Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (497)

Search Parameters:
Keywords = hardware in the loop (HIL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 9119 KB  
Article
ProVANT Simulator: A Virtual Unmanned Aerial Vehicle Platform for Control System Development
by Junio E. Morais, Daniel N. Cardoso, Brenner S. Rego, Richard Andrade, Iuro B. P. Nascimento, Jean C. Pereira, Jonatan M. Campos, Davi F. Santiago, Marcelo A. Santos, Leandro B. Becker, Sergio Esteban and Guilherme V. Raffo
Aerospace 2025, 12(9), 762; https://doi.org/10.3390/aerospace12090762 (registering DOI) - 25 Aug 2025
Abstract
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. [...] Read more.
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. Addressing key challenges such as modeling complex multi-body dynamics, simulating disturbances, and supporting real-time implementation, the framework features a modular architecture, an intuitive graphical interface, and versatile capabilities for modeling, control, and hardware validation. Case studies demonstrate its effectiveness across various UAV configurations, including quadrotors, tilt-rotors, and unmanned aerial manipulators, highlighting its applications in aggressive maneuvers, load transportation, and trajectory tracking under disturbances. Serving both academic research and industrial development, the ProVANT Simulator reduces prototyping costs, development time, and associated risks. Full article
23 pages, 12472 KB  
Article
Fixed-Time Active Disturbance Rejection Temperature–Pressure Decoupling Control for a High-Flow Air Intake System
by Louyue Zhang, Hehong Zhang, Duoqi Shi, Zhihong Dan, Xi Wang, Chao Zhai, Gaoxi Xiao and Zhouzhe Xu
Entropy 2025, 27(8), 880; https://doi.org/10.3390/e27080880 - 20 Aug 2025
Viewed by 145
Abstract
High-flow aeroengine transient tests involve strong coupling and external disturbances, which pose significant challenges for intake environment simulation systems (IESSs). This study proposes a compound control scheme that combines fixed-time active disturbance rejection with static decoupling methods. The scheme integrates a fixed-time sliding-mode [...] Read more.
High-flow aeroengine transient tests involve strong coupling and external disturbances, which pose significant challenges for intake environment simulation systems (IESSs). This study proposes a compound control scheme that combines fixed-time active disturbance rejection with static decoupling methods. The scheme integrates a fixed-time sliding-mode controller (FT-SMC) and a super-twisting fixed-time extended-state observer (ST-FT-ESO). A decoupling transformation separates pressure and temperature dynamics into two independent loops. The observer estimates system states and total disturbances, including residual coupling, while the controller ensures fixed-time convergence. The method is deployed on a real-time programmable logic controller (PLC) and validated through hardware-in-the-loop (HIL) simulations under representative high-flow scenarios. Compared to conventional linear active disturbance rejection decoupling control (LADRDC), the proposed scheme reduces the absolute integral error (AIE) in pressure and temperature tracking by 71.9% and 77.9%, respectively, and reduces the mean-squared error (MSE) by 46.0% and 41.3%. The settling time improves from over 5 s to under 2 s. These results demonstrate improved tracking accuracy, faster convergence, and enhanced robustness against disturbances. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

27 pages, 2338 KB  
Review
A Review of Software and Hardware Tools for Microgrid Protection Testbeds
by Majid Arabahmadi, Saeed Sanati, Innocent Kamwa and Himanshu Grover
Energies 2025, 18(16), 4417; https://doi.org/10.3390/en18164417 - 19 Aug 2025
Viewed by 251
Abstract
This paper provides a comprehensive review of the various software and hardware tools used in microgrid protection studies, including experimental setup requirements. While these tools have broad applications in power system research, this review specifically focuses on their utilization in microgrid protection, encompassing [...] Read more.
This paper provides a comprehensive review of the various software and hardware tools used in microgrid protection studies, including experimental setup requirements. While these tools have broad applications in power system research, this review specifically focuses on their utilization in microgrid protection, encompassing aspects, such as design, testing, simulation, analysis, and evaluation. The paper covers a wide range of tools, including protection simulation software and hardware components. Each category of tools is meticulously analyzed for its unique contribution to microgrid protection, highlighting their capabilities in different scenarios ranging from simulation features to hardware-in-the-loop (HIL) capabilities. This review aims to serve as a comprehensive guide for professionals and researchers in microgrid protection, providing insights into the selection and application of design and research tools based on their case studies. Full article
(This article belongs to the Special Issue Studies of Microgrids for Electrified Transportation)
Show Figures

Figure 1

20 pages, 3278 KB  
Article
Design and Implementation Process of an Intelligent Automotive Chassis Domain Controller System Based on AUTOSAR
by Yanlin Jin, Yinong Li, Ling Zheng, Guangxuan Li and Xiaoyu Huang
Sensors 2025, 25(16), 5056; https://doi.org/10.3390/s25165056 - 14 Aug 2025
Viewed by 329
Abstract
With the rapid development of intelligent automobiles, the chassis serves as an essential carrier of intelligence and a necessary condition for achieving high-level autonomous driving. Its electronic and electrical architecture is evolving toward centralized development, which is also significantly increasing the complexity of [...] Read more.
With the rapid development of intelligent automobiles, the chassis serves as an essential carrier of intelligence and a necessary condition for achieving high-level autonomous driving. Its electronic and electrical architecture is evolving toward centralized development, which is also significantly increasing the complexity of system functions. Meanwhile, with the integration of more sensors and an increase in data volume, stricter requirements have been placed on software scalability, portability, and maintainability. This paper presents a system software design and implementation approach for the chassis domain controller by integrating the AUTOSAR standard with model-based design (MBD). The developed software is subsequently deployed on a domain controller hardware platform based on the Renesas u2a16 chip for integrated testing. The software algorithm development, model-in-the-loop (MIL) testing, hardware-in-the-loop (HIL) testing, and real vehicle calibration processes are described in detail, focusing on the roll stability control software component in the chassis domain controller. A detailed definition of the toolchain for each development stage is also provided. The feasibility and effectiveness of the proposed chassis domain controller software system development process, based on the combination of the AUTOSAR standard and model-based design, are validated through test results. This method effectively achieves software–hardware decoupling and enhances software scalability, module reusability, and reliability, which is of great significance for improving the efficiency and iteration of chassis domain controller development. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

46 pages, 12610 KB  
Article
Performance Assessment of Current Feedback-Based Active Damping Techniques for Three-Phase Grid-Connected VSCs with LCL Filters
by Mustafa Ali, Abdullah Ali Alhussainy, Fahd Hariri, Sultan Alghamdi and Yusuf A. Alturki
Mathematics 2025, 13(16), 2592; https://doi.org/10.3390/math13162592 - 13 Aug 2025
Viewed by 412
Abstract
The voltage source converters convert the DC to AC in order to interface distributed generation units with the utility grid, typically using an LCL filter to smooth the modulated wave. However, the LCL filter can introduce resonance, potentially cause instability, and necessitate the [...] Read more.
The voltage source converters convert the DC to AC in order to interface distributed generation units with the utility grid, typically using an LCL filter to smooth the modulated wave. However, the LCL filter can introduce resonance, potentially cause instability, and necessitate the use of damping techniques, such as active damping, which utilizes feedback from the current control loop to suppress resonance. This paper presents a comprehensive performance assessment of four current-feedback-based active damping (AD) techniques—converter current feedback (CCF), CCF with capacitor current feedback (CCFAD), grid current feedback (GCF), and GCF with capacitor current feedback (GCFAD)—under a broad range of realistic grid disturbances and low switching frequency conditions. Unlike prior works that often analyze individual feedback strategies in isolation, this study highlights and compares their dynamic behavior, robustness, and total harmonic distortion (THD) in eight operational scenarios. The results reveal the severe instability of GCF in the absence of damping and the superior inherent damping property of CCF while demonstrating the comparable effectiveness of GCFAD. Moreover, a simplified yet robust design methodology for the LCL filter is proposed, enabling the filter to maintain stability and performance even under significant variations in grid impedance. Additionally, a sensitivity analysis of switching frequency variation is included. The findings offer valuable insights into selecting and implementing robust active damping methods for grid-connected converters operating at constrained switching frequencies. The effectiveness of the proposed methods has been validated through both MATLAB/Simulink simulations and hardware-in-the-loop (HIL) testing. Full article
Show Figures

Figure 1

26 pages, 16020 KB  
Article
Energy Management of Hybrid Electric Commercial Vehicles Based on Neural Network-Optimized Model Predictive Control
by Jinlong Hong, Fan Yang, Xi Luo, Xiaoxiang Na, Hongqing Chu and Mengjian Tian
Electronics 2025, 14(16), 3176; https://doi.org/10.3390/electronics14163176 - 9 Aug 2025
Viewed by 503
Abstract
Energy management for hybrid electric commercial vehicles, involving continuous power output and discrete gear shifting, constitutes a typical mixed-integer programming (MIP) problem, presenting significant challenges for real-time performance and computational efficiency. To address this, this paper proposes a physics-informed neural network-optimized model predictive [...] Read more.
Energy management for hybrid electric commercial vehicles, involving continuous power output and discrete gear shifting, constitutes a typical mixed-integer programming (MIP) problem, presenting significant challenges for real-time performance and computational efficiency. To address this, this paper proposes a physics-informed neural network-optimized model predictive control (PINN-MPC) strategy. On one hand, this strategy simultaneously optimizes continuous and discrete states within the MPC framework to achieve the integrated objectives of minimizing fuel consumption, tracking speed, and managing battery state-of-charge (SOC). On the other hand, to overcome the prohibitively long solving time of the MIP-MPC, a physics-informed neural network (PINN) optimizer is designed. This optimizer employs the soft-argmax function to handle discrete gear variables and embeds system dynamics constraints using an augmented Lagrangian approach. Validated via hardware-in-the-loop (HIL) testing under two distinct real-world driving cycles, the results demonstrate that, compared to the open-source solver BONMIN, PINN-MPC significantly reduces computation time—dramatically decreasing the average solving time from approximately 10 s to about 5 ms—without sacrificing the combined vehicle dynamic and economic performance. Full article
Show Figures

Figure 1

21 pages, 7635 KB  
Article
A Two-Layer Framework for Cooperative Standoff Tracking of a Ground Moving Target Using Dual UAVs
by Jing Chen, Dong Yin, Jing Fu, Yirui Cong, Hao Chen, Xuan Yang, Haojun Zhao and Lihuan Liu
Drones 2025, 9(8), 560; https://doi.org/10.3390/drones9080560 - 9 Aug 2025
Viewed by 340
Abstract
Standoff tracking of a ground-moving target with a single fixed-wing unmanned aerial vehicle (UAV) is vulnerable to occlusions around the target, such as buildings and terrain, which can obstruct the line of sight (LOS) between the UAV and the target, resulting in tracking [...] Read more.
Standoff tracking of a ground-moving target with a single fixed-wing unmanned aerial vehicle (UAV) is vulnerable to occlusions around the target, such as buildings and terrain, which can obstruct the line of sight (LOS) between the UAV and the target, resulting in tracking failures. To address these challenges, multi-UAV cooperative tracking is often employed, offering multi-angle coverage and mitigating the limitations of a single UAV by maintaining continuous target visibility, even when one UAV’s LOS is obstructed. Building on this idea, we propose a specialized two-layer framework for dual-UAV cooperative target tracking. This framework comprises a decision-making layer and a guidance layer. The decision-making layer employs a state-transition-based distributed role transition algorithm for dual UAVs. Here, the UAVs periodically share state variables based on their target observability. In the guidance layer, we devise a velocity-vector-field-based controller to simplify the complexity of controller design for cooperative tracking. To validate the proposed framework, three numerical simulations and one hardware-in-the-loop (HIL) simulation were conducted. These simulations confirmed that the role transition algorithm functions properly even under occlusion conditions. Additionally, the standoff tracking guidance controller demonstrated superior performance compared to baseline methods in terms of tracking accuracy and stability. Full article
Show Figures

Figure 1

16 pages, 5548 KB  
Article
A State-of-Charge-Frequency Control Strategy for Grid-Forming Battery Energy Storage Systems in Black Start
by Yunuo Yuan and Yongheng Yang
Batteries 2025, 11(8), 296; https://doi.org/10.3390/batteries11080296 - 4 Aug 2025
Viewed by 513
Abstract
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In [...] Read more.
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In this context, a state-of-charge (SOC)-frequency control strategy for grid-forming BESSs is proposed to enhance their role in stabilizing grid frequency and improving overall system performance. In the system, the DC-link capacitor is regulated to maintain the angular frequency through a matching control scheme, emulating the characteristics of the rotor dynamics of a synchronous generator (SG). Thereby, the active power control is implemented in the control of the DC/DC converter to further regulate the grid frequency. More specifically, the relationship between the active power and the frequency is established through the SOC of the battery. In addition, owing to the inevitable presence of differential operators in the control loop, a high-gain observer (HGO) is employed, and the corresponding parameter design of the proposed method is elaborated. The proposed strategy simultaneously achieves frequency regulation and implicit energy management by autonomously balancing power output with available battery capacity, demonstrating a novel dual benefit for sustainable grid operation. To verify the effectiveness of the proposed control strategy, a 0.5-Hz frequency change and a 10% power change are carried out through simulations and also on a hardware-in-the-loop (HIL) platform. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

19 pages, 12094 KB  
Article
Intelligent Active Suspension Control Method Based on Hierarchical Multi-Sensor Perception Fusion
by Chen Huang, Yang Liu, Xiaoqiang Sun and Yiqi Wang
Sensors 2025, 25(15), 4723; https://doi.org/10.3390/s25154723 - 31 Jul 2025
Viewed by 402
Abstract
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control [...] Read more.
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control precision. Initially, a binocular vision system is employed for target detection, enabling the identification of lane curvature initiation points and speed bumps, with real-time distance measurements. Subsequently, the integration of Global Positioning System (GPS) and inertial measurement unit (IMU) data facilitates the extraction of road elevation profiles ahead of the vehicle. A BP-PID control strategy is implemented to formulate mode-switching rules for the active suspension under three distinct road conditions: flat road, curved road, and obstacle road. Additionally, an ant colony optimization algorithm is utilized to fine-tune four suspension parameters. Utilizing the hardware-in-the-loop (HIL) simulation platform, the observed reductions in vertical, pitch, and roll accelerations were 5.37%, 9.63%, and 11.58%, respectively, thereby substantiating the efficacy and robustness of this approach. Full article
Show Figures

Figure 1

29 pages, 1917 KB  
Perspective
A Perspective on Software-in-the-Loop and Hardware-in-the-Loop Within Digital Twin Frameworks for Automotive Lighting Systems
by George Balan, Philipp Neninger, Enrique Ruiz Zúñiga, Elena Serea, Dorin-Dumitru Lucache and Alexandru Sălceanu
Appl. Sci. 2025, 15(15), 8445; https://doi.org/10.3390/app15158445 - 30 Jul 2025
Viewed by 470
Abstract
The increasing complexity of modern automotive lighting systems requires advanced validation strategies that ensure both functional performance and regulatory compliance. This study presents a structured integration of Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) testing within a digital twin (DT) framework for validating headlamp systems. [...] Read more.
The increasing complexity of modern automotive lighting systems requires advanced validation strategies that ensure both functional performance and regulatory compliance. This study presents a structured integration of Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) testing within a digital twin (DT) framework for validating headlamp systems. A gated validation process (G10–G120) is proposed, aligning each development phase with corresponding simulation stages from early requirements and concept validation to real-world scenario testing and continuous integration. A key principle of this approach is the adoption of a framework built upon the V-Cycle, adapted to integrate DT technology with SiL and HiL workflows. This architectural configuration ensures a continuous data flow between the physical system, the digital twin, and embedded software components, enabling real-time feedback, iterative model refinement, and traceable system verification throughout the development lifecycle. The paper also explores strategies for effective DT integration, such as digital twin-as-a-service, which combines virtual testing with physical validation to support earlier fault detection, streamlined simulation workflows, and reduced dependency on physical prototypes during lighting system development. Unlike the existing literature, which often treats SiL, HiL, and DTs in isolation, this work proposes a unified, domain-specific validation framework. The methodology addresses a critical gap by aligning simulation-based testing with development milestones and regulatory standards, offering a foundation for industrial adoption. Full article
Show Figures

Figure 1

19 pages, 3963 KB  
Article
Real-Time Energy Management in Microgrids: Integrating T-Cell Optimization, Droop Control, and HIL Validation with OPAL-RT
by Achraf Boukaibat, Nissrine Krami, Youssef Rochdi, Yassir El Bakkali, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(15), 4035; https://doi.org/10.3390/en18154035 - 29 Jul 2025
Viewed by 490
Abstract
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these [...] Read more.
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these challenges. A JADE-based multi-agent system (MAS) orchestrates coordination between the T-Cell optimizer and edge-level controllers, enabling scalable and fault-tolerant decision-making. The T-Cell algorithm, inspired by adaptive immune system dynamics, optimizes global power distribution through the MAS platform, while droop control ensures local voltage stability via autonomous adjustments by distributed energy resources (DERs). The framework is rigorously validated through Hardware-in-the-Loop (HIL) testing using OPAL-RT, which interfaces MATLAB/Simulink models with Raspberry Pi for real-time communication (MQTT/Modbus protocols). Experimental results demonstrate a 91% reduction in grid dependency, 70% mitigation of voltage fluctuations, and a 93% self-consumption rate, significantly enhancing power quality and resilience. By integrating centralized optimization with decentralized control through MAS coordination, the hybrid approach achieves scalable, self-organizing microgrid operation under variable generation and load conditions. This work advances the practical deployment of adaptive energy management systems, offering a robust solution for sustainable and resilient microgrids. Full article
Show Figures

Figure 1

16 pages, 2662 KB  
Article
Electronic Control Unit and Digital Twin Based on Raspberry Pi 4 for Testing the Remote Nonlinear Trajectory Tracking of a P3-DX Robot
by Cristina Losada-Gutiérrez, Felipe Espinosa, Carlos Cruz and Biel P. Alvarado
Actuators 2025, 14(8), 376; https://doi.org/10.3390/act14080376 - 27 Jul 2025
Viewed by 428
Abstract
The properties of Hardware-in-the-Loop (HIL) for the development of controllers, together with electronic emulation of physical process by Digital Twins (DT) significantly enhance the optimization of design and implementation in nonlinear control applications. The study emphasizes the use of the Raspberry Pi (RBP), [...] Read more.
The properties of Hardware-in-the-Loop (HIL) for the development of controllers, together with electronic emulation of physical process by Digital Twins (DT) significantly enhance the optimization of design and implementation in nonlinear control applications. The study emphasizes the use of the Raspberry Pi (RBP), a low-cost and portable electronic board for two interrelated goals: (a) the Electronic Control Unit (ECU-RBP) implementing a Lyapunov-based Controller (LBC) for nonlinear trajectory tracking of P3DX wheeled robots, and (b) the Digital Twin (DT-RPB) emulating the real robot behavior, which is remotely connected to the control unit. ECU-RBP, DT-RBP and real robot are connected as nodes within the same wireless network, enhancing interaction between the three physical elements. The development process is supported by the Matlab/Simulink environment and the associated packages for the specified electronic board. Following testing of the real robot from the ECU-RBP in an open loop, the model is identified and integrated into the DT-RBP to replicate its functionality. The LBC solution, which has also been validated through simulation, is implemented in the ECU-RBP to examine the closed-loop control according to the HIL strategy. Finally, the study evaluates the effectiveness of the HIL approach by comparing the results obtained from the application of the LBC, as implemented in the ECU-RBP to both the real robot and its DT. Full article
(This article belongs to the Special Issue Nonlinear Control of Mechanical and Robotic Systems)
Show Figures

Figure 1

23 pages, 11587 KB  
Article
Robust Sensorless Active Damping of LCL Resonance in EV Battery Grid-Tied Converters Using μ-Synthesis Control
by Nabeel Khan, Wang Cheng, Muhammad Yasir Ali Khan and Danish Khan
World Electr. Veh. J. 2025, 16(8), 422; https://doi.org/10.3390/wevj16080422 - 27 Jul 2025
Viewed by 396
Abstract
LCL (inductor–capacitor–inductor) filters are widely used in grid-connected inverters, particularly in electric vehicle (EV) battery-to-grid systems, for harmonic suppression but introduce resonance issues that compromise stability. This study presents a novel sensorless active damping strategy based on μ-synthesis control for EV batteries connected [...] Read more.
LCL (inductor–capacitor–inductor) filters are widely used in grid-connected inverters, particularly in electric vehicle (EV) battery-to-grid systems, for harmonic suppression but introduce resonance issues that compromise stability. This study presents a novel sensorless active damping strategy based on μ-synthesis control for EV batteries connected to the grid via LCL filters, eliminating the need for additional current sensors while preserving harmonic attenuation. A comprehensive state–space and process noise model enables accurate capacitor current estimation using only grid current and point-of-common-coupling (PCC) voltage measurements. The proposed method maintains robust performance under ±60% LCL parameter variations and integrates a proportional-resonant (PR) current controller for resonance suppression. Hardware-in-the-loop (HIL) validation demonstrates enhanced stability in dynamic grid conditions, with total harmonic distortion (THD) below 5% (IEEE 1547-compliant) and current tracking error < 0.06 A. Full article
Show Figures

Figure 1

19 pages, 12234 KB  
Article
Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid
by Abdullah M. Noman, Abu Sufyan, Mohsin Jamil and Sulaiman Z. Almutairi
Electronics 2025, 14(14), 2894; https://doi.org/10.3390/electronics14142894 - 19 Jul 2025
Viewed by 226
Abstract
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly [...] Read more.
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly into the grid. The control performance of a GCI equipped with an LCL filter is greatly reduced when it is operating in a power grid with varying impedance and fluctuating grid voltages, which may result in poor current quality and possible instability in the system. A non-singular double integral terminal sliding mode (DIT-SMC) control is presented in this paper for a three-phase GCI with an LCL filter. The proposed method is presented in the α, β frame of reference without adopting an active or passive damping approach, reducing the computational burden. MATLAB/Simulink Version R2023b is leveraged to simulate the mathematical model of the proposed control system. The capability of the DIT-SMC method is validated through the OPAL-RT hardware-in-loop (HIL) platform. The effectiveness of the proposed method is first compared with SMC and integral terminal SMC, and then the DIT-SMC method is rigorously analyzed under resonance frequency events, grid impedance variation, and grid voltage distortions. It is demonstrated by the experimental results that the proposed control is highly effective in delivering a high-quality current into the grid, in spite of the simultaneous occurrence of power grid impedance variations in 6 mH and large voltage distortions. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

34 pages, 5960 KB  
Article
Motor Temperature Observer for Four-Mass Thermal Model Based Rolling Mills
by Boris M. Loginov, Stanislav S. Voronin, Roman A. Lisovskiy, Vadim R. Khramshin and Liudmila V. Radionova
Sensors 2025, 25(14), 4458; https://doi.org/10.3390/s25144458 - 17 Jul 2025
Viewed by 313
Abstract
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with [...] Read more.
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with frequency regulation. Such motors are expensive, while their reliability impacts the metallurgical plant output. Hence, developing the on-line temperature monitoring systems for such motors is extremely urgent. This paper presents a solution applying to synchronous motors of the upper and lower rolls in the horizontal roll stand of plate mill 5000. The installed capacity of each motor is 12 MW. According to the digitalization tendency, on-line monitoring systems should be based on digital shadows (coordinate observers) that are similar to digital twins, widely introduced at metallurgical plants. Modern reliability requirements set the continuous temperature monitoring for stator and rotor windings and iron core. This article is the first to describe a method for calculating thermal loads based on the data sets created during rolling. The authors have developed a thermal state observer based on four-mass model of motor heating built using the Simscape Thermal Models library domains that is part of the MATLAB Simulink. Virtual adjustment of the observer and of the thermal model was performed using hardware-in-the-loop (HIL) simulation. The authors have validated the results by comparing the observer’s values with the actual values measured at control points. The discrete masses heating was studied during the rolling cycle. The stator and rotor winding temperature was analysed at different periods. The authors have concluded that the motors of the upper and lower rolls are in a satisfactory condition. The results of the study conducted generally develop the idea of using object-oriented digital shadows for the industrial electrical equipment. The authors have introduced technologies that improve the reliability of the rolling mills electrical drives which accounts for the innovative development in metallurgy. The authors have also provided recommendations on expanded industrial applications of the research results. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

Back to TopTop