Artificial Ageing Study and Evaluation of Methods for Oil Removal on Decorative Plaster in Artistic Hispano-Muslim Artworks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Artificial Ageing Protocol (AAP)
- Step 1: Freezer. The first phase consists of exposing the samples to sub-zero temperatures to simulate the temperature fluctuations typical of southern regions of Spain. To achieve this, the samples were placed in a freezing chamber for 3 h per day at an average temperature of −18 °C, with a temperature fluctuation range of ±2 °C.
- Step 2: Humidification chamber. The second phase provides for the introduction of the samples into a humidification chamber, for a total of 2 h per day, subjecting them to an environment with a saline humidity of 35 g/L of NaCl. This salinity concentration per liter is equivalent to that present in the Mediterranean Sea, which is found in the areas historically associated with the locations of the Hispano-Muslim plasterworks. The distribution of the saline mist in the humidity chamber is carried out in the form of water vapor, through two distribution systems located on the sides of the chamber and positioned above the samples. An amount of 1 L of saline solution is used over the course of 2 h, which corresponds to an administration rate of 0.39 g/L of saline solution per minute.
- Step 3: UV light lamp. The last stage reproduces the effect of UV light, using an OSRAM® Ultra Vitalux 300 W 230 V E27 lamp. This lamp simulates sunlight and specializes in material ageing, with a UVA radiated power of 13.6W and a UVB of 3.0W. The samples were subjected to UV light for 5 h a day. The OSRAM Ultra Vitalux 300 W 230 V E27 UV lamp (© 2025, OSRAM GmbH, Getafe, Spain) emits ultraviolet radiation in two specific spectral ranges: UVB (280–315 nm): 3.0 W; UVA (315–400 nm): 13.6 W.
2.3. Test for Oil Repainting Removal
2.4. Methodology for Assessing the Effectiveness of Artificial Ageing Protocol (AAP) and Treatments for Oil Repainting Removal
2.4.1. Colorimetric Characterization
2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.3. Gas Chromatography Coupled with Mass Spectrometry (GC–MS)
3. Results
3.1. Artificial Ageing Protocol (AAP)
3.1.1. Colorimetric Analysis
3.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.3. Gas Chromatography Coupled with Mass Spectrometry (GC–MS)
3.2. Test of Repainting Remotion
- Test 1: agar gel 5% DI water medium with heptane and acetone (50:50) applied at 20 min and 30 min.
- Test 5%: agar gels in PAAGLY, 20 and 30 min of application.
Gas Chromatography Coupled with Mass Spectrometry (GC–MS)
4. Discussion
4.1. Artificial Ageing Protocol (AAP)
4.1.1. Colorimetric Analysis
4.1.2. Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography Coupled with Mass Spectrometry (GC–MS)
4.2. Test for Oil Repainting Removal
5. Conclusions
- Chromatic Level: In the case of the original polychromy (Band A), azurite bound with animal glue exhibited a marked loss of lightness (L* parameter), which can be attributed to the effects of relative humidity during the ageing process. Vermilion, on the other hand, showed a reduction in both lightness and, more notably, chroma (saturation of the red component) when combined with either Arabic gum or animal glue. This behavior is associated with combined photodegradation and oxidation processes induced by exposure to ultraviolet light and high humidity conditions. In the oil-based overpaint layers (Band B), the ochre pigment demonstrated greater stability against artificial ageing, a result likely due to its mineral composition. In contrast, the mixture of artificial ultramarine blue with titanium white proved more susceptible to degradation, showing sensitivity to the acidity of the binder, which highlights its lower resistance under simulated deterioration conditions.
- Chemical Level: Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography coupled with Mass Spectrometry (GC–MS) analyses allowed for the characterization of chemical changes in the binders. In the case of Arabic gum, a reduction in reflectance peaks corresponding to hydroxyl and stretching of conjugated C=C double bonds were observed; however, no modifications were detected in its monosaccharide composition, suggesting that the changes are primarily due to a drying process rather than structural chemical alteration. Therefore, this is a physical change due to the loss of hydration water, rather than a chemical one. For animal glue, the analysis revealed both chemical and physical alterations. Fourier Transform Infrared Spectroscopy (FTIR) showed a decrease in the amide I and II bands, indicating partial denaturation of the protein matrix. However, Chromatography coupled with Mass Spectrometry (GC–MS) analysis revealed a 22% preservation of the main amino acids, suggesting no significant degradation of the peptide chains. The discrepancy between both methods points to surface-level degradation or conformational changes. Additionally, cracks and fissures were observed, likely caused by heat and UV radiation, confirming physical deterioration of the binder as well. In linseed oil, the analyses identified advanced oxidation and polymerization processes, evidenced by the appearance of new hydroxyl groups and a decrease in carbonyl and alkane groups. Additionally, the formation of dicarboxylic fatty acids such as sebacic, azelaic, and suberic acids, typical markers of aged oil, was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and Chromatography coupled with Mass Spectrometry (GC–MS). These chemical changes resulted in visible physical alterations, including craquelure. Therefore, linseed oil exhibited significant chemical and physical degradation following artificial ageing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Triano, A.V. Consideraciones generales sobre los programas decorativos de Madinat Al-Zahra. In Escultura Decorativa Tardorromana y Altomedieval en la Península Ibérica; Consejo Superior de Investigaciones Científicas (CSIC): Madrid, Spain, 2007; pp. 391–414. [Google Scholar]
- Almagro, A.; Orihuela, A. Propuesta de intervención en el Cuarto Real de Santo Domingo (Granada). Loggia Arquit. Restauración 1997, 4, 22–29. [Google Scholar] [CrossRef]
- Fernández-Puertas, A.; Jones, O. The Alhambra I: From the Ninth Century to Yūsuf I (1354); Saqi Books: London, UK, 1997. [Google Scholar]
- Almagro, A. Los Reales Alcázares de Sevilla. Artigrama 2007, 22, 155–185. [Google Scholar] [CrossRef]
- Alvárez-Romero, C.; García-Bueno, A.; López-Martínez, T.; Turatti-Guerrero, R.; Montoya, N.; Doménech-Carbó, M.T. New Insights into the Medieval Hispano-Muslim Panel Painting: The Alfarje Found in a Balearic Casal (Spain). Molecules 2023, 28, 1235. [Google Scholar] [CrossRef]
- Rubio, R. Yeserías de la Alhambra. Historia, Técnica y Conservación; Patronato de la Alhambra y Generalife: Granada, Spain, 2010. [Google Scholar]
- García, A.; y Medina, V.J. The Nasrid plasterwork at “qubba Dar al-Manjara l-kubra” in Granada: Characterisation of materials and techniques. J. Cult. Herit. 2004, 5, 75–89. [Google Scholar]
- Calero-Castillo, A.I.; Coba, A.; López, O.; García, A. Análisis de las policromías mudéjares del Patio de las Doncellas. Identificación de las intervenciones realizadas a lo largo de su historia. Conserv. Património 2022, 39, 8–23. [Google Scholar]
- García, A.; Hernández, A.; Medina, V.J. Las yeserías del Oratorio de la Madraza de Yūsuf I, Granada. Aportaciones de la documentación gráfica a la determinación de zonas originales y añadidos en el estudio preliminar. Al-Qantara 2010, 31, 257–267. [Google Scholar] [CrossRef]
- Bueno, A.G. El Color en la Decoración Arquitectónica Andalusí; Real Academia de Bellas Artes de San Fernando: Madrid, Spain, 2015. [Google Scholar]
- Anzani, M.; Berzioli, M.; Cagna, M.; Campani, E.; Casoli, A.; Cremonesi, P.; Fratelli, M.; Rabbolini, A.; Riggiardi, D. Gel rigidi di agar per il trattamento di pulitura di manufatti in gesso; Il Prato: Padova, Italy, 2008. [Google Scholar]
- González, I. Conservación de bienes culturales. Teoría, historia, principios y normas; Ediciones Cátedra: Madrid, Spain, 1999. [Google Scholar]
- Baglioni Poggi, G.; Ciolli, G.; Fratini, E.; Giorgi, R.; Baglioni, P. Smart cleaning of cultural heritage: A new challenge for soft nanoscience. Nanoscale 2012, 4, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, M.; Giorgi, R.; Berti, D.; Baglioni, P. A Triton X-100-based microemulsion for the removal of hydrophobic materials from works of art: SAXS characterization and application. Materials 2018, 11, 1144. [Google Scholar] [CrossRef] [PubMed]
- Ricci, C.; Gambino, F.; Nervo, M.; Piccirillo, A.; Scarcella, A.; Zenucchini, F.; Pozo-Antonio, J.S. Developing new cleaning strategies of cultural heritage stones: Are synergistic combinations of a low-toxic solvent ternary mixtures followed by laser the solution? Coatings 2020, 10, 466. [Google Scholar] [CrossRef]
- Biribicchi, C.; Giuliani, L.; Macchia, A.; Favero, G. Organogels for low-polar organic solvents: Potential applications on cultural heritage materials. Sustainability 2023, 15, 16305. [Google Scholar] [CrossRef]
- Cremonesi, P. L’uso dei Solventi Organici nella Pulitura di Opere Policrome; Il Prato: Padova, Italy, 2004. [Google Scholar]
- Guilminot, E. The use of hydrogels in the treatment of metal cultural heritage objects. Gels 2023, 9, 191. [Google Scholar] [CrossRef]
- Potenza, M.; Germinario, S.; Volpin, S.; Isella, E.; Cremonesi, P.; Casoli, A. Surfactant-Free w/o Gelled Emulsions with Benzyl Alcohol: Analytical Study for Varnish Removal on Oil Paintings. Appl. Sci. 2024, 14, 11821. [Google Scholar] [CrossRef]
- Martínez, M.A.; Calero, A.I.; Vivar, E.; Valero, E.M. Evaluation of Cleaning Processes Using Colorimetric and Spectral Data for the Removal of Layers of Limewash from Medieval Plasterwork. Sensors 2020, 20, 7147. [Google Scholar] [CrossRef] [PubMed]
- Al-Emam, E.; Ghafour, A.; Janssens, K.; Caen, J. Evaluation of polyvinyl alcohol–borax/agarose (PVA–B/AG) blend hydrogels for removal of deteriorated consolidants from ancient Egyptian wall paintings. Herit. Sci. 2019, 7, 22. [Google Scholar] [CrossRef]
- Girardi, F.; Bergamonti, L.; Isca, C.; Predieri, G.; Graiff, C.; Lottici, P.P.; Cappelletto, E.; Ataollahi, N.; Di Maggio, R. Chemical–physical characterization of ancient paper with functionalized polyamidoamines (PAAs). Cellulose 2017, 24, 1057–1068. [Google Scholar] [CrossRef]
- Bergamonti, L.; Graiff, C.; Isca, C.; Predieri, G.; Lottici, P.P.; Di Maggio, R.; Palantid, S.; Maistrelloe, L.; Montanari, M. Trattamenti sostenibili per la protezione e il consolidamento di legno e carta. La Chimica E L’Industria 2017, 5, 9–17. [Google Scholar]
- Lazzarini, L.; Laurenzi, M. Il restauro Della Pietra; CEDAM: Padova, Italy, 1986. [Google Scholar]
- Zumbühl, S.; Scherrer, N.; Ferreira, E.S.B.; Hons, S.; Müller, M.; Kuehnen, R.; Navi, P. Accelerated ageing of drying oil paint—An FTIR study on the chemical alteration: Problems of accelerated ageing under variable conditions of light, temperature and relative humidity. Z. Kunsttechnol. Konserv. 2011, 1, 339–351. [Google Scholar]
- Izzo, F.C.; Balliana, E.; Pinton, F.; Zendri, E. A preliminary study of the composition of commercial oil, acrylic and vinyl paints and their behaviour after accelerated ageing conditions. Conserv. Sci. Cult. Herit. 2014, 14, 353–369. [Google Scholar]
- Quishpe, L.M. Determinación del cambio químico que ocurre a través del tiempo en el óleo de materiales pictóricos empleando envejecimiento artificial mediante el seguimiento por técnicas instrumentales. Bachelor’s Thesis, Universidad de Quito, Quito, Ecuador, 2022. [Google Scholar]
- Sánchez, F.J.A.; Blasco-López, F.-J.; González, M.T. Durabilidad de las yeserías históricas. In El yeso en la Arquitectura Histórica; Arauz, D.S., Aguilar, A.S., Eds.; Universitat Politècnica de València: Valencia, Spain, 2022; pp. 53–66. [Google Scholar]
- Campani, E.; Casoli, A.; Cremonesi, P.; Saccani, I.; e Signorini, E. L’uso del agarosio e agar per la preparazione di gel rigidi; Il Prato: Padova, Italy, 2007. [Google Scholar]
- UNE-EN 15886:2011; Conservación del Patrimonio Cultural. Métodos de Ensayo. Medición del Color de Superficies. AENOR: Madrid, Spain, 2011.
- La Rusa, M.F.; Ruffolo, S.A.; Belfiore, C.M.; Comite, V.; Casoli, A.; Berzioli, M.; Nava, G. A scientific approach to the characterization of the painting technique of an author: The case of Raffaele Rinaldi. Appl. Phys. A Mater. Sci. Process. 2014, 114, 733–740. [Google Scholar] [CrossRef]
- Casoli, A.; Santoro, S. Organic materials in the wall paintings in Pompei: A case study of Insula del Centenario. BMC Chem. 2012, 6, 107. [Google Scholar] [CrossRef]
- Bonaduce, I.; Brecoulaki, H.; Colombini, M.P.; Lluveras, A.; Restivo, V.; Ribechini, E. Gas chromatographic–mass spectrometric characterisation of plant gums in samples from painted works of art. J. Chromatogr. 2007, 1175, 275–282. [Google Scholar] [CrossRef] [PubMed]
- UNE-ISO 12647-2:2016; Tecnología Gráfica. Control del Proceso para la Elaboración de Separaciones de Color, Pruebas e Impresos Tramados. Parte 2: Procesos Litográficos Offset. AENOR: Madrid, Spain, 2016.
- Spairani-Berrio, Y.; Huesca-Tortosa, J.A.; Rodríguez-Navarro, C.; González-Muñoz, M.T.; Jroundi, F. Bioconsolidation of Damaged Construction Calcarenites and Evaluation of the Improvement in Their Petrophysical and Mechanical Properties. Materials 2023, 16, 6043. [Google Scholar] [CrossRef] [PubMed]
- González-Cabrera, M.; Domínguez-Vidal, A.; Ayora-Cañada, M.J. Monitoring UV-accelerated alteration processes of paintings by means of hyperspectral micro-FTIR imaging and chemometrics. Spectrochim. Acta Parte A Espectroscopía Mol. Biomol. 2021, 53, 1386–1425. [Google Scholar] [CrossRef]
- Afifi, H.A.M.; Etman, M.E.; Abdrabbo, H.A.M.; Kamal, H.M. Typological study and non-destructive analytical approaches used for dating a polychrome gilded wooden statuette at the grand egyptian museum. Sci. Cult. 2020, 6, 69–83. [Google Scholar]
- Martínez, G.; Pérez, C.; Ortiz, J.; YAvilés, L. Gomas y aceites naturales utilizados en la microencapsulación efecto de la radiación gama; Natibilis Scientia: Ciudad de México, Mexico, 2015. [Google Scholar]
- Al-Gaoudi, A. Painted ancient egyptian mummy cloth of khonsuemrenep from bab el-gasus excavation: Scientific analysis and conservation strategy. Sci. Cult. 2020, 6, 49–64. [Google Scholar]
- De Viguerie, L.; Payard, P.A.; Portero, E.; Walter, P.; Cotte, M. The drying of linseed oil investigated by Fourier transform infrared spectroscopy: Historical recipes and influence of lead compounds. Prog. Org. Coat. 2016, 93, 46–60. [Google Scholar] [CrossRef]
- Alhasan, H.; Omran, A.R.; Al Mahmud, A.; Mady, A.H.; Thalji, M.R. Toxic Congo Red Dye Photodegradation Employing Green Synthesis of Zinc Oxide Nanoparticles Using Gum Arabic. Water 2024, 16, 2202. [Google Scholar] [CrossRef]
- Meilunas, R.J.; Bentsen, J.G.; Steinberg, A. Analysis of aged paint binders by ftir spectroscopy. Estud. Conserv. 1990, 35, 33–51. [Google Scholar] [CrossRef]
- Tammekivi, E.; Vahur, S.; Vilbaste, M.; Leito, I. Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios. Molecules 2021, 26, 2218. [Google Scholar] [CrossRef]
- Schilling, M.R.; y Khanjian, P. Gas Chromatographic Analysis of Amino Acids as Ethyl Chloroformate Derivatives. Part 2. Effects of Pigments and Accelerated Aging on the Identification of Proteinaceous Binding Media. J. Am. Inst. Conserv. 1997, 35, 123–144. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, L.; Wang, L.; Pitthard, V.; Bayerova, T.; Krist, G.; Zhao, X. The Influence of Natural Aging Exerting on the Stability of Some Proteinaceous Binding Media Commonly Used in Painted Artworks. Sci. Rep. 2022, 12, 1522. [Google Scholar] [CrossRef]
- Yadav, M.P.; Igartuburu, J.M.; Yan, Y.; Nothnagel, E.A. Chemical investigation of the structural basis of the emulsifying activity of gum arabic. Food Hydrocoll. 2007, 21, 297–308. [Google Scholar] [CrossRef]
- Lluveras-Tenorio, A.; Mazurek, J.; Restivo, A.; Colombini, A.P.; Bonaduce, I. Analysis of plant gums and saccharide materials in paint samples: Comparison of GC-MS analytical procedures and database. Chem. Cent. J. 2021, 6, 115. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.; Kirby, J. The Effect of Relative Humidity on Artists’ Pigments. Natl. Gallery Tech. Bull. 2004, 25, 62–72. [Google Scholar]
- Coccato, A.; Moens, L.; Vandenabeele, P. On the stability of mediaeval inorganic pigments: A literature review of the effect of climate, material selection, biological activity, analysis and conservation treatments. Herit. Sci. 2017, 5, 12. [Google Scholar] [CrossRef]
- Ntasi, G.; Sbriglia, S.; Pitocchi, R.; Vinciguerra, R.; Melchiorre, C.; Dello Ioio, L.; Fatigati, G.; Crisci, E.; Bonaduce, I.; Carpentieri, A.; et al. Proteomic Characterization of Collagen-Based Animal Glues for Restoration. J. Proteome Res. 2022, 21, 2173–2184. [Google Scholar] [CrossRef]
- Sionkowska, A. Effects of solar radiation on collagen and chitosan films. J. Photochem. Photobiol. B Biol. 2006, 81, 9–15. [Google Scholar] [CrossRef]
- Brambilla, L.; Riedo, C.; Baraldi, C.; Nevin, A.; Gamberini, M.C.; D’Andrea, C.; Chiantore, O.; Goidanich, S.; Toniolo, L. Characterization of fresh and aged natural ingredients used in historical ointments by molecular spectroscopic techniques: IR, Raman and fluorescence. Anal. Bioanal. Chem. 2011, 401, 1827–1837. [Google Scholar] [CrossRef]
- Lazzari, M.; Chiantore, O. Drying and oxidative degradation of linseed oil. Polym. Degrad. Stab. 1999, 65, 303–313. [Google Scholar] [CrossRef]
- Mills, J. The Gas Chromatographic Examination of Paint Media. Part I. Fatty Acid Composition and Identification of Dried Oil Films. Stud. Conserv. 1966, 11, 92–107. [Google Scholar]
- Barros, J.M. Los efectos del proceso de limpieza en las estructuras pictóricas. Espec. Monográfico Tur. Ciudad. Históricas 2001, 1, 53–61. [Google Scholar] [CrossRef]
- Cremonesi, P. L’uso di tensioattivi e chelanti nella pulitura di opere policrome; Il Prato: Padova, Italy, 2004. [Google Scholar]
Sample | Original Layer | Repainting | ||||||
---|---|---|---|---|---|---|---|---|
Pigment | Binder | Band | Name | Pigment | Binder | Band | Name | |
P1 | Azurite (a) | Animal Glue (Ca) | A | P1aCa(A) | Ultramarine Blue + Titanium White | Linseed Oil | B | P1aCa(B) |
Ochre | Linseed Oil | C | P1aCa(C) | |||||
Arabic Gum (Ga) | A | P1aGa(A) | Ultramarine Blue + Titanium White | Linseed Oil | B | P1aGa(B) | ||
Ochre | Linseed Oil | C | P1aGa(C) | |||||
P2 | Vermilion (v) | Animal Glue (Ca) | A | P2vCa(A) | Ultramarine Blue + Titanium White | Linseed Oil | B | P2vCa(B) |
Ochre | Linseed Oil | C | P2vCa(C) | |||||
Arabic Gum (Ga) | A | P2vGa(A) | Ultramarine Blue + Titanium White | Linseed Oil | B | P2vGa(B) | ||
Ochre | Linseed Oil | C | P2vGa(C) |
Medium | Agar 5% (w/v) | Test 5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Test 1 | Test 2 | Test 3 | Test 4 | ||||||
Cleaning agent | Heptane + Acetone (50:50 v/v) | Triton- X 100® | Heptane + Triton X 100® (50:50 v/v) | NaOH | PAAGLY Agar gel 5% (w/v) | |||||
Method | a | b | a | b | a | b | a | b | a | b |
Quantity | 150 µL | 100 µL | 150 µL | 100 µL | 150 µL | 100 µL | 150 µL | 100 µL | - | - |
Time | 30’ | 20’ | 30’ | 20’ | 30’ | 20’ | 30’ | 20’ | 30’ | 20’ |
Wash solution | Ammonium hydroxide buffered with carbonic acid wash solution—medium swab |
Sample | Before AAP | After AAP | Comparative | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
L*(D65) | a*(D65) | b*(D65) | L*(D65) | a*(D65) | b*(D65) | ΔE*Lab | %ΔL* | %ΔC* | %ΔH* | total | |
P1aCa(A) | 41.06 | −10.32 | −16.16 | 32.21 | −8.18 | −14.39 | 9.27 | 91.07 | 7.96 | 0.98 | 100 |
σ | 0.83 | 0.60 | 0.38 | 2.28 | 0.71 | 0.91 | 2.11 | 5.79 | 6.64 | 1.25 | - |
P1aCa(B) | 67.61 | −4.37 | −20.78 | 64.78 | −7.31 | −14.59 | 7.42 | 14.63 | 43.96 | 41.41 | 100 |
σ | 3.06 | 0.54 | 4.05 | 3.40 | 0.80 | 4.31 | 0.86 | 17.36 | 17.02 | 5.32 | - |
P1aCa(C) | 37.88 | 12.00 | 24.49 | 37.87 | 11.24 | 22.42 | 2.21 | 0.01 | 98.83 | 1.16 | 100 |
σ | 3.71 | 1.19 | 4.95 | 3.70 | 0.93 | 3.81 | 3.31 | 26.71 | 32.46 | 25.97 | - |
P1aGa(A) | 49.78 | −8.24 | −19.92 | 49.90 | −8.63 | −21.62 | 1.75 | 0.48 | 96.93 | 2.59 | 100 |
σ | 3.04 | 0.63 | 1.17 | 1.75 | 0.95 | 1.23 | 1.80 | 36.14 | 35.02 | 4.10 | - |
P1aGa(B) | 53.88 | 4.25 | −44.60 | 52.66 | 3.35 | −43.67 | 1.77 | 46.90 | 32.18 | 20.92 | 100 |
σ | 0.85 | 0.64 | 0.74 | 0.82 | 0.67 | 0.71 | 0.46 | 29.81 | 22.03 | 11.53 | - |
P1aGa(C) | 46.19 | 15.43 | 30.94 | 44.16 | 14.73 | 29.22 | 2.75 | 54.66 | 45.07 | 0.27 | 100 |
σ | 0.79 | 0.49 | 1.13 | 1.77 | 0.92 | 1.63 | 1.48 | 25.10 | 23.76 | 2.02 | - |
P2vCa(A) | 43.54 | 23.75 | 5.36 | 43.96 | 19.83 | 3.61 | 4.32 | 0.93 | 94.40 | 4.67 | 100 |
σ | 6.15 | 12.34 | 13.11 | 6.51 | 12.79 | 13.20 | 3.06 | 25.33 | 36.52 | 31.80 | - |
P2vCa(B) | 67.03 | −1.99 | −17.49 | 64.65 | −4.10 | −13.36 | 5.21 | 20.85 | 48.41 | 30.74 | 100 |
σ | 3.07 | 0.53 | 3.79 | 3.10 | 0.91 | 4.54 | 1.42 | 27.82 | 28.39 | 9.33 | - |
P2vCa(C) | 39.02 | 13.79 | 24.11 | 38.83 | 12.88 | 23.25 | 1.27 | 2.28 | 89.29 | 8.43 | 100 |
σ | 3.20 | 1.54 | 4.67 | 4.21 | 1.50 | 3.93 | 1.89 | 33.60 | 34.75 | 5.85 | - |
P2vGa(A) | 43.18 | 36.00 | 17.18 | 47.08 | 33.44 | 16.19 | 4.77 | 66.82 | 32.97 | 0.20 | 100 |
σ | 2.08 | 2.27 | 1.94 | 4.82 | 3.72 | 2.45 | 5.14 | 24.63 | 20.97 | 8.91 | - |
P2vGa(B) | 53.78 | 5.35 | −45.50 | 51.55 | 3.32 | −41.46 | 5.04 | 19.65 | 70.06 | 10.29 | 100 |
σ | 1.51 | 0.99 | 2.44 | 1.47 | 1.30 | 2.93 | 2.73 | 21.62 | 19.77 | 10.06 | - |
P2vGa(C) | 46.23 | 16.00 | 32.17 | 43.97 | 15.26 | 28.98 | 3.98 | 32.11 | 63.85 | 4.05 | 100 |
σ | 0.73 | 0.35 | 0.71 | 1.45 | 1.04 | 2.07 | 2.47 | 13.30 | 15.54 | 11.67 | - |
Amino Acids | P1aCa(A) | P2vCa(A) | P1aCa(A) Aged | P2vCa(A) Aged |
---|---|---|---|---|
µg/100 µg | ||||
ALA | 3.6 | 1.6 | 2.6 | 2.7 |
GLY | 10.8 | 4.1 | 4.1 | 5.8 |
LEU | 0.5 | 0.1 | 0.8 | 0.6 |
PRO | 6.7 | 2.0 | 3.0 | 3.8 |
HPRO | 6.4 | 2.9 | 5.3 | 3.9 |
ASP | 0.5 | 0.3 | 0.2 | 0.9 |
GLU | 2.4 | 0.8 | 0.9 | 1.3 |
PHE | 0.0 | 0.0 | 0.0 | 0.0 |
TOT | 30.9 | 11.7 | 16.8 | 19.0 |
MED | 22.0 | 22.7 |
Monosaccharides | P1aGa(A) | P2vGa(A) | P1aGa(A) Aged | P2vGa(A) Aged |
---|---|---|---|---|
µg/100 µg | ||||
Arabinose | 0.1 | 0.4 | 0.1 | 0.2 |
Rhamnose | 0.1 | 0.0 | 0.1 | 0.1 |
Galactose | 1.2 | 1.6 | 1.2 | 1.6 |
Glucose | 0.0 | 0.1 | 0.0 | 0.0 |
TOT | 1.4 | 2.1 | 1.4 | 1.9 |
MED | 1.6 | 1.7 |
Fatty Acids | P2aGa(B) | P2aGa(C) | P2aGa(B) Aged | P2aGa(C) Aged |
---|---|---|---|---|
% Rel Lip Tot | % Rel Lip Tot | % Rel Lip Tot | % Rel Lip Tot | |
C8D (suberic acid) | 2.81 | 0.68 | - | 2.59 |
C9D (azelaic acid) | 20.23 | 9.10 | 8.53 | 12.28 |
C10D (sebacic acid) | 0.43 | 0.15 | - | - |
C16 (palmitic acid) | 25.79 | 19.43 | 32.60 | 20.88 |
C18:1 (oleic acid) | 22.30 | 42.26 | 18.98 | 40.50 |
C18 (stearic acid) | 20.90 | 16.52 | 28.65 | 17.52 |
C18:2 (linolenic acid) | 20.90 | 16.52 | 28.65 | 17.52 |
Test | Medium Cleaning—Agar 5% DI Water | Test 5 PAAGLY Agar 5% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Test 1 Heptane + Acetone (50:50) | Test 2 Triton- X 100® | Test 3 Heptane + Triton X 100® (50:50) | Test 4 NaOH 0.1 M | ||||||||
Method | b | a | b | a | b | a | b | a | b | a | |
100 µL | 150 µL | 100 µL | 150 µL | 100 µL | 150 µL | 100 µL | 150 µL | - | - | ||
20’ | 30’ | 20’ | 30’ | 20’ | 30’ | 20’ | 30’ | 20’ | 30’ | ||
Samples | P1aCa(B) | R | ✓✓ | ✓ | R | ✓ | ✓ | ✓✓ | ✓ | ✓ | ✓ |
P2vCa(B) | R | ✓✓ | ✓ | X | ✓ | ✓ | R | ✓ | R | ✓✓ | |
P1aGa(B) | ✓ | ✓✓ | ✓ | X | R | ✓ | X | R | R | ✓ | |
P2vGa(B) | X | ✓✓ | R | R | R | X | X | R | X | X | |
P1aCa(C) | ✓ | ✓✓ | X | X | ✓ | X | X | ✓ | ✓✓ | R | |
P2vCa(C) | ✓ | ✓✓ | R | R | X | R | ✓ | R | ✓ | ✓✓ | |
P1aGa(C) | ✓✓ | X | R | X | X | X | X | X | R | X | |
P2vGa(C) | ✓ | ✓✓ | R | R | X | R | ✓ | R | ✓ | ✓✓ | |
General | ✓ | ✓✓ | R | X | X | X | X | R | ✓ | ✓✓ |
Treatments | Fatty Acid Removed (%) | Amino Acid Removed (%) | Polysaccharides Removed (%) |
---|---|---|---|
Test 1: Heptane/Acetone | 98 | 6 | 13 |
Test 2: Triton-X100 | 99 | 56 | 60 |
Test 3: Heptane/Triton-X100 | 95 | 52 | 45 |
Test 4: NaOH | 86 | 21 | 30 |
Test 5: PAAGLY | 88 | 6 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivar-García, E.; García-Bueno, A.; Germinario, S.; Potenza, M.; Bergamonti, L.; Graiff, C.; Casoli, A. Artificial Ageing Study and Evaluation of Methods for Oil Removal on Decorative Plaster in Artistic Hispano-Muslim Artworks. Appl. Sci. 2025, 15, 6730. https://doi.org/10.3390/app15126730
Vivar-García E, García-Bueno A, Germinario S, Potenza M, Bergamonti L, Graiff C, Casoli A. Artificial Ageing Study and Evaluation of Methods for Oil Removal on Decorative Plaster in Artistic Hispano-Muslim Artworks. Applied Sciences. 2025; 15(12):6730. https://doi.org/10.3390/app15126730
Chicago/Turabian StyleVivar-García, Eva, Ana García-Bueno, Silvia Germinario, Marianna Potenza, Laura Bergamonti, Claudia Graiff, and Antonella Casoli. 2025. "Artificial Ageing Study and Evaluation of Methods for Oil Removal on Decorative Plaster in Artistic Hispano-Muslim Artworks" Applied Sciences 15, no. 12: 6730. https://doi.org/10.3390/app15126730
APA StyleVivar-García, E., García-Bueno, A., Germinario, S., Potenza, M., Bergamonti, L., Graiff, C., & Casoli, A. (2025). Artificial Ageing Study and Evaluation of Methods for Oil Removal on Decorative Plaster in Artistic Hispano-Muslim Artworks. Applied Sciences, 15(12), 6730. https://doi.org/10.3390/app15126730