Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,543)

Search Parameters:
Keywords = heat stress response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2507 KB  
Article
Heat Tolerance in Magallana hongkongensis: Integrative Analysis of DNA Damage, Antioxidant Defense, and Stress Gene Regulation
by Tuo Yao, Xiaodi Wang, Jie Lu, Shengli Fu, Changhong Cheng and Lingtong Ye
Antioxidants 2025, 14(9), 1075; https://doi.org/10.3390/antiox14091075 (registering DOI) - 2 Sep 2025
Abstract
Water temperature stands as a crucial environmental element, exerting an impact on the survival and growth of organisms in aquaculture. Heat stress poses a significant threat to the survival and aquaculture of the Hong Kong oyster Magallana hongkongensis (also known as Crassostrea hongkongensis [...] Read more.
Water temperature stands as a crucial environmental element, exerting an impact on the survival and growth of organisms in aquaculture. Heat stress poses a significant threat to the survival and aquaculture of the Hong Kong oyster Magallana hongkongensis (also known as Crassostrea hongkongensis), yet the underlying physiological and molecular mechanisms remain poorly understood. This study investigated the effects of elevated temperatures (35 °C and 37 °C) on survival, DNA damage, antioxidant enzyme activities, and gene expression related to apoptosis, inflammation, and heat shock proteins (HSPs) in M. hongkongensis. The median lethal temperature (LT50) of M. hongkongensis was determined to be 37.09 °C, with significant mortality observed at 35 °C compared with the control (29 °C). Antioxidant enzyme activities (SOD, CAT, and GPx) and T-AOC were up-regulated initially but exhibited divergent patterns under prolonged stress, indicating a temperature-dependent threshold for oxidative defense. Comet assay results also showed that heat stress induced severe DNA damage in hemocytes. Moreover, heat stress significantly up-regulated mRNA expression of apoptosis-related genes (Caspase-2, Caspase-8, Bax, and P53), inflammatory genes (TNF, p38-MAPK, and AP-1), and HSP family members (Hsp70, Hsp90, Hsp27, and Hsp68). The expression peaks of these genes were generally earlier and more pronounced at 37 °C, reflecting intensified cellular damage and protective responses. Collectively, this study demonstrates that M. hongkongensis employs integrated antioxidant, apoptotic, inflammatory, and HSP-mediated mechanisms to counteract heat stress, but temperatures exceeding 35 °C disrupt these defenses, leading to survival impairment. These findings provide critical insights into the heat adaptation strategies of M. hongkongensis and serve as a scientific foundation for developing sustainable aquaculture practices to mitigate summer heat stress. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

23 pages, 2096 KB  
Review
Epigenetic Mechanisms Associated with Livestock Adaptation to Heat Stress
by Sundar Aravindh, Mullakkalparambil Velayudhan Silpa, Santhi Priya Voggu, Ebenezer Binuni Rebez, Gajendirane Kalaignazhal, Mouttou Vivek Srinivas, Frank Rowland Dunshea and Veerasamy Sejian
Biology 2025, 14(9), 1154; https://doi.org/10.3390/biology14091154 - 1 Sep 2025
Abstract
The livestock sector, a crucial source of revenue and global food security, is facing serious challenges due to climate change driven by global warming. This leads to serious effects on animal health and productivity, making it difficult for the livestock industry to meet [...] Read more.
The livestock sector, a crucial source of revenue and global food security, is facing serious challenges due to climate change driven by global warming. This leads to serious effects on animal health and productivity, making it difficult for the livestock industry to meet the global demand and sustain the livelihoods of farmers. The main factor affecting livestock’s productivity is heat stress. However, animals develop various adaptive mechanisms to cope with the effects of heat stress. Cellular and molecular responses act as key defense mechanisms, enabling animals adapt to environmental changes. The recent advancements in molecular biology have opened up opportunities for extensive research on epigenetics, which has a key role in regulating gene expression in animals in response to environmental stimuli. Such studies have gained considerable attention regarding heat acclimation in animals due to the fact that epigenetic mechanisms have been recognized as key players in long-term adaptation to high temperatures in farm animals. This review summarizes the different mechanisms and methodologies used to assess heat stress-associated epigenetic changes, including DNA methylation, which is an extensively studied epigenetic regulatory mechanism in relation to gene expression. The review also highlights the mechanisms and regulation of adaptation to heat stress in animals and collates information related to various epigenetic markers to assess the heat stress response, thereby aiding in improving thermal resilience in animals. Full article
Show Figures

Figure 1

26 pages, 3150 KB  
Case Report
Metabolic Disorders in Transition Dairy Cows in a 500-Cow Herd—Analysis, Prevention and Follow-Up
by Melanie Schären-Bannert, Benno Waurich, Fanny Rachidi, Adriana Wöckel, Wolf Wippermann, Julia Wittich, Guntram Hermenau, Erik Bannert, Peter Hufe, Detlef May, Sven Dänicke, Hermann Swalve and Alexander Starke
Dairy 2025, 6(5), 49; https://doi.org/10.3390/dairy6050049 (registering DOI) - 1 Sep 2025
Abstract
Managing transition cows and preventing diseases related to this period is challenging due to the latter’s multifactorial nature. The aim of this applied observational case study is to illustrate and discuss the different aspects involved and provide an approach to analysis and the [...] Read more.
Managing transition cows and preventing diseases related to this period is challenging due to the latter’s multifactorial nature. The aim of this applied observational case study is to illustrate and discuss the different aspects involved and provide an approach to analysis and the resulting management solutions using a real-life case within a 500-cow herd. The initial assessment, involving the collection of data on the level of production, animal health and behaviour, and metabolic indicators, as well as management and housing key indicators, revealed key risk factors, including overcrowding, suboptimal feeding strategies, inadequate water supply, and insufficient disease monitoring. These factors contributed to increased cases of metabolic disorders such as hypocalcemia (annual incidence 7.8%), excessive lipomobilisation, and displaced abomasum (annual incidence 5.2%). A holistic approach combining feeding adjustments, disease monitoring, facility improvements, and long-term management strategies was implemented to address these challenges. Short-term interventions, such as optimizing the dietary cation–anion balance and enhancing disease detection protocols, led to noticeable improvements. However, structural constraints and external factors, such as extreme weather conditions (heat stress) and economic limitations, created significant hurdles in achieving immediate and sustained success. The farm ultimately opted for infrastructural improvements, including a new transition cow facility, to provide a long-term solution to these recurring issues. This case highlights the complexity of transition cow management, demonstrating that long-term success depends on continuous monitoring, interdisciplinary collaboration, and adaptability in response to evolving challenges in dairy production. Full article
Show Figures

Figure 1

12 pages, 1899 KB  
Article
Incubation Behavior of the Western Reef Heron (Egretta gularis) in Eastern Saudi Arabia: Adaptations to Extreme Thermal Conditions
by Monif AlRashidi, Abdulaziz S. Alatawi, Mohammed Shobrak and Mohanad Abdelgadir
Life 2025, 15(9), 1380; https://doi.org/10.3390/life15091380 - 1 Sep 2025
Abstract
The Western Reef Heron (Egretta gularis) has a wide geographic distribution, ranging from the coasts of West Africa to Southwest Asia, including the Arabian Peninsula. Despite this extensive range, detailed information on its incubation behavior remains scarce. To address this gap, [...] Read more.
The Western Reef Heron (Egretta gularis) has a wide geographic distribution, ranging from the coasts of West Africa to Southwest Asia, including the Arabian Peninsula. Despite this extensive range, detailed information on its incubation behavior remains scarce. To address this gap, we investigated the 24 h incubation behavior of Western Reef Herons on Al-Fanateer Island, Eastern Saudi Arabia, during early summer—a period characterized by pronounced diurnal fluctuations in ambient temperature. Using trail cameras and temperature loggers, we found that adults maintained nearly continuous attendance at the nest throughout the day, with incubation coverage exceeding 97% across all two-hour intervals. A slight reduction in nest attendance was observed during nighttime (lowest at 86.8% between 20:00–21:59). Incubating adults exhibited behavioral plasticity in response to ambient temperature: a sitting posture was predominant during cooler periods, while a shading posture was more frequent during peak heat. Incubating adults also adjusted their orientation with the solar angle, actively avoiding southern and western exposures during the hottest parts of the day. Despite substantial variation in ambient temperature, the temperature beneath the clutch ranged from 29.4 to 37.8 °C, which may indicate effective thermoregulation. These findings suggest that a combination of near-continuous nest attendance, posture adjustment, and solar orientation avoidance allows Western Reef Herons to mitigate thermal stress and maintain optimal conditions for embryo and chick development. We recommend long-term monitoring of incubation behavior in this species to further evaluate its adaptability to environmental changes, particularly those driven by climate variability. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

17 pages, 23770 KB  
Article
Air–Sea Interaction During Ocean Frontal Passage: A Case Study from the Northern South China Sea
by Ruichen Zhu, Jingjie Yu, Xingzhi Zhang, Haiyuan Yang and Xin Ma
Remote Sens. 2025, 17(17), 3024; https://doi.org/10.3390/rs17173024 - 1 Sep 2025
Abstract
The northern South China Sea has abundant frontal systems near coastal and island regions, which play crucial roles in regional ocean dynamics and ecosystem. While previous studies have established preliminary understanding of their spatial distribution, seasonal variability, and dynamic characteristics, the atmospheric response [...] Read more.
The northern South China Sea has abundant frontal systems near coastal and island regions, which play crucial roles in regional ocean dynamics and ecosystem. While previous studies have established preliminary understanding of their spatial distribution, seasonal variability, and dynamic characteristics, the atmospheric response to these frontal systems remains poorly understood. This study integrates observations from a moored buoy deployed on the continental shelf of the South China Sea with satellite remote sensing data to analyze oceanic and atmospheric variations during frontal passage. The results reveal that the ocean front can not only induce pronounced oceanic changes characterized by significant cooling, saltiness, and surface current acceleration, but also exert substantial influence on the overlying atmosphere, with consistent decreasing trends in air temperature, humidity, and atmospheric pressure, all of which rapidly recovered following frontal retreat. Notably, when the front directly traversed the buoy location, diurnal temperature cycles were markedly suppressed, while turbulent heat flux and downfront wind-stress curl reached peak magnitudes. These findings demonstrate that ocean fronts and associated sea surface temperature gradients can trigger intense air–sea exchange processes at the ocean–atmosphere interface. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

39 pages, 10524 KB  
Article
Ecballium elaterium (L.) A. Rich. (Squirting Cucumber) Plants Cultured Under Different Temperatures: Anatomical and Biochemical Modifications of Their Leaves and the Bioactivity of Leaf Extracts
by Aikaterina L. Stefi, Maria Chalkiadaki, Emily Bashari, Konstantina Mitsigiorgi, Paweł Szczeblewski, Danae Papageorgiou, Dimitrios Gkikas, Dido Vassilacopoulou, Nikolaos S. Christodoulakis and Maria Halabalaki
Metabolites 2025, 15(9), 585; https://doi.org/10.3390/metabo15090585 (registering DOI) - 31 Aug 2025
Abstract
Background/Objectives: Ecballium elaterium is a widely distributed species and is one of the earliest recorded in traditional medicine. With global temperatures rising, this study aimed to investigate the changes in E. elaterium plantlets subjected to thermal stress. The goal was to understand how [...] Read more.
Background/Objectives: Ecballium elaterium is a widely distributed species and is one of the earliest recorded in traditional medicine. With global temperatures rising, this study aimed to investigate the changes in E. elaterium plantlets subjected to thermal stress. The goal was to understand how thermal stress affects morphology, physiology, and bioactive metabolite production, both for ecological adaptation and potential therapeutic applications. Methods: Seedlings were cultivated under controlled conditions and subjected to either the control temperature (22 °C) or the heat stress temperature (35 °C) for one week. Morphological and anatomical traits were assessed, along with physiological parameters such as chlorophyll content, malondialdehyde (MDA), hydrogen peroxide (H2O2), L-proline, soluble sugars, and total phenolic content. Methanolic leaf extracts from both groups were analyzed via LC-HRMS/MS and examined in vitro for cytotoxic activity against three human cancer cell lines: MCF-7 (breast), DU-145 (prostate), and SH-SY5Y (neuroblastoma). Results: Heat stress reduced dry mass and stomatal density but increased the diameter of the root transition zone, indicating anatomical adaptation. Leaves exhibited elevated oxidative stress markers and altered metabolite accumulation, while the roots showed a more integrated stress response. LC-HRMS/MS profiling revealed significant shifts in Cucurbitacin composition. Extracts from heat-stressed plants displayed stronger cytotoxicity, particularly toward DU-145 and SH-SY5Y cells, correlating with higher levels of glycosylated Cucurbitacins. Conclusions: E. elaterium demonstrates organ-specific thermotolerance mechanisms, with heat stress enhancing the production of bioactive metabolites. These stress-induced phytochemicals, especially Cucurbitacins, hold promise for future cancer research and therapeutic applications. Full article
(This article belongs to the Section Plant Metabolism)
19 pages, 1424 KB  
Article
Design of Hydrogel Microneedle Arrays for Physiology Monitoring of Farm Animals
by Laurabelle Gautier, Sandra Wiart-Letort, Alexandra Massé, Caroline Xavier, Lorraine Novais-Gameiro, Antoine Hoang, Marie Escudé, Ilaria Sorrentino, Muriel Bonnet, Florence Gondret, Claire Verplanck and Isabelle Texier
Micromachines 2025, 16(9), 1015; https://doi.org/10.3390/mi16091015 - 31 Aug 2025
Abstract
For monitoring animal adaptation when facing environmental challenges, and more specifically when addressing the impacts of global warming—particularly responses to heat stress and short-term fluctuations in osmotic regulations in the different organs influencing animal physiology—there is an increasing demand for digital tools to [...] Read more.
For monitoring animal adaptation when facing environmental challenges, and more specifically when addressing the impacts of global warming—particularly responses to heat stress and short-term fluctuations in osmotic regulations in the different organs influencing animal physiology—there is an increasing demand for digital tools to understand and monitor a range of biomarkers. Microneedle arrays (MNAs) have recently emerged as promising devices minimally invasively penetrating human skin to access dermal interstitial fluid (ISF) to monitor deviations in physiology and consequences on health. The ISF is a blood filtrate where the concentrations of ions, low molecular weight metabolites (<70 kDa), hormones, and drugs, often closely correlate with those in blood. However, anatomical skin differences between human and farm animals, especially large animals, as well as divergent tolerances of such devices among species with behavior specificities, motivate new MNA designs. We addressed technological challenges to design higher microneedles for farm animal (pigs and cattle) measurements. We designed microneedle arrays composed of 37 microneedles, each 2.8 mm in height, using dextran-methacrylate, a photo-crosslinked biocompatible biopolymer-based hydrogel. The arrays were characterized geometrically and mechanically. Their abilities to perforate pig and cow skin were demonstrated through histological analysis. The MNAs successfully absorbed approximately 10 µL of fluid within 3 h of application. Full article
16 pages, 19309 KB  
Article
Hsp101-1 Orchestrates Thermotolerance in Rice via Pre-Activated Transcriptional Networks and Modular Cross-Tissue Coordination
by Hang Yu, Liqun Jiang, Bingrui Sun, Qing Liu, Xingxue Mao, Jing Zhang, Pingli Chen, Wenfeng Chen, Chen Li and Shuwei Lyu
Genes 2025, 16(9), 1039; https://doi.org/10.3390/genes16091039 - 31 Aug 2025
Abstract
Background/Objectives: Rice production faces threats from rising temperatures, demanding thermotolerant varieties. This study characterizes transcriptomic dynamics and identifies Hsp101-1 (heat shock protein 101-1)-associated gene regulatory modules in rice under reproductive-stage heat stress. Methods: Transcriptomics and WGCNA (weighted gene co-expression network analysis) [...] Read more.
Background/Objectives: Rice production faces threats from rising temperatures, demanding thermotolerant varieties. This study characterizes transcriptomic dynamics and identifies Hsp101-1 (heat shock protein 101-1)-associated gene regulatory modules in rice under reproductive-stage heat stress. Methods: Transcriptomics and WGCNA (weighted gene co-expression network analysis) were conducted in flag leaves and spikelets for wild-type (WT) and Hsp101-1-overexpressing (OE) lines under 40 °C stress at six time points (0–24 h) to reveal the change in gene expressions. Results: The number of DEGs (differentially expressed genes) revealed substantial pre-existing differences in WT and OE lines. Pre treatment, OE flag leaves showed 545 upregulated and 676 downregulated DEGs versus WT leaves. Post heat shock, the number of DEGs in flag leaves and spikelets was significantly reduced by 70–80%. KEGG enrichment of common DEGs across time points showed both WT and OE flag leaves enriched for ribosome biogenesis, ribosomes, and chaperones/folding catalysts. WGCNA identified that the MEdarkslateblue module correlated negatively with WT and positively with OE flag leaves. The MEturquoise module was suppressed at 1 h but activated by 8 h. Spikelet analysis identified the MElightpink4 module (negative correlation with WT, positive with OE) and a similarly dynamic MEturquoise module. Venn analysis identified 76 shared module genes, 71 of which were upregulated in the OE line, indicating that Hsp101-1 activates common protective targets. Hsp101-1’s expression in the WT line was low basally, significantly upregulated at 1–8 h post shock, and returned to low levels by 24 h. Conclusions: Hsp101-1 enhances thermotolerance by (1) constitutively pre-stabilizing transcriptomic networks and reducing transcriptional fluctuations under heat stress and (2) modularly coordinating tissue-specific responses, providing a climate resilience framework. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1546 KB  
Article
Effects of Heat Stress on Production Performance and Protein Metabolism of Skeletal Muscle in Meat Rabbits
by Gongyan Liu, Ce Liu, Haitao Sun, Liya Bai, Liping Yang, Yin Zhang and Shuxia Gao
Animals 2025, 15(17), 2560; https://doi.org/10.3390/ani15172560 - 31 Aug 2025
Abstract
The purpose of this experiment was to study the effects of heat stress on the performance and protein metabolism of skeletal muscle in meat rabbits. A total of 160 New Zealand White rabbits aged 80 days with mean initial body weights of 2359 [...] Read more.
The purpose of this experiment was to study the effects of heat stress on the performance and protein metabolism of skeletal muscle in meat rabbits. A total of 160 New Zealand White rabbits aged 80 days with mean initial body weights of 2359 ± 200 g were randomly divided into a control group and a heat stress group. The experiment duration was 20 days. Heat stress treatment reduced the growth performance and slaughter performance of the rabbits (p < 0.05) and increased muscle yellowness (b*, p < 0.05). In addition, heat stress treatment increased the concentrations of leptin, cholesterol, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol in serum (p < 0.05), and decreased the serum total protein and immunoglobulin (IgG, IgM, and IgA) contents of rabbits. Under the criteria fold-change ≥ 1.20 or ≤0.84 and p-value ≤ 0.05, 7 up-regulated proteins and 122 down-regulated proteins were screened. A gene ontology (GO) enrichment analysis of the differentially expressed proteins was performed. The most enriched specific GO terms among the differential proteins were response to stress, extracellular region, and protein binding in the biological process (BP), cellular component (CC), and molecular function (MF) categories, respectively, and the most enriched pathway was the PI3K/Akt signalling pathway. In conclusion, heat stress could reduce the carcass yield of meat rabbits, change the physical characteristics of the skeletal muscle, and influence protein metabolism by changing blood indices, potentially through the PI3K/Akt signalling pathway. Full article
Show Figures

Figure 1

19 pages, 4284 KB  
Article
Characterization of Two Novel Heat Shock Protein 70 Transcripts from Sitodiplosis mosellana and Their Response to Larval Diapause and Thermal Stress
by Qitong Huang, Wenqian Tang, Xiaobin Liu, Qian Ma, Keyan Zhu-Salzman and Weining Cheng
Biology 2025, 14(9), 1147; https://doi.org/10.3390/biology14091147 - 30 Aug 2025
Viewed by 40
Abstract
The heat shock protein 70 (Hsp70) family mediates responses to environmental stress in insects. The wheat midge Sitodiplosis mosellana, a worldwide pest, avoids summer and winter temperature extremes by diapause of the third-instar larvae in the soil. To explore the functions of [...] Read more.
The heat shock protein 70 (Hsp70) family mediates responses to environmental stress in insects. The wheat midge Sitodiplosis mosellana, a worldwide pest, avoids summer and winter temperature extremes by diapause of the third-instar larvae in the soil. To explore the functions of Hsp70s in this process, we characterized two cytoplasmic Hsp70 genes (SmHsp70A1-1 and SmHsp70A1-2) from this insect. Both SmHsp70s contained three signature motifs of the family and lacked introns. Developmental expression profiling revealed maximal SmHsp70A1-1 expression during early larval stages, while the expression of SmHsp70A1-2 was highest in the pupal stages. The expression of SmHsp70A1-1 was significantly upregulated during diapause, particularly during summer and winter, whereas SmHsp70A1-2 showed marked downregulation and dose-dependent induction by 20-hydroxyecdysone (20E). Furthermore, both genes exhibited similar expression patterns in over-summering and over-wintering larvae under thermal stress, with maximal expression at 40 °C and −10 °C, respectively, but were not significantly induced at prolonged extreme temperatures (50 °C or −15 °C). Knockdown of the two SmHsp70 genes by RNA interference (RNAi) significantly increased the susceptibility of the larvae to cold stress. These results suggest the important role of both SmHsp70 genes in diapause-associated stress tolerance and provide crucial insights into the mechanisms underlying thermal adaptation in S. mosellana. Full article
Show Figures

Graphical abstract

36 pages, 1147 KB  
Review
A Comprehensive Review of the Bovine Immune Response to Pathogens
by Ana Lesta, Pablo Jesús Marín-García and Lola Llobat
Int. J. Mol. Sci. 2025, 26(17), 8461; https://doi.org/10.3390/ijms26178461 (registering DOI) - 30 Aug 2025
Viewed by 47
Abstract
Dairy cattle are constantly exposed to a wide range of pathogens, which can produce substantial economic losses. The maintenance of homeostasis is not only dependent on the intrinsic characteristics of the animals but also on environmental factors such as the productive system, heat [...] Read more.
Dairy cattle are constantly exposed to a wide range of pathogens, which can produce substantial economic losses. The maintenance of homeostasis is not only dependent on the intrinsic characteristics of the animals but also on environmental factors such as the productive system, heat stress, and exposure to vectors and contaminated pastures. In this context, the bovine immune system plays a critical role in maintaining health and productivity. This review provides a comprehensive overview of both innate and adaptive responses in cattle, remarking on key components and summarizing the normal immune response against some of the most frequent pathogens in bovines, as well as how these pathogens have developed strategies to evade or modulate the host’s immune system. A deeper understanding of these mechanisms is essential for improving therapeutic strategies and disease prevention in livestock production. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 2592 KB  
Article
Heat Stress and Anthropogenic Substrates: Molecular and Behavioral Adaptation of Metridium senile in Human-Modified Marine Environments
by Guangliang Teng, Wen Chen, Xiujuan Shan, Qing Zhu and Xianshi Jin
Int. J. Mol. Sci. 2025, 26(17), 8415; https://doi.org/10.3390/ijms26178415 - 29 Aug 2025
Viewed by 98
Abstract
Marine litter provides novel habitats for substrate-dependent species, potentially facilitating their expansion under climate change. This study investigated the thermal adaptability and substrate selectivity of the cold-water sea anemone Metridium senile in the Yellow Sea, where rising temperatures and anthropogenic substrates may drive [...] Read more.
Marine litter provides novel habitats for substrate-dependent species, potentially facilitating their expansion under climate change. This study investigated the thermal adaptability and substrate selectivity of the cold-water sea anemone Metridium senile in the Yellow Sea, where rising temperatures and anthropogenic substrates may drive its proliferation. Behavioral experiments revealed diminished adhesion capacity under thermal stress (13 °C and 18 °C), with no substrate preference observed. Transcriptomic analysis identified 175 and 340 differentially expressed genes (DEGs) at 13 °C and 18 °C, respectively, compared with the control (8 °C). These DEGs were enriched in metabolic processes, oxidative stress, and cell homeostasis, with key pathways including dorso-ventral axis formation, ECM–receptor interaction, TGF-β, and Wnt signaling pathways. Notably, 7 regeneration-related, 20 adhesion-related, and 16 collagen-related DEGs were implicated in adaptive responses to heat stress. Our findings elucidate the molecular mechanisms underlying M. senile’s resilience and highlight its potential to exploit human-modified habitats under warming conditions, offering insights into ecological shifts in marine ecosystems. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 3862 KB  
Article
Genome-Wide Analysis and Expression Profiles of Auxin Response Factors in Ginger (Zingiber officinale Roscoe)
by Yuanyuan Tong, Sujuan Xu, Jiayu Shi, Yi He, Hong-Lei Li, Tian Yu, Sinian Zhang and Hai-Tao Xing
Int. J. Mol. Sci. 2025, 26(17), 8412; https://doi.org/10.3390/ijms26178412 - 29 Aug 2025
Viewed by 70
Abstract
Ginger, an economically important crop, fulfills multifunctional roles as a spice, vegetable, and raw material for medicinal and chemical products. The family of Auxin Response Factors (ARFs) plays an essential role in facilitating auxin signal transduction and regulating plant growth and development. However, [...] Read more.
Ginger, an economically important crop, fulfills multifunctional roles as a spice, vegetable, and raw material for medicinal and chemical products. The family of Auxin Response Factors (ARFs) plays an essential role in facilitating auxin signal transduction and regulating plant growth and development. However, the role of ARF genes in ginger, a crop of considerable economic importance, remains elucidated. In this study, a total of 26 ZoARF genes were identified in the ginger genome, which were further categorized into four subfamilies (I–IV) and displayed a non-uniform distribution across 11 chromosomes. The proteins are predominantly localized to the nucleus. Promoter regions contained numerous cis-elements linked to light signaling, phytohormones, growth, development, and stress responses. Collinearity analysis revealed 9 pairs of fragment duplication events in ZoARFs, all uniformly distributed across their related chromosomes. In addition, the expression profiles of ZoARFs in ginger were analyzed during development and under several stress conditions like ABA, cold, drought, heat, and salt, employing RNA-seq data and qRT-PCR analysis. Notably, expression profiling revealed tissue-specific functions, with ZoARF#04/05/12/22 associated with flower development and ZoARF#06/13/14/23 implicated in root growth. This work provides an in-depth insight into the ARF family and establishes a foundation for future investigations of ZoARF gene functions in ginger growth, development, and abiotic stress tolerance. Full article
(This article belongs to the Special Issue Plant Tolerance to Stress)
Show Figures

Figure 1

29 pages, 7103 KB  
Article
Dynamic Mode I Fracture Toughness and Damage Mechanism of Dry and Saturated Sandstone Subject to Microwave Radiation
by Pin Wang, Yinqi Lin, Duo Chen and Tubing Yin
Appl. Sci. 2025, 15(17), 9500; https://doi.org/10.3390/app15179500 - 29 Aug 2025
Viewed by 72
Abstract
Microwave-assisted rock fragmentation has been considered as one of the most promising technologies in rock excavation, but due to the fact that excavation is usually carried out in water-rich environments, understanding the dynamic fracture properties of rocks with different water contents after microwave [...] Read more.
Microwave-assisted rock fragmentation has been considered as one of the most promising technologies in rock excavation, but due to the fact that excavation is usually carried out in water-rich environments, understanding the dynamic fracture properties of rocks with different water contents after microwave irradiation is thus desirable. This study employed an enhanced split Hopkinson pressure bar (SHPB) system to perform dynamic fracture tests on pre-cracked semi-circular bending (SCB) specimens. It systematically explores the changes in the mechanical properties of sandstone under both dry and saturated conditions after exposure to 700 W of microwave radiation for 10 min. Infrared thermal imaging was utilized to capture the temperature distribution across the specimens, while digital image correlation (DIC) and high-speed photography were used to simultaneously record the crack propagation process. Based on the principle of energy conservation, the analysis of energy dissipation during fracture was performed, and the micro-damage evolution mechanism of the material was revealed through scanning electron microscopy (SEM). The results demonstrated that saturated sandstone exhibited a more rapid heating response and significantly lower dynamic fracture toughness and fracture energy compared to dry samples after microwave irradiation. These findings indicate that water saturation amplifies the weakening effect induced by microwaves, making the rock more susceptible to low-stress fractures. The underlying damage mechanisms of microwave radiation on water-bearing sandstone were interpreted with the theory of pore water pressure and structural thermal stresses. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

35 pages, 938 KB  
Review
Dynamics and Malleability of Plant DNA Methylation During Abiotic Stresses
by Niraj Lodhi and Rakesh Srivastava
Epigenomes 2025, 9(3), 31; https://doi.org/10.3390/epigenomes9030031 - 29 Aug 2025
Viewed by 222
Abstract
Epigenetic regulation, particularly DNA methylation, plays a crucial role in plant adaptation to environmental stresses by modulating gene expression without altering the underlying DNA sequence. In response to major abiotic stresses such as salinity, drought, heat, cold, and heavy metal toxicity, plants undergo [...] Read more.
Epigenetic regulation, particularly DNA methylation, plays a crucial role in plant adaptation to environmental stresses by modulating gene expression without altering the underlying DNA sequence. In response to major abiotic stresses such as salinity, drought, heat, cold, and heavy metal toxicity, plants undergo dynamic changes in DNA methylation patterns. These modifications are orchestrated by DNA methyltransferases and demethylases with variations depending on plant species, genetic background, and ontogenic phase. DNA methylation affects the expression of key genes involved in cellular, physiological, and metabolic processes essential for stress tolerance. Furthermore, it contributes to the establishment of stress memory, which can be transmitted across generations, thereby enhancing long-term plant resilience. The interaction of DNA methylation with other epigenetic mechanisms, including histone modifications, small RNAs, and chromatin remodeling, adds layers of regulatory complexity. Recent discoveries concerning N6-methyladenine have opened new avenues for understanding the epigenetic landscape in plant responses to abiotic stress. Overall, this review addresses the central role of DNA methylation in regulating plant stress responses and emphasizes its potential for application in crop improvement through epigenetic and advanced biotechnological approaches. Full article
(This article belongs to the Collection Epigenetic Control in Plants)
Show Figures

Figure 1

Back to TopTop