Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = habitat suitability index model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6204 KB  
Article
Bio-Ecological Indicators for Gentiana pneumonanthe L. Climatic Suitability in the Iberian Peninsula
by Teresa R. Freitas, Sílvia Martins, Joaquim Jesus, João Campos, António Fernandes, Christoph Menz, Ernestino Maravalhas, Helder Fraga and João A. Santos
Plants 2025, 14(18), 2857; https://doi.org/10.3390/plants14182857 - 12 Sep 2025
Viewed by 925
Abstract
Gentiana pneumonanthe L., a wetland specialist and exclusive host of the Alcon Blue (Phengaris alcon), is highly vulnerable to climate change. This study assessed the future climate suitability of the Iberian Peninsula (IP) for G. pneumonanthe. From 14 bioclimatic variables [...] Read more.
Gentiana pneumonanthe L., a wetland specialist and exclusive host of the Alcon Blue (Phengaris alcon), is highly vulnerable to climate change. This study assessed the future climate suitability of the Iberian Peninsula (IP) for G. pneumonanthe. From 14 bioclimatic variables (ISIMIP3b, processed by CHELSA method at 1 km2) and two topographic variables, four bio-ecological indicators were selected using Pearson correlation and Variance Inflation Factors: Thermicity Index, Ombrothermic Index, Accumulated summer precipitation from June to August, and Maximum of the daily maximum temperature of August. A species distribution model platform (Biomod2) was applied for historical (1995–2014) and future periods (2041–2060, 2081–2100) under two anthropogenic radiative forcing scenarios (SSP3-7.0, SSP5-8.5). The ensemble model created shows a strong predictive performance (BOYCE: 0.98). Historically, 13.4% of the IP was climatically suitable, mainly in mountain areas. Under SSP3-7.0, suitable areas are projected to decline by 74.2% (2041–2060) and 99.3% (2081–2100); under SSP5-8.5, by 75.5% and 99.9%, respectively. While small gains may occur in the Pyrenees, most conservation protected areas (Natura 2000, RAMSAR) may lose suitability for species persistence. Such losses could disrupt ecological ecosystems and directly threaten the survival of P. alcon. These findings highlight the urgent need for climate-informed land-use planning and effective habitat conservation. Full article
Show Figures

Figure 1

25 pages, 7157 KB  
Article
Climate Change Drives Northwestward Migration of Betula alnoides: A Multi-Scenario MaxEnt Modeling Approach
by Yangzhou Xiang, Qiong Yang, Suhang Li, Ying Liu, Yuan Li, Jun Ren, Jiaxin Yao, Xuqiang Luo, Yang Luo and Bin Yao
Plants 2025, 14(16), 2539; https://doi.org/10.3390/plants14162539 - 15 Aug 2025
Viewed by 483
Abstract
Climate change poses unprecedented challenges to forest ecosystems. Betula alnoides, a tree species with significant ecological and economic value in southern China, has been the subject of studies on its distribution pattern and response to climate change. However, research on the distribution [...] Read more.
Climate change poses unprecedented challenges to forest ecosystems. Betula alnoides, a tree species with significant ecological and economic value in southern China, has been the subject of studies on its distribution pattern and response to climate change. However, research on the distribution pattern of B. alnoides and its response to climate change remains relatively limited. In this study, we developed a MaxEnt model incorporating multiple environmental variables, including climate, topography, soil, vegetation, and human activities, to evaluate model performance, identify key factors influencing the distribution of B. alnoides, and project its potential distribution under various future climate scenarios. Species occurrence data and environmental layers were compiled for China, and model parameters were optimized using the ENMeval package. The results showed that the optimized model achieved an AUC value of 0.956, indicating extremely high predictive accuracy. The four key factors affecting the distribution of B. alnoides were standard deviation of temperature seasonality (Bio4), normalized difference vegetation index (NDVI), mean temperature of driest quarter (Bio9), and annual precipitation (Bio12). Among them, the cumulative contribution rate of climatic factors reached 68.9%, but the influence of NDVI was significantly higher than that of precipitation factors. The current suitable habitat of B. alnoides is mainly concentrated in the southwestern region, covering an area of 179.32 × 104 km2, which accounts for 18.68% of China’s land area. Under the SSP126 scenario, the suitable habitat area first decreases and then increases in the future, while under the SSP370 and SSP585 scenarios, the suitable habitat area continues to shrink, with significant losses in high-suitability areas. In addition, the centroid of the suitable habitat of B. alnoides shows an overall trend of shifting northwestward. This indicates that B. alnoides is highly sensitive to climate change and its distribution pattern will undergo significant changes in the future. In conclusion, the distribution pattern of B. alnoides shows a significant response to climate change, with particularly prominent losses in high-suitability areas in the future. Therefore, it is recommended to strengthen the protection of high-suitability areas in the southwestern region and consider B. alnoides as an alternative tree species for regions facing warming and drying trends to enhance its climate adaptability. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

18 pages, 3060 KB  
Article
Unveiling the Impact of Climatic Factors on the Distribution Patterns of Caragana spp. in China’s Three Northern Regions
by Weiwei Zhao, Yujia Liu, Yanxia Li, Chunjing Zou and Hideyuki Shimizu
Plants 2025, 14(15), 2368; https://doi.org/10.3390/plants14152368 - 1 Aug 2025
Viewed by 375
Abstract
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, [...] Read more.
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, and Northwest China), Caragana spp. exhibit distribution patterns whose regulatory mechanisms by environmental factors remain unclear, with a long-term lack of climatic explanations influencing their spatial distribution. This study integrated 2373 occurrence records of 44 Caragana species in China’s Three Northern Regions with four major environmental variable categories. Using the Biomod2 ensemble model, current and future climate scenario-based suitable habitats for Caragana spp. were predicted. This study innovatively combined quantitative analyses with Kira’s thermal indexes (warmth index, coldness index) and Wenduo Xu’s humidity index (HI) to elucidate species-specific relationships between distribution patterns and hydrothermal climatic constraints. The main results showed that (1) compared to other environmental factors, climate is the key factor affecting the distribution of Caragana spp. (2) The current distribution centroid of Caragana spp. is located in Alxa Left Banner, Inner Mongolia. In future scenarios, the majority of centroids will shift toward lower latitudes. (3) The suitable habitats for Caragana spp. will expand overall under future climate scenarios. High-stress scenarios exhibit greater spatial changes than low-stress scenarios. (4) Hydrothermal requirements varied significantly among species in China’s Three Northern Regions, and 44 Caragana species can be classified into five distinct types based on warmth index (WI) and humidity index (HI). The research findings will provide critical practical guidance for ecological initiatives such as the Three-North Shelterbelt Program and the restoration and management of degraded ecosystems in arid and semi-arid regions under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 5311 KB  
Article
Projected Distribution and Dispersal Patterns of Potential Distribution Fasciola hepatica and Its Key Intermediate Host Radix spp. in Qinghai-Tibet Plateau, China, Under Plateau Climatic Conditions
by Luyao Xu, Yunhai Guo, Zengkui Li, Mingjia Guo, Ming Kang, Daoxin Liu, Limin Yang, Zhongqiu Li, Panpan Wang, Wenhui Luo and Ying Li
Pathogens 2025, 14(7), 647; https://doi.org/10.3390/pathogens14070647 - 30 Jun 2025
Viewed by 381
Abstract
(1) Background: As a prominent zoonotic parasitic disease, fascioliasis threatens the sustainable development of animal husbandry and public health. Current research focuses mainly on individual species (parasite or intermediate host), neglecting systematic evaluation of the transmission chain and exposure risks to animal husbandry. [...] Read more.
(1) Background: As a prominent zoonotic parasitic disease, fascioliasis threatens the sustainable development of animal husbandry and public health. Current research focuses mainly on individual species (parasite or intermediate host), neglecting systematic evaluation of the transmission chain and exposure risks to animal husbandry. Thus, comprehensive studies are urgently needed, especially in the ecologically fragile alpine region of the Qinghai-Tibet Plateau; (2) Methods: Distribution data of Radix spp. and Fasciola hepatica in the Qinghai-Tibet Plateau and adjacent areas were gathered to establish a potential distribution model, which was overlaid on a map of livestock farming in the region; (3) Results: The key environmental factors influencing Radix spp. distribution were temperature seasonality (21.4%), elevation (16.4%), and mean temperature of the driest quarter (14.7%). For F. hepatica, the main factors were elevation (41.3%), human footprint index (30.5%), and Precipitation of the driest month (12.1%), with all AUC values exceeding 0.9. Both species exhibited extensive suitable habitats in Qinghai and Tibet, with higher F. hepatica transmission risk in Qinghai than Tibet; (4) Conclusions: The significant transmission risk and its impacts on the livestock industry in the Qinghai-Tibet Plateau highlight the need for proactive prevention and control measures. This study provides a scientific foundation for targeted alpine diseases control, establishes an interdisciplinary risk assessment framework, fills gaps in high-altitude eco-epidemiology, and offers insights for ecological conservation of the plateau. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

17 pages, 6644 KB  
Article
Habitat Suitability of the Common Leopard (Panthera pardus) in Azad Jammu and Kashmir, Pakistan: A Dual-Model Approach Using MaxEnt and Random Forest
by Zeenat Dildar, Wenjiang Huang, Raza Ahmed and Zeeshan Khalid
Environments 2025, 12(6), 203; https://doi.org/10.3390/environments12060203 - 14 Jun 2025
Viewed by 1459
Abstract
The common leopard (Panthera pardus) in Azad Jammu and Kashmir (AJ and K), Pakistan, is increasingly threatened by habitat fragmentation and climate change. This study employs a dual-model approach, integrating Maximum Entropy (MaxEnt) and Random Forest algorithms with multi-source remote sensing [...] Read more.
The common leopard (Panthera pardus) in Azad Jammu and Kashmir (AJ and K), Pakistan, is increasingly threatened by habitat fragmentation and climate change. This study employs a dual-model approach, integrating Maximum Entropy (MaxEnt) and Random Forest algorithms with multi-source remote sensing data to evaluate leopard habitat suitability. Our analysis identifies land cover (LC), fractional vegetation cover (FVC), elevation, temperature seasonality (bio4), and distance to roads (Dist_road) as the most influential habitat predictors. Leopards exhibit a strong preference for mixed forests at elevations between 1000 and 3000 m, with a suitability index of 0.83. The study identifies several unsuitable conditions including: road proximity (<0.08 km), low elevation zones (<1000 m), areas with high temperature seasonality (bio4 > 8 °C), and non-forested land cover types. MaxEnt demonstrated superior habitat prediction accuracy over Random Forest (AUC = 0.912 vs. 0.827). The results highlight a distinct north-to-south suitability gradient, with optimal habitats concentrated in the northern districts (Muzaffarabad, Hattian, Neelum, Bagh, Haveli, Poonch, Sudhnutti) and declining suitability in human-dominated southern areas. Based on these findings, this study underscores the urgency of targeted conservation efforts in the northern districts of AJ and K, where optimal leopard habitats are identified. The findings emphasize the need for habitat connectivity and protection measures to mitigate the impacts of habitat fragmentation and climate change. Future conservation strategies should prioritize the preservation of mixed forests and the establishment of buffer zones around roads to ensure the long-term survival of the common leopard in this region. Full article
Show Figures

Figure 1

18 pages, 6512 KB  
Article
Assessing Habitat Suitability and Overlap for South China Sika Deer and Sympatric Ungulates
by Jing Zhang, Yankuo Li, Zhaoyang Wang, Guangyao Wang, Shizhao He, Yu Zheng and Chunlin Li
Ecologies 2025, 6(2), 41; https://doi.org/10.3390/ecologies6020041 - 3 Jun 2025
Viewed by 852
Abstract
Identifying suitable habitats and quantifying the spatial overlap among sympatrically distributed ungulates is essential for safeguarding their long-term survival. We deployed infrared cameras to capture the distribution sites of sika deer (Cervus nippon), Reeve’s muntjac (Muntiacus reevesi), and wild [...] Read more.
Identifying suitable habitats and quantifying the spatial overlap among sympatrically distributed ungulates is essential for safeguarding their long-term survival. We deployed infrared cameras to capture the distribution sites of sika deer (Cervus nippon), Reeve’s muntjac (Muntiacus reevesi), and wild boar (Sus scrofa) in the Taohongling Sika Deer National Nature Reserve (TNNR) and measured nine environmental factors. Based on this, we applied MaxEnt modeling to assess the species’ habitat suitability and applied the Pianka index to evaluate niche overlap. The results showed that the sika deer occupied the smallest area of high-suitability habitat (53.85 km2, 11.13% of the study area), primarily concentrated in the core zone of the TNNR. Specifically, 37.86% of the sika deer’s high-suitability habitat overlapped with wild boar and 29.06% overlapped with Reeve’s muntjac. Pianka index analysis revealed substantial spatial niche overlap between sika deer and Reeve’s muntjac (0.487) but limited overlap between sika deer and wild boar (0.160). Our findings indicate substantial overlap between sika deer and sympatric species. To effectively protect the sika deer in the TNNR, we recommend increasing the number of monitoring sites, implementing habitat improvement measures (e.g., vegetation restoration and water supplementation stations), and establishing isolation corridors to enhance habitat connectivity. Full article
Show Figures

Figure 1

22 pages, 6009 KB  
Article
Spatio-Temporal Projections of the Distribution of the Canopy-Forming Algae Sargassum in the Western North Pacific Under Climate Change Scenarios Using the MAXENT Model
by Sun Kyeong Choi, Young Baek Son, Hyun Woo Jeong, Seonggil Go and Sang Rul Park
Biology 2025, 14(6), 590; https://doi.org/10.3390/biology14060590 - 22 May 2025
Viewed by 850
Abstract
Canopy-forming algae play an important role in coastal ecosystems because these species are highly productive and provide habitats and shelter for numerous marine organisms. Sargassum is the main genus of canopy-forming algae in the western North Pacific, but despite the importance of their [...] Read more.
Canopy-forming algae play an important role in coastal ecosystems because these species are highly productive and provide habitats and shelter for numerous marine organisms. Sargassum is the main genus of canopy-forming algae in the western North Pacific, but despite the importance of their ecological role, studies on the changes in their distribution are still scarce. Based on the present distribution of four Sargassum species, this study predicted the geographic distribution of future habitats (2030s, 2060s, and 2090s) under three Shared Socioeconomic Pathway (SSP) scenarios. The environmental variables predicted from the sixth phase of the coupled model intercomparison project (CMIP6) had different impacts depending on the species, with current velocity and water temperature showing high contributions in all four species. According to the projections, three Sargassum species (S. horneri, S. macrocarpum, and S. patens) are expected to maintain a higher habitat suitability index (HSI) and suitable habitat (MAXENT ≥ 0.4) through the 2090s under the SSP1-1.9 scenario. However, under the SSP2-4.5 and SSP5-8.5 scenarios, the HSI of the species is projected to gradually decrease in the southern coastal waters of the Korean peninsula and increase in the East Sea (North Korea), with these results intensifying under the SSP5-8.5 scenario. On the other hand, S. piluliferum was found to increase its HSI and habitat under the highest emission scenarios. All Sargassum species are predicted to shift northward from 0.8° N to 3.8° N by the 2090s under the SSP5-8.5 scenario. Although many marine protected areas exist off the coasts of South Korea and Japan, suitable Sargassum habitats were found to be located within protected reserves between 47.1% and 61.2%, depending on the scenario. These findings on Sargassum provide distributional predictions for ecological conservation strategies and provide new evidence for the need for climate change efforts. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Figure 1

15 pages, 1752 KB  
Article
Suitability Evaluation of the Water Environment for Seagrass Growth Areas in the Changshan Archipelago
by Yanzhen Song, Yanzhao Fu, Jun Song, Jun Yang, Yahe Wang, Wei Hu and Junru Guo
Sustainability 2025, 17(10), 4645; https://doi.org/10.3390/su17104645 - 19 May 2025
Viewed by 759
Abstract
Seagrass beds provide essential ecosystem services, such as habitat for marine life, water quality purification, carbon sequestration, and climate regulation. For the Changshan Archipelago, which relies heavily on marine resources, the growth and development of seagrass beds are key factors affecting aquaculture. This [...] Read more.
Seagrass beds provide essential ecosystem services, such as habitat for marine life, water quality purification, carbon sequestration, and climate regulation. For the Changshan Archipelago, which relies heavily on marine resources, the growth and development of seagrass beds are key factors affecting aquaculture. This study is based on data collected from a survey conducted in the nearshore waters of the Changshan Archipelago in August 2022, encompassing seagrass distribution and water sample data. The water samples were analyzed for various parameters, including salinity, suspended solids, pH, dissolved oxygen, sea temperature, nitrite-nitrogen, nitrate-nitrogen, and ammonia-nitrogen concentrations. A habitat suitability assessment of the seagrass beds in the Changshan Archipelago was conducted. The study calculated the suitability index for each environmental variable based on the abundance index, and then established a Habitat Suitability Index model using a weighted allocation method. The results indicate that the seagrass bed area in the study region is primarily composed of excellent and suitable habitats. The concentration of inorganic nutrients is a key factor influencing seagrass growth. The HSI model not only identifies the hierarchical distribution of habitats in seagrass areas, but also detects potential suitable habitats for seagrass. This provides scientific reference for future seagrass bed resource protection and artificial cultivation efforts. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Edition)
Show Figures

Figure 1

16 pages, 9107 KB  
Article
Future Climate Predicts Range Shifts and Increased Global Habitat Suitability for 29 Aedes Mosquito Species
by Xueyou Zhang, Hongyan Mei, Peixiao Nie, Xiaokang Hu and Jianmeng Feng
Insects 2025, 16(5), 476; https://doi.org/10.3390/insects16050476 - 30 Apr 2025
Cited by 2 | Viewed by 1880
Abstract
Aedes mosquitoes (Diptera, Culicidae) are the major vectors for many mosquito-borne diseases. Here, we retrieved 878,954 global occurrences of 29 Aedes mosquito species and 30 candidate predictors at a global scale. We created a unified frame and built 29 multi-algorithm species distribution models [...] Read more.
Aedes mosquitoes (Diptera, Culicidae) are the major vectors for many mosquito-borne diseases. Here, we retrieved 878,954 global occurrences of 29 Aedes mosquito species and 30 candidate predictors at a global scale. We created a unified frame and built 29 multi-algorithm species distribution models to project the ranges and overlapped them to examine the range-overlap hotspots under future scenarios. We detected expanded ranges in most Aedes mosquito species, and a substantial increase in the index of habitat suitability overlap was detected in more than 70% of the global terrestrial area, particularly in Europe, North America, and Africa. We also identified extensive range overlap, which increased in future scenarios. Climatic factors had a more significant influence on range dynamics than other variables. The expanded ranges of most Aedes mosquito species and the substantial increase in the overlap index of habitat suitability in most regions suggest globally increasing threats of Aedes-borne epidemic transmission. Thus, much stricter strategies must be implemented, particularly in Europe, North America, and Africa. As climate change increases habitat suitability and expands ranges in most Aedes mosquito species, mitigating future climate change will be a key approach to combatting their impacts. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

28 pages, 2526 KB  
Article
Baselining Urban Ecosystems from Sentinel Species: Fitness, Flows, and Sinks
by Matteo Convertino, Yuhan Wu and Hui Dong
Entropy 2025, 27(5), 486; https://doi.org/10.3390/e27050486 - 30 Apr 2025
Cited by 2 | Viewed by 756
Abstract
How can the shape of biodiversity inform us about cities’ ecoclimatic fitness and guide their development? Can we use species as the harbingers of climatic extremes? Eco-climatically sensitive species carry information about hydroclimatic change in their distribution, fitness, and preferential gradients of habitat [...] Read more.
How can the shape of biodiversity inform us about cities’ ecoclimatic fitness and guide their development? Can we use species as the harbingers of climatic extremes? Eco-climatically sensitive species carry information about hydroclimatic change in their distribution, fitness, and preferential gradients of habitat suitability. Conversely, environmental features outside of the species’ fitness convey information on potential ecological anomalies in response to extremes to adapt or mitigate, such as through urban parks. Here, to quantify ecosystems’ fitness, we propose a novel computational model to extract multivariate functional ecological networks and their basins, which carry the distributed signature of the compounding hydroclimatic pressures on sentinel species. Specifically, we consider butterflies and their habitat suitability (HS) to infer maximum suitability gradients that are meaningful of potential species networks and flows, with the smallest hydroclimatic resistance across urban landscapes. These flows are compared to the distribution of urban parks to identify parks’ ecological attractiveness, actual and potential connectivity, and park potential to reduce hydroclimatic impacts. The ecosystem fitness index (EFI) is novelly introduced by combining HS and the divergence of the relative species abundance (RSA) from the optimal log-normal Preston plot. In Shenzhen, as a case study, eco-flow networks are found to be spatially very extended, scale-free, and clustering for low HS gradient and EFI areas, where large water bodies act as sources of ecological corridors draining into urban parks. Conversely, parks with higher HS, HS gradients, and EFIs have small-world connectivity non-overlapping with hydrological networks. Diverging patterns of abundance and richness are inferred as increasing and decreasing with HS. HS is largely determined by temperature and precipitation of the coldest quarter and seasonality, which are critical hydrologic variables. Interestingly, a U-shape pattern is found between abundance and diversity, similar to the one in natural ecosystems. Additionally, both abundance and richness are mildly associated with park area according to a power function, unrelated to longitude but linked to the degree of urbanization or park centrality, counterintuitively. The Preston plot’s richness–abundance and abundance-rank patterns were verified to reflect the stationarity or ecological meta-equilibrium with the environment, where both are a reflection of community connectivity. Ecological fitness is grounded on the ecohydrological structure and flows where maximum HS gradients are indicative of the largest eco-changes like climate-driven species flows. These flows, as distributed stress-response functions, inform about the collective eco-fitness of communities, like parks in cities. Flow-based networks can serve as blueprints for designing ecotones that regulate key ecosystem functions, such as temperature and evapotranspiration, while generating cascading ecological benefits across scales. The proposed model, novelly infers HS eco-networks and calculates the EFI, is adaptable to diverse sensitive species and environmental layers, offering a robust tool for precise ecosystem assessment and design. Full article
Show Figures

Graphical abstract

17 pages, 4470 KB  
Article
Habitat Suitability and Enhancement Strategies for Waterbirds in Fishing Withdrawal Zones: An Evidence-Based Assessment
by Yiping Zuo, Yuxing Wei, Yufeng Li, Jingjing Ding, Yixin Zhao, Zhenmei Zhao, Yanan Zhang, Zaifeng Wang and Hai Cheng
Land 2025, 14(4), 870; https://doi.org/10.3390/land14040870 - 15 Apr 2025
Viewed by 651
Abstract
The Yancheng coastal wetlands serve as a crucial stopover site along the East Asian–Australasian Flyway. The rapid expansion of aquaculture has led to a significant decline in natural wetlands, impacting both the distribution and quality of waterbird habitats. Following the designation of the [...] Read more.
The Yancheng coastal wetlands serve as a crucial stopover site along the East Asian–Australasian Flyway. The rapid expansion of aquaculture has led to a significant decline in natural wetlands, impacting both the distribution and quality of waterbird habitats. Following the designation of the region as a World Natural Heritage site in 2019, the local government has prioritized the protection of waterbird habitats, leading to the large-scale withdrawal of aquaculture from the region. Nevertheless, the impact of the fishing withdrawal on waterbird habitat selection and the ecological benefits it brought remain unknown. In this study, based on the identification of fishing withdrawal zones in the Yancheng coastal area, six waterbird groups, Anatidae, Ardeidae, Charadriiformes, Laridae, Gruidae and Ciconiidae, were selected to construct an evaluation index system for habitat suitability. The Biomod2 ensemble model was employed to analyze the spatial differences of suitable habitats for waterbirds within the fishing withdrawal zones. The result revealed the following: (1) As of 2022, the area of fishing withdrawal zones had reached 2.23 × 104 ha, primarily distributed in Beihuan and Nanhuan. Among these, the area of fishing withdrawal zones in Nanhuan was the largest, reaching 6.78 × 103 ha. (2) Unsuitable area for waterbirds was largest in the fishing withdrawal zones, with a proportion of 60% and 58% for Gruidae and Ciconiidae, respectively. (3) The rich nutrients, high coverage and tall stature of emergent vegetation in the fishing withdrawal zones led to a reduction in water surface area, resulting in significant adverse effects on the suitable habitats for Charadriiformes and Gruidae. Therefore, the results suggest that most areas after fishing withdrawal were still not suitable habitats for waterbirds. The implementation of scientific fishing withdrawal practices, along with ecological restoration and management, is crucial for improving the habitat suitability in fishing withdrawal zones. This study provides valuable insights for more purposeful selection of fishing withdrawal sites, and more scientific management and restoration of these areas to enhance their ecological benefits. Full article
(This article belongs to the Special Issue Ecosystem and Biodiversity Conservation in Protected Areas)
Show Figures

Figure 1

18 pages, 2389 KB  
Article
Modeling Spawning Habitats of Coreius guichenoti with Substrate Considerations: A Case Study of Pingdi Town in the Lower Jinsha River
by Wenchao Li, Dong Chen, Lekui Zhu, Tong Liu, Hanyue Wang, Litao Zhang, Rui Han, Zhi Yang, Jun Yan, Hongyi Yang, Anan Guo and Lei Liu
Animals 2025, 15(6), 881; https://doi.org/10.3390/ani15060881 - 19 Mar 2025
Cited by 1 | Viewed by 495
Abstract
Coreius guichenoti, once widely distributed in the upper reaches of the Jinsha River, has become a nationally protected species in China due to the profound impacts of cascade reservoirs. To assess the influence of substrate on the suitability of spawning habitat for [...] Read more.
Coreius guichenoti, once widely distributed in the upper reaches of the Jinsha River, has become a nationally protected species in China due to the profound impacts of cascade reservoirs. To assess the influence of substrate on the suitability of spawning habitat for C. guichenoti, this study develops a substrate-inclusive habitat model using fuzzy logic based on expert knowledge. Taking the Pingdi Town section of the lower Jinsha River—a historical spawning site for C. guichenoti—as a case study from March to July 2020, we simulated changes in the spawning habitat suitability index (HSI) and compared the results with those from traditional models that exclude substrate factors. The results showed that in the first and second halves of May, Weighted Usable Area (WUA) and Overall Suitability Index (OSI) increased by 42.31% and 38.73%, respectively, while MSP exhibited dramatic increases of 236.04% and 614.56%. These improvements were primarily observed along the riverbanks, where HSI increased by approximately 0.25. From a management perspective, the HSI results provide a scientific basis for optimizing ecological flow regulation. Incorporating substrate factors into spawning habitat models offers a more objective and comprehensive assessment of habitat quality. Habitat restoration measures, such as targeted substrate improvement in key riverbank areas, may further increase habitat suitability, providing additional opportunities for conservation planning in regulated rivers. Full article
Show Figures

Figure 1

16 pages, 3756 KB  
Article
Potential of Fish Habitat Resilience Under Hydrodynamic Regulation of a Plain Urban River Network in Shanghai City, China
by Jin Zhang, Tingting Luan, Xiaoyun Wang, Chen Xie, Bin Ji, Dexin Sun, Guanghui Sun and Qitao Yi
Water 2025, 17(6), 817; https://doi.org/10.3390/w17060817 - 12 Mar 2025
Viewed by 845
Abstract
Cities in plain areas have small slopes at the bottoms of rivers, with weak hydrodynamics, heavy pollution and poor self-purification capacities for the restoration of biological habitats. Hydrodynamic and water quality improvements are effective means for the ecological restoration of plain urban rivers. [...] Read more.
Cities in plain areas have small slopes at the bottoms of rivers, with weak hydrodynamics, heavy pollution and poor self-purification capacities for the restoration of biological habitats. Hydrodynamic and water quality improvements are effective means for the ecological restoration of plain urban rivers. The potential for fish habitat resilience in a typical urban river network plain (more than 130 river sections) in the Dianbei part of China was studied. The tolerant fish, Carassius auratus (C. auratus), and the sensitive fishes Trachidermus fasciatus (T. fasciatus) and Anguilla japonica (A. japonica), were selected as the protection targets, and hydrodynamic factors, river morphology and water quality factors were chosen as environmental indicators. With the fish habitat suitability index, a fish habitat resilience potential evaluation model was established. The response of the habitat resilience potential index (HRPI) to hydrodynamic regulation was subsequently analyzed, and the HRPI indicated an increased habitat resilience potential with its value increasing from 0 to 1. Overall, the resilience potential of tolerant fish species was greater than that of sensitive species in the Dianbei. For the HRPI of C. auratus adults (tolerant species), approximately 62.8% of the river sections were above 0.6 (high resilience level) and were concentrated in the northwest area of the river network. While for the resilience potential of A. japonica adults and T. fasciatus adults (sensitive species), only 60% of the river sections exhibited moderate resilience level (HRPI > 0.5). The average dimensionless habitat resilience potential index (AHRPI) was enhanced by water diversion with its values increased by 10.3%, 9.3% and 12.7% for C. auratus adults, T. fasciatus adults and A. japonica adults, respectively. The habitat resilience potential of C. auratus changed little during the spawning period, which indicated that the effect of hydrodynamic regulation was limited. This study provides a scientific basis for managers to restore urban river network habitats in plain areas. Full article
Show Figures

Figure 1

29 pages, 7399 KB  
Article
Informal Settlements Extraction and Fuzzy Comprehensive Evaluation of Habitat Environment Quality Based on Multi-Source Data
by Zanxian Yang, Fei Yang, Yuanjing Xiang, Haiyi Yang, Chunnuan Deng, Liang Hong and Zhongchang Sun
Land 2025, 14(3), 556; https://doi.org/10.3390/land14030556 - 6 Mar 2025
Viewed by 1969
Abstract
The United Nations Sustainable Development Goal (SDG) 11.1 emphasizes improving well-being, ensuring housing security, and promoting social equity. Informal settlements, one of the most vulnerable groups, require significant attention due to their dynamic changes and habitat quality. These areas limit the ability to [...] Read more.
The United Nations Sustainable Development Goal (SDG) 11.1 emphasizes improving well-being, ensuring housing security, and promoting social equity. Informal settlements, one of the most vulnerable groups, require significant attention due to their dynamic changes and habitat quality. These areas limit the ability to comprehensively capture spatial heterogeneity and dynamic shifts in regional sustainable development. This study proposes an integrated approach using multi-source remote sensing data to extract the spatial distribution of informal settlements in Mumbai and assess their habitat environment quality. Specifically, seasonal spectral indices and texture features were constructed using Sentinel and SAR data, combined with the mean decrease impurity (MDI) indicator and hierarchical clustering to optimize feature selection, ultimately using a random forest (RF) model to extract the spatial distribution of informal settlements in Mumbai. Additionally, an innovative habitat environment index was developed through a Gaussian fuzzy evaluation model based on entropy weighting, providing a more robust assessment of habitat quality for informal settlements. The study demonstrates that: (1) texture features from the gray level co-occurrence matrix (GLCM) significantly improved the classification of informal settlements, with the random forest classification model achieving a kappa coefficient above 0.77, an overall accuracy exceeding 0.89, and F1 scores above 0.90; (2) informal settlements exhibited two primary development patterns: gradual expansion near formal residential areas and dependence on natural resources such as farmland, forests, and water bodies; (3) economic vitality emerged as a critical factor in improving the living environment, while social, natural, and residential conditions remained relatively stable; (4) the proportion of highly suitable and moderately suitable areas increased from 65.62% to 65.92%, although the overall improvement in informal settlements remained slow. This study highlights the novel integration of multi-source remote sensing data with machine learning for precise spatial extraction and comprehensive habitat quality assessment, providing valuable insights into urban planning and sustainable development strategies. Full article
Show Figures

Figure 1

19 pages, 14460 KB  
Article
Temporal and Spatial Dynamics of Rodent Species Habitats in the Ordos Desert Steppe, China
by Rui Hua, Qin Su, Jinfu Fan, Liqing Wang, Linbo Xu, Yuchuang Hui, Miaomiao Huang, Bobo Du, Yanjun Tian, Yuheng Zhao and Manduriwa
Animals 2025, 15(5), 721; https://doi.org/10.3390/ani15050721 - 3 Mar 2025
Viewed by 970
Abstract
Climate change is driving the restructuring of global biological communities. As a species sensitive to climate change, studying the response of small rodents to climate change is helpful to indirectly understand the changes in ecology and biodiversity in a certain region. Here, we [...] Read more.
Climate change is driving the restructuring of global biological communities. As a species sensitive to climate change, studying the response of small rodents to climate change is helpful to indirectly understand the changes in ecology and biodiversity in a certain region. Here, we use the MaxEnt (maximum entropy) model to predict the distribution patterns, main influencing factors, and range changes of various small rodents in the Ordos desert steppe in China under different climate change scenarios in the future (2050s: average for 2041–2060). The results show that when the parameters are FC = LQHPT, and RM = 4, the MaxEnt model is optimal and AUC = 0.833. We found that NDVI (normalized difference vegetation index), Bio 12 (annual precipitation), and TOC (total organic carbon) are important driving factors affecting the suitability of the small rodent habitat distribution in the region. At the same time, the main influencing factors were also different for different rodent species. We selected 4 dominant species for analysis and found that, under the situation of future climate warming, the high-suitability habitat area of Allactaga sibirica and Phodopus roborovskii will decrease, while that of Meriones meridianus and Meriones unguiculatus will increase. Our research results suggest that local governments should take early preventive measures, strengthen species protection, and respond to ecological challenges brought about by climate change promptly. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

Back to TopTop