Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (443)

Search Parameters:
Keywords = heptane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2008 KB  
Article
Efficient Recovery of Valeric Acid Using Phosphonium-Based Ionic Liquids
by Alexandra Cristina Blaga, Oana Cristina Parvulescu, Dan Cascaval and Anca Irina Galaction
Int. J. Mol. Sci. 2025, 26(18), 8970; https://doi.org/10.3390/ijms26188970 - 15 Sep 2025
Viewed by 289
Abstract
This study explores the application of phosphonium-based ionic liquids (ILs) for the efficient separation of valeric acid (VA) through reactive liquid–liquid extraction. Two hydrophobic quaternary phosphine ILs, trihexyl(tetradecyl)phosphonium decanoate (C103) and trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (C104), were evaluated in combination with heptane as a diluent. [...] Read more.
This study explores the application of phosphonium-based ionic liquids (ILs) for the efficient separation of valeric acid (VA) through reactive liquid–liquid extraction. Two hydrophobic quaternary phosphine ILs, trihexyl(tetradecyl)phosphonium decanoate (C103) and trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (C104), were evaluated in combination with heptane as a diluent. Extraction efficiency was experimentally determined at different levels of extraction process factors in terms of aqueous phase pH (3–6), IL concentration (0–120 g/L), and process temperature (25–60 °C). For each IL, extraction efficiency was predicted using a response surface regression model, and the process factors were optimized based on the desirability function approach. Both ILs effectively extracted VA, with optimal mean values of extraction efficiency of 98.61% for C103 and 99.24% for C104 under optimal conditions (pH of 3.8 and 4, respectively, IL concentration of 60 g/L, and temperature of 25 °C). Mechanistic analysis revealed that VA extraction occurs through the formation of IL-acid complexes, involving hydrogen bonding between the non-dissociated acid and the IL anion. Depending on the extractant concentration, 1:1 and 2:1 acid-to-IL stoichiometric ratios were observed. These findings highlight the potential of phosphonium-based ILs, particularly in a heptane-diluted system, as high-performance extractants for carboxylic acid separation. Full article
(This article belongs to the Special Issue Extraction, Isolation and Identification of Natural Chemicals)
Show Figures

Graphical abstract

15 pages, 4959 KB  
Article
The Metabolic Network of Chilled Yak Meat During Storage Was Constructed Based on Metabolomics Technology
by Xingdong Wang, Shaoke Guo, Lin Xiong, Xiaoyun Wu, Pengjia Bao, Yandong Kang, Mengli Cao, Ziqiang Ding, Liyan Hu, Chunnian Liang, Jie Pei and Xian Guo
Foods 2025, 14(18), 3173; https://doi.org/10.3390/foods14183173 - 11 Sep 2025
Viewed by 382
Abstract
Chilled yak meat is becoming more and more popular with the improvement in living standards, and the flavor of chilled meat is closely related to storage time. The effect of storage time on the flavor of chilled yak meat was explored in this [...] Read more.
Chilled yak meat is becoming more and more popular with the improvement in living standards, and the flavor of chilled meat is closely related to storage time. The effect of storage time on the flavor of chilled yak meat was explored in this study. We used GC-MS, HS-GC-IMS, and LC-MS/MS to detect changes in the metabolites in yak meat during storage at 4 °C and constructed storage time-dependent metabolite fingerprints of the yak meat. The results showed that low-temperature storage promoted the degradation of proteins and lipids, nucleotide release, and the production of the volatile compounds heptanal, octanal, n-nonanal, benzaldehyde, 2,3-pentanedione, 3-hydroxy-2-butanone, and 2-butanone. With an increase in the chilled storage time of yak meat, the total volatile basic nitrogen and total viable count of the meat were significantly increased. The short-term storage time of yak meat at 4 °C should not exceed 5 days. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

20 pages, 2599 KB  
Article
Bifunctional HLD–NAC for Clove Oil Microemulsions
by Jia-Xin Tan and Edgar Acosta
Liquids 2025, 5(3), 23; https://doi.org/10.3390/liquids5030023 - 8 Sep 2025
Viewed by 272
Abstract
Clove oil is an essential oil used in food and pharmaceutical applications, with a market value of 300+ million dollars per year. Microemulsions have been used as effective clove oil delivery vehicles and could also be used to develop new extraction processes from [...] Read more.
Clove oil is an essential oil used in food and pharmaceutical applications, with a market value of 300+ million dollars per year. Microemulsions have been used as effective clove oil delivery vehicles and could also be used to develop new extraction processes from clove buds. Eugenol, the main component of clove oil, is a polar oil that behaves as a surfactant and as an oil. This bifunctional behavior makes formulating clove oil microemulsions a challenging task. Here, we used a version of the Hydrophilic–Lipophilic Difference (HLD) + Net-Average Curvature (NAC) model that incorporates the bifunctional polar oil model to predict and fit the phase behavior of lecithin (surfactant) + polyglycerol-10 caprylate (hydrophilic linker) microemulsions using mixtures of heptane and clove oil as the oil phase. Using HLD-NAC parameters from the literature, the predicted HLD-NAC curves reproduced the expected phase transitions and the trends in Eugenol segregation toward the surfactant layer. Using these literature parameters as an initial guess to fit the experimental phase volumes produced accurate calculated phase volumes, and predicted interfacial tensions. This work demonstrates the application of heuristics and databases of HLD-NAC parameters in predicting the complex phase behavior of surfactant–oil–water (SOW) systems. Full article
(This article belongs to the Collection Feature Papers in Solutions and Liquid Mixtures Research)
Show Figures

Figure 1

16 pages, 1265 KB  
Article
Microheterogeneous Polymeric Solvent Systems
by Thomas J. Malinski, Ying-Hua Fu, Sopida Thavornpradit, Yu Ching Wong, Yunnuen Avila-Martinez, William Dow and David E. Bergbreiter
Liquids 2025, 5(3), 22; https://doi.org/10.3390/liquids5030022 - 8 Sep 2025
Viewed by 304
Abstract
This paper shows that low concentrations of either a low-molecular-weight or a recyclable polymeric cosolvent can be used to design recyclable, tunable alkane polymeric solvent systems. We have shown that dyes experience a microheterogeneous environment that is ca. 40–50% like that of a [...] Read more.
This paper shows that low concentrations of either a low-molecular-weight or a recyclable polymeric cosolvent can be used to design recyclable, tunable alkane polymeric solvent systems. We have shown that dyes experience a microheterogeneous environment that is ca. 40–50% like that of a polar solvent with as little as 0.1 M added cosolvent. Dyes like Nile red or a polyisobutylene (PIB)-bound dansyl fluorophore both detected microheterogeneity in macrohomogeneous mixtures of heptane or a poly(α-olefin) (PAO) with 0.1–2.0 M added polar solvents. H-Bonding cosolvents have greater effects than cosolvents that only interact with dyes by dipole–dipole interactions. Microheterogeneity was also seen when a PIB-bound version of a low-molecular-weight solvent is used as the added polar cosolvent. These microheterogeneous environments can advantageously be used in synthetic and catalytic reactions. This was demonstrated in transesterification and SN2 chemistry. Reactions in PAO solutions polarized by 2 M added THF or by 0.5 M of a PIB-bound HMPA analog both had enhanced reactivity versus reactions in a PAO solution without added cosolvent. In the latter case, the catalyst, the PAO solvent, and the PIB-bound cosolvent were all fully recyclable. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Figure 1

22 pages, 1726 KB  
Article
Comparative Analysis of Chemical Reaction Mechanisms of Ammonia-n-Heptane Mixtures: From Ignition, Oxidation, and Laminar Flame Propagation to Engine Applications
by Yongzhong Huang, Lin Lyu, Qihang Chen, Yue Chen, Junjie Liang, He Yang and Neng Zhu
Fire 2025, 8(9), 357; https://doi.org/10.3390/fire8090357 - 6 Sep 2025
Viewed by 616
Abstract
The ammonia-n-heptane reaction mechanism is essential for simulation of the in-cylinder process for diesel-ignited ammonia engines. To gain insight into the differences in predictive performance among various ammonia-n-heptane reaction mechanisms, four mechanisms were comprehensively evaluated and analyzed based on [...] Read more.
The ammonia-n-heptane reaction mechanism is essential for simulation of the in-cylinder process for diesel-ignited ammonia engines. To gain insight into the differences in predictive performance among various ammonia-n-heptane reaction mechanisms, four mechanisms were comprehensively evaluated and analyzed based on the modeling of ignition, oxidation, laminar flame propagation and in-cylinder combustion processes. The result shows that only under high ammonia blending ratios and elevated temperatures are discrepancies in predicted ignition delay times observed among the studied reaction mechanisms. Regarding the oxidation process, on the whole, the concerned mechanisms can reasonably predict concentrations of reactants and complete combustion products. However, significant discrepancies exist among the mechanisms in predicting concentrations of intermediate species and other products. For laminar burning velocity, the modeled values from the studied mechanisms are consistent with experimental results under both fuel-lean and -rich conditions. The Wang mechanism exhibits significant deviations from the other three mechanisms in predicting reaction pathways of ammonia and n-heptane. From the perspective of reaction class, the studied mechanisms are similar to each other, to some extent, in the key reactions governing consumption of ammonia and n-heptane. For the engine simulation, the predicted in-cylinder pressure and temperature profiles show minimal variations across different reaction mechanisms. In conclusion, the Fang mechanism can be selected to understand more accurately ignition, oxidation and flame characteristics of ammonia-n-heptane mixtures, while to reduce the engineering computational cost of the engine simulation, the Wang mechanism tends to be a good choice. Full article
Show Figures

Figure 1

5 pages, 585 KB  
Short Note
3-([4-(Acetylamino)phenyl]methoxy-1-carbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic Acid
by Kathryn N. Mayeaux, Bailey N. Baxter, Hannah K. Lawley, Caleb N. Lopansri, Mary Helene Marmande, Lucy A. Orr and David C. Forbes
Molbank 2025, 2025(3), M2056; https://doi.org/10.3390/M2056 - 30 Aug 2025
Viewed by 509
Abstract
Overexpression of protein phosphatase 5 (PP5) is linked to tumor cell growth, making it a candidate for small-molecule drug therapy. Since the PP2A domain has been selectively inhibited using functionalized scaffolds that maximize contacts, a similar approach is proposed to work for PP5. [...] Read more.
Overexpression of protein phosphatase 5 (PP5) is linked to tumor cell growth, making it a candidate for small-molecule drug therapy. Since the PP2A domain has been selectively inhibited using functionalized scaffolds that maximize contacts, a similar approach is proposed to work for PP5. As cantharidin’s demethylated cousin, norcantharidin, is a potent but unselective phosphatase inhibitor that can be prepared in just two synthetic steps, the bicyclic scaffold holds promise as an attractive target upon functionalization. Our hypothesis targets PP5 selectivity through derivatives of norcantharidin with functionalized attachments for optimal active-site binding. The methodology offers a promising platform for developing PP5-selective anticancer therapeutics. The approach reported herein exploits anhydride reactivity to yield a carboxylic acid derivative as our next-generation inhibitor of PP5. The methodology offers groundwork for future optimization of norcantharidin-based drug candidates with improved tumor selectivity, potency, and synthetic feasibility. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

14 pages, 5912 KB  
Article
Effects of Macrococcus caseolyticus on the Volatile Flavor Substances of Chinese-Style Sausage
by Yuanqing Gu, Xinya Chen, Jingjing Mao, Xin Nie, Chenglin Zhu, Qin Zou, Qiqi Luo, Yudi Zeng, Luca Laghi, Gianfranco Picone and Zhiping Zhao
Metabolites 2025, 15(9), 570; https://doi.org/10.3390/metabo15090570 - 26 Aug 2025
Viewed by 548
Abstract
Objectives: The primary objective of this study was to investigate the effects of Macrococcus caseolyticus isolated from Chinese bacon on the quality of Chinese-style sausages. Methods: The physicochemical properties and volatile flavor compounds (VOCs) of sausages inoculated with M. caseolyticus at different concentrations [...] Read more.
Objectives: The primary objective of this study was to investigate the effects of Macrococcus caseolyticus isolated from Chinese bacon on the quality of Chinese-style sausages. Methods: The physicochemical properties and volatile flavor compounds (VOCs) of sausages inoculated with M. caseolyticus at different concentrations (105, 106, and 107 CFU/g) were investigated. VOCs were detected using gas chromatography–ion mobility spectrometry (GC-IMS). Results: The sausages inoculated with M. caseolyticus showed progressive decreases in Aw, total volatile base nitrogen (TVB-N), malondialdehyde and carbonyl content during fermentation compared to the control sausage. A total of 90 VOCs were identified based on GC-IMS analysis, including 20 esters, 17 aldehydes, 22 alcohols, 12 ketones, 5 acids compounds, and 14 other compounds. M. caseolyticus-inoculated sausages exhibited elevated levels in alcohols and aldehydes, while the content of ketones was reduced compared to the control sausage. Multivariate statistical analysis indicated the significant differences in volatile flavor profiles among the sample and control sausages. Notably, seven VOCs in sausages, including 1-octen-3-ol, isoamyl alcohol, heptanal, hexanal, methyl 2-methylbutyrate, ethyl isovalerate and 2-pinene, were identified as the key aroma compounds (ROAV ≥ 1). Conclusions: The fermented sausages inoculated with different concentrations of M. caseolyticus exhibited significant differences in VOCs. This study provides the support for employing M. caseolyticus to improve the overall quality and flavor profile of Chinese-style sausage. Full article
Show Figures

Figure 1

18 pages, 3939 KB  
Article
Transparent Alicyclic Polyimides Prepared via Copolymerization or Crosslinking: Enhanced Flexibility and Optical Properties for Flexible Display Cover Windows
by Hyuck-Jin Kwon, Jun Hwang, Suk-Min Hong and Chil Won Lee
Polymers 2025, 17(15), 2081; https://doi.org/10.3390/polym17152081 - 30 Jul 2025
Viewed by 707
Abstract
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such [...] Read more.
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such as flexible display cover windows. Furthermore, the refractive index of most transparent polyimides is approximately 1.57, which differs from that of the optically clear adhesives (OCAs) and window materials that have values typically around 1.5, resulting in visual distortion. This study employed 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB) as the base structure of polyimides (6T). Additionally, 1,3-bis(aminomethyl)cyclohexane (BAC) with a monocyclic structure and bis(aminomethyl)bicyclo[2,2,1]heptane (BBH) with a bicyclic structure were introduced as co-monomers or crosslinking agents to 6T. The mechanical, thermal, and optical properties of the obtained copolymers (6T-BAC and 6T-BBH series) and crosslinked polymers (6T-CL-BAC and 6T-CL-BBH series) were compared. Both the copolymer series (6T-BAC and 6T-BBH) and the crosslinked series (6T-CL-BAC and 6T-CL-BBH) exhibited improved optical properties compared to the conventional 6T, with maximum transmittance exceeding 90% and refractive indices ranging from approximately 1.53 to 1.55. Notably, the copolymer series achieved transmittance levels above 95% and exhibited lower refractive indices (~1.53), demonstrating superior optical performance relative not only to the 6T baseline but also to the crosslinked series. The alicyclic polyimides synthesized in this study exhibited mechanical flexibility, high optical transmittance, and a refractive index approaching 1.5, demonstrating their applicability for use as flexible display cover window materials. Full article
Show Figures

Graphical abstract

24 pages, 2289 KB  
Article
Use of Volatile Organic Compounds Produced by Bacillus Bacteria for the Biological Control of Fusarium oxysporum
by Marcin Stocki, Natalia Stocka, Piotr Borowik, Marzenna Dudzińska, Amelia Staszowska, Adam Okorski and Tomasz Oszako
Forests 2025, 16(8), 1220; https://doi.org/10.3390/f16081220 - 24 Jul 2025
Cited by 1 | Viewed by 723
Abstract
Restricting the use of chemical pesticides in forestry requires the search for alternative solutions. These could be volatile organic compounds produced by three investigated species of bacteria (Bacillus amyloliquefaciens (ex Fukumoto) Priest, B. subtilis (Ehrenberg) Cohn and B. thuringiensis Berliner), which inhibit [...] Read more.
Restricting the use of chemical pesticides in forestry requires the search for alternative solutions. These could be volatile organic compounds produced by three investigated species of bacteria (Bacillus amyloliquefaciens (ex Fukumoto) Priest, B. subtilis (Ehrenberg) Cohn and B. thuringiensis Berliner), which inhibit the growth of the pathogen F. oxysporum Schltdl. emend. Snyder & Hansen in forest nurseries. The highest inhibition of fungal growth (70%) was observed with B. amyloliquefaciens after 24 h of antagonism test, which had a higher content of carbonyl compounds (46.83 ± 8.41%) than B. subtilis (41.50 ± 6.45%) or B. thuringiensis (34.62 ± 4.77%). Only in the volatile emissions of B. amyloliquefaciens were 3-hydroxybutan-2-one, undecan-2-one, dodecan-5-one and tetradecan-5-one found. In contrast, the main components of the volatile emissions of F. oxysporum were chlorinated derivatives of benzaldehyde (e.g., 3,5-dichloro-4-methoxybenzaldehyde) and chlorinated derivatives of benzene (e.g., 1,4-dichloro-2,5-dimethoxybenzene), as well as carbonyl compounds (e.g., benzaldehyde) and alcohols (e.g., benzyl alcohol). Further compounds were found in the interactions between B. amyloliquefaciens and F. oxysporum (e.g., α-cubebene, linalool, undecan-2-ol, decan-2-one and 2,6-dichloroanisole). Specific substances were found for B. amyloliquefaciens (limonene, nonan-2-ol, phenethyl alcohol, heptan-2-one and tridecan-2-one) and for F. oxysporum (propan-1-ol, propan-2-ol, heptan-2-one and tridecan-2-one). The amounts of volatile chemical compounds found in B. amyloliquefaciens or in the bacterium–fungus interaction can be used for further research to limit the pathogenic fungus. In the future, one should focus on the compounds that were found exclusively in interactions and whose content was higher than in isolated bacteria. In order to conquer an ecological niche, bacteria increase the production of secondary metabolites, including specific chemical compounds. The results presented are a prerequisite for creating an alternative solution or supplementing the currently used methods of plant protection against F. oxysporum. Understanding and applying the volatile organic compounds produced by bacteria can complement chemical plant protection against the pathogen, especially in greenhouses or tunnels where plants grow in conditions that favour fungal growth. Full article
(This article belongs to the Special Issue Advances in Forest Tree Seedling Cultivation Technology—2nd Edition)
Show Figures

Figure 1

14 pages, 1840 KB  
Article
Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes
by Gonçalo Jasmins, Tânia Azevedo, José S. Câmara and Rosa Perestrelo
Separations 2025, 12(8), 188; https://doi.org/10.3390/separations12080188 - 22 Jul 2025
Viewed by 470
Abstract
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum [...] Read more.
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum var. cerasiforme, and S. betaceum—encompassing six distinct varieties, through the application of headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS). A total of 55 volatile organic compounds (VOCs) spanning multiple chemical classes were identified, of which only 28 were ubiquitously present across all varieties examined. Carbonyl compounds constituted the predominant chemical family, with hexanal and (E)-2-hexenal emerging as putative key contributors to the characteristic green and fresh olfactory notes. Notably, esters were found to dominate the unique volatile fingerprint of cherry tomatoes, particularly methyl 2-hydroxybenzoate, while Kumato and Roma varieties exhibited elevated levels of furanic compounds. Multivariate statistical analyses, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), demonstrated clear varietal discrimination and identified potential aroma-associated biomarkers such as phenylethyl alcohol, 3-methyl-1-butanol, hexanal, (E)-2-octenal, (E)-2-nonenal, and heptanal. Collectively, these findings underscore the utility of volatilomic fingerprint as a robust tool for varietal identification and quality control within the food industry. Full article
Show Figures

Graphical abstract

21 pages, 4406 KB  
Article
Fermented Plant-Based Milks Based on Chestnut and Soybean: Comprehensive Evaluation of Fermentation Characteristics and Aroma Profiles Using Four Lactic Acid Bacteria Strains
by Qingyang Sun, Xiaowen Shi, Yue Zhao, Ruiguo Cui, Yaya Yao, Xiaoyu Liu, Haoran Wang, Li Zhang and Lijun Song
Foods 2025, 14(14), 2511; https://doi.org/10.3390/foods14142511 - 17 Jul 2025
Viewed by 591
Abstract
In this study, four lactic acid bacteria (LAB) strains, including Lactiplantibacillus plantarum CICC21790, Lacticaseibacillus casei CICC6117, Lacticaseibacillus rhamnosus ATCC7469, and Limosilactobacillus fermentum CICC22704, were used to ferment a plant-based milk composed of chestnut and soybean. The fermentative characteristics of the four LAB strains [...] Read more.
In this study, four lactic acid bacteria (LAB) strains, including Lactiplantibacillus plantarum CICC21790, Lacticaseibacillus casei CICC6117, Lacticaseibacillus rhamnosus ATCC7469, and Limosilactobacillus fermentum CICC22704, were used to ferment a plant-based milk composed of chestnut and soybean. The fermentative characteristics of the four LAB strains and the aroma characteristics of the resulting plant-based milks were systematically investigated. The results showed that all four LAB strains successfully fermented the plant-based milk. The viable cell counts ranged from 7.67 to 8.57 lg CFU mL−1, and pH values were between 3.80 and 4.10. Comprehensive analyses performed using E-nose and HS-GC-IMS revealed distinct aroma characteristics in plant-based milks fermented by different LAB strains. Specifically, LAB fermentation, particularly by the CICC22704, significantly reduced the concentrations of aldehydes (e.g., hexanal, heptanal), thereby diminishing Green aroma characteristics. The increased concentrations of alcohols (e.g., 1-pentanol), ketones (e.g., 2, 3-butanedione) and furan compounds (e.g., 2-pentylfuran) in fermented plant-based milks enhanced Pungent, Creamy, and Fruity aroma characteristics, respectively. Fermentation by CICC21790, ATCC7469, and CICC6117 may result in stronger intensities of these three aroma characteristics compared to fermentation by the CICC22704. For the Fatty aroma characteristic, it was enhanced by CICC21790 fermentation but diminished by ATCC7469, CICC6117, and CICC22704 fermentations. Full article
Show Figures

Figure 1

20 pages, 3241 KB  
Article
Amperometric Alcohol Vapour Detection and Mass Transport Diffusion Modelling in a Platinum-Based Sensor
by Luke Saunders, Ronan Baron and Benjamin R. Horrocks
Electrochem 2025, 6(3), 24; https://doi.org/10.3390/electrochem6030024 - 3 Jul 2025
Viewed by 686
Abstract
An important class of analytes are volatile organic carbons (VOCs), particularly aliphatic primary alcohols. Here, we report the straightforward modification of a commercially available carbon monoxide sensor to detect a range of aliphatic primary alcohols at room temperature. The mass transport mechanisms governing [...] Read more.
An important class of analytes are volatile organic carbons (VOCs), particularly aliphatic primary alcohols. Here, we report the straightforward modification of a commercially available carbon monoxide sensor to detect a range of aliphatic primary alcohols at room temperature. The mass transport mechanisms governing the performance of the sensor were investigated using diffusion in multiple layers of the sensor to model the response to an abrupt change in analyte concentration. The sensor was shown to have a large capacitance because of the nanoparticulate nature of the platinum working electrode. It was also shown that the modified sensor had performance characteristics that were mainly determined by the condensation of the analyte during diffusion through the membrane pores. The sensor was capable of a quantitative amperometric response (sensitivity of approximately 2.2 µA/ppm), with a limit of detection (LoD) of 17 ppm methanol, 2 ppm ethanol, 3 ppm heptan-1-ol, and displayed selectivity towards different VOC functional groups (the sensor gives an amperometric response to primary alcohols within 10 s, but not to esters or carboxylic acids). Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

26 pages, 6450 KB  
Article
Artificial Ageing Study and Evaluation of Methods for Oil Removal on Decorative Plaster in Artistic Hispano-Muslim Artworks
by Eva Vivar-García, Ana García-Bueno, Silvia Germinario, Marianna Potenza, Laura Bergamonti, Claudia Graiff and Antonella Casoli
Appl. Sci. 2025, 15(12), 6730; https://doi.org/10.3390/app15126730 - 16 Jun 2025
Cited by 1 | Viewed by 450
Abstract
This study investigates Hispano-Muslim plasterworks, exemplified by the Cuarto Real de Santo Domingo, the Madraza, and the Alhambra in Granada, focusing on cleaning methods to remove oil-based repaintings without damaging the original polychromies. To this end, samples replicating traditional materials (gypsum coating, pigments, [...] Read more.
This study investigates Hispano-Muslim plasterworks, exemplified by the Cuarto Real de Santo Domingo, the Madraza, and the Alhambra in Granada, focusing on cleaning methods to remove oil-based repaintings without damaging the original polychromies. To this end, samples replicating traditional materials (gypsum coating, pigments, and binders) and techniques (tempera painting) were prepared and subjected to an artificial ageing protocol (AAP). Subsequently, cleaning tests aimed at removing the oil repaintings were performed to recover the original polychromies. Analytical techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography–Mass Spectrometry (GC–MS), and colorimetry, were employed to evaluate ageing effects and cleaning efficacy. Results revealed significant chromatic alterations in vermilion and azurite bound with animal glue, while ochre remained comparatively stable. Chemical analyses indicated marked binder deterioration, including protein denaturation in animal glue and oxidation/polymerization in linseed oil. Cleaning tests demonstrated that both a heptane–acetone gel and a novel polyamidoamine–glycine (PAAGLY) treatment effectively removed oil-based repaintings while preserving the original layers. These findings highlight the critical role of pigment–binder interactions in conservation strategies and advocate for selective, minimally invasive restoration methods. Full article
Show Figures

Figure 1

24 pages, 8778 KB  
Article
Predictive Models for Single-Droplet Ignition in Static High-Temperature Air in Different Gravity Environments
by Xiaoyang Lan, Huilong Zheng, Yu Fang, Xianzhang Peng, Xiaofang Yang and Xiaowu Zhang
Appl. Sci. 2025, 15(12), 6558; https://doi.org/10.3390/app15126558 - 11 Jun 2025
Viewed by 640
Abstract
To address the design and optimization of the ignition system for the microgravity single-droplet combustion experiment module within the Combustion Science Experimental System (CSES) aboard the Chinese Space Station (CSS), it is essential to first determine the ignition temperatures required for typical liquid [...] Read more.
To address the design and optimization of the ignition system for the microgravity single-droplet combustion experiment module within the Combustion Science Experimental System (CSES) aboard the Chinese Space Station (CSS), it is essential to first determine the ignition temperatures required for typical liquid fuel droplets. In this study, ignition experiments were conducted on droplets of three representative hydrocarbon fuels—ethanol, n-heptane, and n-dodecane—in static air at high temperatures ranging from 760 K to 1100 K. The experimental results show that the initial droplet diameter is inversely correlated with the ambient temperature at which ignition occurs. Subsequently, based on Frank-Kamenetskii’s analytical method and combined with experimental data, a semi-empirical predictive model for droplet ignition temperatures in a normal-gravity environment was derived. Building upon this, and considering the characteristics of the microgravity environment, an appropriate empirical formula was applied to refine the model, resulting in a predictive model for droplet ignition temperatures in the microgravity environment. Furthermore, by comparing the experimental data and the observed phenomena from existing microgravity experiments, this semi-empirical predictive model used in the microgravity environment effectively reflects the trend of droplet ignition temperature variations. Full article
Show Figures

Figure 1

15 pages, 1237 KB  
Article
Recovery of β-Carotene from Microalga Dunaliella sp. by HPCCC
by Daniela Bárcenas-Pérez, Diana Gomes, Celina Parreira, Luís Costa and José Cheel
Processes 2025, 13(6), 1812; https://doi.org/10.3390/pr13061812 - 7 Jun 2025
Viewed by 730
Abstract
β-carotene, a high-value carotenoid widely used in the food, pharmaceutical, and cosmetics industries, is naturally synthesized by the microalga Dunaliella sp. However, the efficient extraction and purification of β-carotene from microalgae biomass remain a technical challenge. This study presents the development of a [...] Read more.
β-carotene, a high-value carotenoid widely used in the food, pharmaceutical, and cosmetics industries, is naturally synthesized by the microalga Dunaliella sp. However, the efficient extraction and purification of β-carotene from microalgae biomass remain a technical challenge. This study presents the development of a scalable and efficient isolation method employing high-performance countercurrent chromatography (HPCCC) to recover β-carotene from Dunaliella sp. The separation process was optimized by integrating two elution strategies (reverse phase and extrusion) using a biphasic solvent system of n-heptane and methanol (1:1, v/v). The upper phase served as the stationary phase, while the lower phase was used as the mobile phase. Two consecutive injections of 800 mg of microalgal extract each resulted in the isolation of 225.4 mg of β-carotene with a purity of 97% and a recovery of 98%. The developed HPCCC approach represents an efficient method for β-carotene purification and serves as a promising model for future scale-up in microalgae-based production platforms. Full article
Show Figures

Figure 1

Back to TopTop