration. Because the fiber undergoes a brittle fracture in the ultrasonic-assisted scratching process, the matrix is torn, and the surface residues are discharged in time; therefore, the surface roughness is improved. Full article
(This article belongs to the Special Issue Ultra-Precision Machining of Difficult-to-Machine Materials)
Show Figures

Figure 1

16 pages, 6739 KB  
Article
Experimental Study on the Influence of Wire-Saw Wear on Cutting Force and Silicon Wafer Surface
by Lie Liang, Shujuan Li, Kehao Lan, Ruijiang Yu, Jiabin Wang and Wen Zhao
Materials 2023, 16(10), 3619; https://doi.org/10.3390/ma16103619 - 9 May 2023
Cited by 11 | Viewed by 3441
Abstract
Hard and brittle materials such as monocrystalline silicon still occupy an important position in the semiconductor industry, but hard and brittle materials are difficult to process because of their physical properties. Fixed-diamond abrasive wire-saw cutting is the most widely used method for slicing [...] Read more.
Hard and brittle materials such as monocrystalline silicon still occupy an important position in the semiconductor industry, but hard and brittle materials are difficult to process because of their physical properties. Fixed-diamond abrasive wire-saw cutting is the most widely used method for slicing hard and brittle materials. The diamond abrasive particles on the wire saw wear to a certain extent, which affects the cutting force and wafer surface quality in the cutting process. In this experiment, keeping all the given parameters unchanged, a square silicon ingot is cut repeatedly with a consolidated diamond abrasive wire saw until the wire saw breaks. The experimental results show that the cutting force decreases with the increase in cutting times in the stable grinding stage. The wear of abrasive particles starts at the edges and corners, and the macro failure mode of the wire saw is fatigue fracture. The fluctuation of the wafer surface profile gradually decreases. The surface roughness of wafer is steady during the wear steady stage, and the large damage pits on the wafer surface are reduced in the whole process of cutting. Full article
Show Figures

Figure 1

12 pages, 3349 KB  
Article
Effect of Machining Trajectory on Grinding Force of Complex-Shaped Stone by Robotic Manipulator
by Fangchen Yin, Shatong Wu, Hui Huang, Changcai Cui and Qingzhi Ji
Machines 2022, 10(9), 787; https://doi.org/10.3390/machines10090787 - 8 Sep 2022
Cited by 3 | Viewed by 1997
Abstract
Complex-shaped stone products (CSSPs) have become stone products with high added economic value due to their complex overall shape, outline structure, and various curved surfaces. Recently, robotic manipulators—pieces of intelligent machining equipment—equipped with grinding end-effectors have significantly replaced handheld equipment and have also [...] Read more.
Complex-shaped stone products (CSSPs) have become stone products with high added economic value due to their complex overall shape, outline structure, and various curved surfaces. Recently, robotic manipulators—pieces of intelligent machining equipment—equipped with grinding end-effectors have significantly replaced handheld equipment and have also shown significant advantages in grinding efficiency and modeling flexibility. However, natural stone generally has the characteristics of poor craftsmanship and low rigidity. Improper control of the grinding force while grinding can easily cause the stone blank to break and scrap the workpiece. Therefore, in this study, we consider CSSPs and examine their surface curvature characteristics. The matching relationship between surface characteristics and machining trajectory is studied through simulation. Furthermore, the grinding force fluctuation in the finishing is optimized, and the optimal machining trajectory of the finishing process is determined to improve the surface profile error. Then, the simulation reliability is verified through experiments. The results show a 52.8% reduction in the grinding force fluctuation and a 36.9% reduction in the surface profile error after machining. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

23 pages, 8012 KB  
Article
Study on Nanoscale Friction Behavior of TiC/Ni Composites by Molecular Dynamics Simulations
by Min Zheng, Dingfeng Qu, Zongxiao Zhu, Weihua Chen, Zhou Zhang, Zhuo Wu, Linjun Wang and Xuezhong Ma
Coatings 2022, 12(8), 1168; https://doi.org/10.3390/coatings12081168 - 12 Aug 2022
Cited by 9 | Viewed by 2456
Abstract
To systematically investigate the friction and wear behavior of TiC/Ni composites under microscopic, the molecular dynamics (MD) method was used to simulate nano-friction on the TiC/Ni composite. Mechanical properties, abrasion depth, wear rates, temperature change of the material during friction, the microscopic deformation [...] Read more.
To systematically investigate the friction and wear behavior of TiC/Ni composites under microscopic, the molecular dynamics (MD) method was used to simulate nano-friction on the TiC/Ni composite. Mechanical properties, abrasion depth, wear rates, temperature change of the material during friction, the microscopic deformation behavior, and the evolution of nickel-based titanium carbide microstructure at high-speed friction have been systematically studied. It was found that the variation of tangential and normal forces is related to the relative position of the grinding ball and the TiC phase, when the grinding ball is located above the TiC phase, large fluctuations in the frictional force occur and extreme value of normal force appears, shallow abrasion depth and low wear rate. During the friction process, there is a high-stress area between the grinding ball and the TiC phase, generating a large number of dislocations. The presence of the TiC phase hinders the development and extension of defects, resulting in a significant increase in temperature. At the same time, dislocation entanglement occurs, which improves the wear resistance of the workpiece. In addition, it was also found that the internal atomic motion guided by the carbonized phase was related to the position of the grinding ball relative to the reinforced phase, with the reinforced phase presenting a tendency to rotate in different directions when the grinding ball was in different positions relative to the reinforced phase, which in turn affected the deformation of the whole workpiece. Full article
Show Figures

Figure 1

15 pages, 13724 KB  
Article
Comparative Characterization of Different Cutting Strategies for the Sintered ZnO Electroceramics
by Jaka Dugar, Awais Ikram and Franci Pušavec
Appl. Sci. 2021, 11(20), 9410; https://doi.org/10.3390/app11209410 - 11 Oct 2021
Cited by 2 | Viewed by 1690
Abstract
Sintered zinc oxide (ZnO) ceramic is a fragile and difficult-to-cut material, so finishing operations demand handling cautious and accurate surface tolerances by polishing, grinding, or machining. The conventional machining methods based on grinding and lapping offer limited productivity and high scalability; therefore, their [...] Read more.
Sintered zinc oxide (ZnO) ceramic is a fragile and difficult-to-cut material, so finishing operations demand handling cautious and accurate surface tolerances by polishing, grinding, or machining. The conventional machining methods based on grinding and lapping offer limited productivity and high scalability; therefore, their incapacity to prepare tight tolerances usually end up with uncontrolled edge chipping and rough surfaces in the final products. This study investigates microstructural features with surface roughness in a comparative mode for conventional milling and abrasive waterjet cutting (AWJ). Edge topography and roughness maps are presented in this study to weigh the benefits of AWJ cutting over the conventional material removal methods by altering the feed rates. The porosity analysis implies that the differences during the multi-channel processing of varistors, which tend to alter the microstructure, should in turn exhibit a different response during cutting. The surface roughness, edge contours, and porosity generation due to shear forces are interpreted with the help of 3D optical and electron microscopy. The results demonstrate that the surface microstructure can have a noteworthy impact on the machining/cutting characteristics and functionality, and in addition, mechanical properties of ZnO varistors can fluctuate with non-uniform microstructures. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

20 pages, 6980 KB  
Article
Model for Predicting the Micro-Grinding Force of K9 Glass Based on Material Removal Mechanisms
by Hisham Manea, Xiang Cheng, Siying Ling, Guangming Zheng, Yang Li and Xikun Gao
Micromachines 2020, 11(11), 969; https://doi.org/10.3390/mi11110969 - 29 Oct 2020
Cited by 6 | Viewed by 3327
Abstract
K9 optical glass has superb material properties used for various industrial applications. However, the high hardness and low fracture toughness greatly fluctuate the cutting force generated during the grinding process, which are the main factors affecting machining accuracy and surface integrity. With a [...] Read more.
K9 optical glass has superb material properties used for various industrial applications. However, the high hardness and low fracture toughness greatly fluctuate the cutting force generated during the grinding process, which are the main factors affecting machining accuracy and surface integrity. With a view to further understand the grinding mechanism of K9 glass and improve the machining quality, a new arithmetical force model and parameter optimization for grinding the K9 glass are introduced in this study. Originally, the grinding force components and the grinding path were analyzed according to the critical depth of plowing, rubbing, and brittle tear. Thereafter, the arithmetical model of grinding force was established based on the geometrical model of a single abrasive grain, taking into account the random distribution of grinding grains, and this fact was considered when establishing the number of active grains participating in cutting Nd-Tot. It should be noted that the tool diameter changed with machining, therefore this change was taking into account when building the arithmetical force model during processing as well as the variable value of the maximum chip thickness amax accordingly. Besides, the force analysis recommends how to control the processing parameters to achieve high surface and subsurface quality. Finally, the force model was evaluated by comparing theoretical results with experimental ones. The experimental values of surface grinding forces are in good conformity with the predicted results with changes in the grinding parameters, which proves that the mathematical model is reliable. Full article
Show Figures

Figure 1

26 pages, 12995 KB  
Article
An Adaptive Sliding-Mode Iterative Constant-force Control Method for Robotic Belt Grinding Based on a One-Dimensional Force Sensor
by Tie Zhang, Ye Yu and Yanbiao Zou
Sensors 2019, 19(7), 1635; https://doi.org/10.3390/s19071635 - 5 Apr 2019
Cited by 34 | Viewed by 5771
Abstract
To improve the processing quality and efficiency of robotic belt grinding, an adaptive sliding-mode iterative constant-force control method for a 6-DOF robotic belt grinding platform is proposed based on a one-dimension force sensor. In the investigation, first, the relationship between the normal and [...] Read more.
To improve the processing quality and efficiency of robotic belt grinding, an adaptive sliding-mode iterative constant-force control method for a 6-DOF robotic belt grinding platform is proposed based on a one-dimension force sensor. In the investigation, first, the relationship between the normal and the tangential forces of the grinding contact force is revealed, and a simplified grinding force mapping relationship is presented for the application to one-dimension force sensors. Next, the relationship between the deformation and the grinding depth during the grinding is discussed, and a deformation-based dynamic model describing robotic belt grinding is established. Then, aiming at an application scene of robot belt grinding, an adaptive iterative learning method is put forward, which is combined with sliding mode control to overcome the uncertainty of the grinding force and improve the stability of the control system. Finally, some experiments were carried out and the results show that, after ten times iterations, the grinding force fluctuation becomes less than 2N, the mean value, standard deviation and variance of the grinding force error’s absolute value all significantly decrease, and that the surface quality of the machined parts significantly improves. All these demonstrate that the proposed force control method is effective and that the proposed algorithm is fast in convergence and strong in adaptability. Full article
(This article belongs to the Collection Robotics, Sensors and Industry 4.0)
Show Figures

Figure 1

13 pages, 2370 KB  
Article
An Experimental Study on Mechanical Modeling of Ceramics Based on Microstructure
by Ya-Nan Zhang, Bin Lin, Jian-Jun Liu, Xiao-Fei Song and Jie Yang Key
Appl. Sci. 2015, 5(4), 1337-1349; https://doi.org/10.3390/app5041337 - 23 Nov 2015
Cited by 5 | Viewed by 5079
Abstract
The actual grinding result of ceramics has not been well predicted by the present mechanical models. No allowance is made for direct effects of materials microstructure and almost all the mechanical models were obtained based on crystalline ceramics. In order to improve the [...] Read more.
The actual grinding result of ceramics has not been well predicted by the present mechanical models. No allowance is made for direct effects of materials microstructure and almost all the mechanical models were obtained based on crystalline ceramics. In order to improve the mechanical models of ceramics, surface grinding experiments on crystalline ceramics and non-crystalline ceramics were conducted in this research. The normal and tangential grinding forces were measured to calculate single grit force and specific grinding energy. Grinding surfaces were observed. For crystalline alumina ceramics, the predictive modeling of normal force per grit fits well with the experimental result, when the maximum undeformed chip thickness is less than a critical depth, which turns out to be close to the grain size of alumina. Meanwhile, there is a negative correlation between the specific grinding energy and the maximum undeformed chip thickness. With the decreasing maximum undeformed chip thickness, the proportions of ductile removal and transgranular fracture increase. However, the grinding force models are not applicable for non-crystalline ceramic fused silica and the specific grinding energy fluctuates irregularly as a function of maximum undeformed chip thickness seen from the experiment. Full article
Show Figures

Figure 1

Back to TopTop