Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (119)

Search Parameters:
Keywords = high-risk clone ST357

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3521 KB  
Article
New Insights in blaKPC Gene Mobilization in Pseudomonas aeruginosa: Acquisition of blaKPC-3 and Identification of a New Tn2-like NTE Mobilizing blaKPC-2
by Deisy Abril, Juan Bravo-Ojeda, Julio-Cesar Garcia, Aura Lucia Leal-Castro, Carlos Humberto Saavedra-Trujillo, Johana Madroñero, Rosa-Helena Bustos, Ricaurte Alejandro Marquez-Ortiz, Zayda Lorena Corredor Rozo, Natasha Vanegas Gómez and Javier Escobar-Pérez
Antibiotics 2025, 14(9), 947; https://doi.org/10.3390/antibiotics14090947 - 19 Sep 2025
Viewed by 593
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is a major cause of healthcare associated infections in hospitalized patients and what is more warring with reduced therapeutic options. The KPC is a powerful enzyme capable of hydrolyzing the carbapenems, described first in Klebsiella pneumoniae and it already has [...] Read more.
Carbapenem-resistant Pseudomonas aeruginosa is a major cause of healthcare associated infections in hospitalized patients and what is more warring with reduced therapeutic options. The KPC is a powerful enzyme capable of hydrolyzing the carbapenems, described first in Klebsiella pneumoniae and it already has found in P. aeruginosa.Objective: To perform a comparative genomic analysis of two new genetic platforms mobilizing the blaKPC-2 and blaKPC-3 in two ST111 and ST235 pandemic clones of P. aeruginosa in Colombia, South America. Methods: Sixty-six blaKPC-harboring P. aeruginosa isolates were identified and characterized during a prospective study conducted in six high complex hospitals in Colombia. Genetic platforms mobilizing the blaKPC were analyzed. Results: The blaKPC-2 and blaKPC-3 were identified in 24 and 42 isolates, respectively. The blaKPC-2-harboring isolates belonged to ST235 and blaKPC-3 to ST111. The whole genome sequencing indicated that the blaKPC-3 gene was mobilized by the Tn4401b within a 55-kb-size environmental origin plasmid, which, in other isolates, was inserted into the chromosome through a transposition event of ISPa38. Regarding the blaKPC-2 gene, this was mobilized by a new Non-Tn4401 Element (NTE) derived from transposon Tn2 (proposed as variant IIg), which has been transposed into a 43-Kb-size little-studied plasmid related to Klebsiella spp. Conclusions: Our results reveal a new acquisition event of blaKPC in P. aeruginosa, in this case blaKPC-3. Likewise, the pandemic high-risk clones ST111 and ST235 of P. aeruginosa continues to spread blaKPC gene through different mobile genetic elements, jumping of conventional Tn4401b and acquiring new Tn2-derived NTE, which were inserted in diverse plasmids. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Graphical abstract

12 pages, 257 KB  
Article
Epidemiological and Microbiological Characterization of Carbapenemase-Producing Klebsiella pneumoniae Isolates in a Regional Greek Hospital: A Retrospective Study
by Pandora Tsolakidou and Maria Chatzidimitriou
Microorganisms 2025, 13(9), 2132; https://doi.org/10.3390/microorganisms13092132 - 12 Sep 2025
Viewed by 489
Abstract
Carbapenemase-producing Klebsiella pneumoniae (CRKP) is a critical public health threat, particularly in Greece, where high prevalence limits therapeutic options. This retrospective study analyzed 26 CRKP isolates recovered at the General Hospital of Volos between July 2024 and January 2025, aiming to correlate carbapenemase [...] Read more.
Carbapenemase-producing Klebsiella pneumoniae (CRKP) is a critical public health threat, particularly in Greece, where high prevalence limits therapeutic options. This retrospective study analyzed 26 CRKP isolates recovered at the General Hospital of Volos between July 2024 and January 2025, aiming to correlate carbapenemase phenotypes with clinical and epidemiological parameters. Demographic, clinical, and microbiological data were extracted from patient records, and isolates underwent phenotypic carbapenemase detection, antimicrobial susceptibility testing, and molecular characterization using real-time PCR; four isolates were further analyzed using whole-genome sequencing. CRKP was detected across multiple hospital departments, notably in the Emergency Department (n = 5) and Intensive Care Unit (n = 6). KPC producers predominated (n = 9), followed by NDM (n = 6), VIM (n = 1), and OXA-48 (n = 6). All VIM- or NDM + VIM-positive cases were associated with mortality. High-risk clones, including ST15, ST11, and ST307, were identified, with one ST15 isolate harboring blaNDM-1, blaVIM-1, and chromosomal colistin resistance; this is the first such report in Greece. Colistin and gentamicin were the most active agents in vitro; three isolates were pan-drug-resistant. The findings highlight significant CRKP circulation outside ICUs, the role of horizontal gene transfer in resistance dissemination, and the need to expand screening and rapid diagnostics to non-ICU settings. Enhanced molecular surveillance targeted at infection control and strengthened antimicrobial stewardship programs are essential for limiting the spread of CRKP. Full article
5 pages, 392 KB  
Proceeding Paper
Third-Generation Cephalosporin-Resistant Escherichia coli Isolates Belonging to High-Risk Clones Obtained from Fresh Pork Meat in La Plata City, Argentina
by Hernán D. Nievas, Raúl E. Iza, Camila Aurnague, Elisa Helman, Victorio F. Nievas, Oliver Mounsey, Lucia Galli and Fabiana A. Moredo
Med. Sci. Forum 2025, 35(1), 8; https://doi.org/10.3390/msf2025035008 - 27 Aug 2025
Viewed by 866
Abstract
High-risk clones represent a major concern, as they are very efficient vehicles for mobile genetic elements carrying antimicrobial resistance genes and therefore promote their spread, especially if they confer resistance to cefotaxime, ciprofloxacin, and fosfomycin, included within the highest-priority, critically important antimicrobial agents [...] Read more.
High-risk clones represent a major concern, as they are very efficient vehicles for mobile genetic elements carrying antimicrobial resistance genes and therefore promote their spread, especially if they confer resistance to cefotaxime, ciprofloxacin, and fosfomycin, included within the highest-priority, critically important antimicrobial agents (HPCIA). Between February 2022 and April 2024, 138 pork samples were obtained from 46 butcher shops in La Plata, Buenos Aires, Argentina. A total of 102 HPCIA-resistant E. coli were isolated. Eighty-five HPCIA-resistant E. coli were selected for whole-genome sequencing. Of these, 27 belonged to 9 clones described as high risk: ST101 (n = 5), ST10 (n = 4), ST48 (n = 4), ST744 (n = 4), ST23 (n = 3), ST58 (n = 2), ST88 (n = 2), ST117 (n = 2), and ST410 (n = 1). Twelve of them were third-generation cephalosporin-resistant. Resistance was mediated by blaCTX-M-55 (n = 7), blaCTX-M-14 (n = 4), blaCTX-M-8 (n = 1), and blaCMY-2 (n = 1). This study highlights the importance of food products and the food production chain as reservoirs of high-risk clones and resistance genes of epidemiological relevance to public health. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

24 pages, 1320 KB  
Article
Genomic Epidemiology of ESBL- and Carbapenemase-Producing Enterobacterales in a Spanish Hospital: Exploring the Clinical–Environmental Interface
by Sandra A. Martínez-Álvarez, María Ángeles Asencio-Egea, María Huertas-Vaquero, Teresa Cardona-Cabrera, Myriam Zarazaga, Ursula Höfle and Carmen Torres
Microorganisms 2025, 13(8), 1854; https://doi.org/10.3390/microorganisms13081854 - 8 Aug 2025
Cited by 1 | Viewed by 964
Abstract
Antimicrobial resistance (AMR), particularly due to extended-spectrum β-lactamases (ESBLs) and carbapenemases (CPs), poses a critical threat to global health. This study aimed to characterize the molecular epidemiology, resistance profiles, and genomic features of ESBL- and CP-producing Escherichia coli and Klebsiella pneumonaie (ESBL/CP-Ec/Kp) isolates [...] Read more.
Antimicrobial resistance (AMR), particularly due to extended-spectrum β-lactamases (ESBLs) and carbapenemases (CPs), poses a critical threat to global health. This study aimed to characterize the molecular epidemiology, resistance profiles, and genomic features of ESBL- and CP-producing Escherichia coli and Klebsiella pneumonaie (ESBL/CP-Ec/Kp) isolates from a Spanish hospital (2020–2024) and explore links to environmental reservoirs like white storks foraging at a nearby landfill. A total of 121 clinical Ec/Kp isolates (55 ESBL-Ec, 1 CP-Ec, 35 ESBL-Kp, 17 CP-Kp, 13 ESBL+CP-Kp) underwent phenotypic testing, PCR, and whole-genome sequencing (WGS). Analyses included phylogenomics (cgMLST), detection of AMR genes, plasmid typing, and comparative genomics. Among ESBL-Ec, blaCTX-M-15 was the most prevalent (60.0%), and one CP-Ec carrying blaNDM-5 was identified. WGS of 44 selected ESBL/CP-Ec isolates revealed a variety of AMR genes, and 56.8% of isolates carried class one integrons (56.8%). IncF-type plasmids predominated, and 84.1% of isolates were assigned as ExPEC/UPEC. The lineage ST131 dominated (75%), with IncF-blaCTX-M-15-carrying plasmids. Among the 18 ESBL/CP-Kp isolates sequenced, the lineage ST307 was the most frequent (44.4%), followed by ST15 and ST11, carrying a diversity of AMR determinants and plasmids (IncFIB(K), IncL, ColpVC). Virulence included ybt loci in ICEKp; hypervirulence genes were absent. Genomic analysis of 62 clinical isolates (44 Ec, 18 Kp) showed close phylogenetic links to stork-derived strains, with ST131-Ec and ST307-Kp from humans and birds differing just by ≤22 and ≤10 ADs, respectively, with a conserved plasmid content (i.e., IncL-blaOXA-48, IncFIB(K)-blaCTX-M-15). High-risk ESBL/CP-Ec/Kp clones persist across clinical and environmental contexts. WGS-based surveillance is key for understanding AMR spread and guiding interventions. Results support a One Health approach to combat AMR through cross-sector collaboration. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

15 pages, 2742 KB  
Article
Resistome and Phylogenomics of Escherichia coli Strains Obtained from Diverse Sources in Jimma, Ethiopia
by Mulatu Gashaw, Esayas Kebede Gudina, Guenter Froeschl, Ralph Matar, Solomon Ali, Liegl Gabriele, Amelie Hohensee, Thomas Seeholzer, Arne Kroidl and Andreas Wieser
Antibiotics 2025, 14(7), 706; https://doi.org/10.3390/antibiotics14070706 - 14 Jul 2025
Viewed by 669
Abstract
Introduction: In recent years, antimicrobial resistance (AMR) rates have increased significantly in bacterial pathogens, particularly extended beta-lactam resistance. This study aimed to investigate resistome and phylogenomics of Escherichia coli (E. coli) strains isolated from various sources in Jimma, Ethiopia. Methods [...] Read more.
Introduction: In recent years, antimicrobial resistance (AMR) rates have increased significantly in bacterial pathogens, particularly extended beta-lactam resistance. This study aimed to investigate resistome and phylogenomics of Escherichia coli (E. coli) strains isolated from various sources in Jimma, Ethiopia. Methods: Phenotypic antibiotic resistance patterns of E. coli isolates were determined using automated Kirby–Bauer disc diffusion and minimum inhibitory concentration (MIC). Isolates exhibiting phenotypic resistance to beta-lactam antibiotics were further analyzed with a DNA microarray to confirm the presence of resistance-encoding genes. Additionally, multilocus sequence typing (MLST) of seven housekeeping genes was conducted using PCR and Oxford Nanopore-Technology (ONT) to assess the phylogenetic relationships among the E. coli isolates. Results: A total of 611 E. coli isolates from human, animal, and environmental sources were analyzed. Of these, 41.6% (254) showed phenotypic resistance to at least one of the tested beta-lactams, 96.1% (244) thereof were confirmed genotypically. More than half of the isolates (53.3%) had two or more resistance genes present. The most frequent ESBL-encoding gene was CTX-M-15 (74.2%; 181), followed by TEM (59.4%; 145) and CTX-M-9 (4.1%; 10). The predominant carbapenemase gene was NDM-1, detected in 80% (12 out of 15) of carbapenem-resistant isolates. A phylogenetic analysis revealed clonality among the strains obtained from various sources, with international high-risk clones such as ST131, ST648, ST38, ST73, and ST405 identified across various niches. Conclusions: The high prevalence of CTX-M-15 and NDM-1 in multidrug-resistant E. coli isolates indicates the growing threat of AMR in Ethiopia. The discovery of these high-risk clones in various niches shows possible routes of transmission and highlights the necessity of a One Health approach to intervention and surveillance. Strengthening antimicrobial stewardship, infection prevention, and control measures are crucial to mitigate the spread of these resistant strains. Full article
Show Figures

Figure 1

21 pages, 1308 KB  
Article
Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics
by Alexander Tristancho-Baró, Ana Isabel López-Calleja, Ana Milagro, Mónica Ariza, Víctor Viñeta, Blanca Fortuño, Concepción López, Miriam Latorre-Millán, Laura Clusa, David Badenas-Alzugaray, Rosa Martínez, Carmen Torres and Antonio Rezusta
Antibiotics 2025, 14(7), 703; https://doi.org/10.3390/antibiotics14070703 - 12 Jul 2025
Cited by 2 | Viewed by 1414
Abstract
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims [...] Read more.
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims to investigate the genomic determinants associated with cefiderocol resistance in CPE isolates of human origin. Methods: Comparative genomic analyses were conducted between cefiderocol-susceptible and -resistant CPE isolates recovered from human clinical and epidemiological samples at a tertiary care hospital. Whole-genome sequencing, variant annotation, structural modelling, and pangenome analysis were performed to characterize resistance mechanisms. Results: A total of 59 isolates (29 resistant and 30 susceptible) were analyzed, predominantly comprising Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae. The most frequent carbapenemase gene among the resistant isolates was blaNDM, which was also present in a subset of susceptible strains. The resistant isolates exhibited a significantly higher burden of non-synonymous mutations in their siderophore receptor genes, notably within fecR, fecA, fiu, and cirA. Structural modelling predicted deleterious effects for mutations such as fecR:G104S and fecA:A190T. Additionally, porin loss and loop 3 insertions (e.g., GD/TD) in OmpK36, as well as OmpK35 truncations, were more frequent in the resistant isolates, particularly in high-risk clones such as ST395 and ST512. Genes associated with toxin–antitoxin systems (chpB2, pemI) and a hypothetical metalloprotease (group_2577) were uniquely found in the resistant group. Conclusions: Cefiderocol resistance in CPE appears to be multifactorial. NDM-type metallo-β-lactamases and missense mutations in siderophore uptake systems—especially in those encoded by fec, fhu, and cir operons—play a central role. These may be further potentiated by alterations in membrane permeability, such as porin disruption and efflux deregulation. The integration of genomic and structural approaches provides valuable insights into emerging resistance mechanisms and may support the development of diagnostic tools and therapeutic strategies. Full article
Show Figures

Graphical abstract

15 pages, 1266 KB  
Article
Detection of the ST111 Global High-Risk Pseudomonas aeruginosa Clone in a Subway Underpass
by Balázs Libisch, Chioma Lilian Ozoaduche, Tibor Keresztény, Anniek Bus, Tommy Van Limbergen, Katalin Posta and Ferenc Olasz
Curr. Issues Mol. Biol. 2025, 47(7), 532; https://doi.org/10.3390/cimb47070532 - 9 Jul 2025
Viewed by 802
Abstract
P. aeruginosa strain NL201 was cultured from an urban water drain in a populated subway underpass as an environmental isolate for the ST111 global high-risk P. aeruginosa clone. In addition to carrying generally present intrinsic P. aeruginosa antibiotic resistance genes, this serotype O4 [...] Read more.
P. aeruginosa strain NL201 was cultured from an urban water drain in a populated subway underpass as an environmental isolate for the ST111 global high-risk P. aeruginosa clone. In addition to carrying generally present intrinsic P. aeruginosa antibiotic resistance genes, this serotype O4 isolate also carries a set of additional acquired resistance determinants, including aadA2, blaOXA-10, sul1, and an aac(6′)-Ib family gene. The NL201 isolate features the blaPDC-3 allele, which was found to confer significantly higher catalytic efficiency against cefepime and imipenem compared to blaPDC-1, as well as the potent P. aeruginosa virulence factors exoS, exoT, and algD. Serotype O4 isolates of the ST111 global high-risk P. aeruginosa clone have been reported from clinical samples in Canada and the USA, human stool samples in France, and environmental samples (such as cosmetic, hospital drains, and urban water drain) from various European countries. These observations underscore the effective dissemination of the ST111 global high-risk P. aeruginosa clone between different hosts, environments, and habitats, and they warrant targeted investigations from a One Health perspective on the possible routes of its spread and molecular evolution. Full article
Show Figures

Figure 1

16 pages, 1870 KB  
Article
Companion Animals as Reservoirs of Multidrug Resistance—A Rare Case of an XDR, NDM-1-Producing Pseudomonas aeruginosa Strain of Feline Origin in Greece
by Marios Lysitsas, Eleftherios Triantafillou, Irene Chatzipanagiotidou, Anastasios Triantafillou, Georgia Agorou, Maria Eleni Filippitzi, Antonis Giakountis and George Valiakos
Vet. Sci. 2025, 12(6), 576; https://doi.org/10.3390/vetsci12060576 - 12 Jun 2025
Viewed by 1799
Abstract
A backyard cat with symptoms of otitis was transferred to a veterinary clinic in Central Greece. A sample was obtained and P. aeruginosa was isolated. The strain exhibited an extensively drug-resistant (XDR) profile, as it was non-susceptible to all tested agents except colistin. [...] Read more.
A backyard cat with symptoms of otitis was transferred to a veterinary clinic in Central Greece. A sample was obtained and P. aeruginosa was isolated. The strain exhibited an extensively drug-resistant (XDR) profile, as it was non-susceptible to all tested agents except colistin. DNA extraction and whole-genome sequencing (WGS) were performed using a robotic extractor and Ion Torrent technology, respectively. The genome was assembled and screened for resistance and virulence determinants. The isolate belonged to the high-risk clone ST308 with a total of 67 antibiotic resistance genes (ARGs) and 221 virulence factor-related genes being identified. No plasmids were detected. The metallo-beta-lactamase (MBL) blaNDM-1 gene and 46 efflux pumps were included in the strain’s resistome. Both ARGs conferring tolerance to disinfecting agents and biofilm-related genes were identified, associated with the ability of this clone to adapt and persist in healthcare facilities. This case highlights the risk of relevant bacterial clones spreading in the community and even being transmitted to companion animals, causing challenging opportunistic infections to susceptible individuals, while others may become carriers, further spreading the clones to their owners, other animals and the environment. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

14 pages, 1347 KB  
Article
Genomic Characterization of Carbapenem-Resistant Acinetobacter baumannii (OXA-23) and Klebsiella pneumoniae (KPC-2) Causing Hospital-Acquired Infections in Dogs
by Isabela Pádua Zanon, João Victor Ferreira Campos, Yasmin Gonçalves de Castro, Isadora Maria Soares de Melo, Flávia Figueira Aburjaile, Bertram Brenig, Vasco Azevedo and Rodrigo Otávio Silveira Silva
Antibiotics 2025, 14(6), 584; https://doi.org/10.3390/antibiotics14060584 - 6 Jun 2025
Viewed by 1438
Abstract
Background/Objectives: Antimicrobial resistance is a major global health threat. Among the most problematic pathogens are carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae, which are significant causes of mortality in humans, particularly in the context of nosocomial infections. In companion animals, these bacteria have [...] Read more.
Background/Objectives: Antimicrobial resistance is a major global health threat. Among the most problematic pathogens are carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae, which are significant causes of mortality in humans, particularly in the context of nosocomial infections. In companion animals, these bacteria have been reported mainly as colonizers of healthy animals or, less frequently, in community-acquired infections. However, no confirmed cases of healthcare-associated infections caused by these species have been documented in this population. This study reports the first confirmed fatal cases of infection with carbapenem-resistant A. baumannii and KPC-producing K. pneumoniae in dogs. Methods: Three hospitalized dogs developed infections associated with distinct anatomical devices, including a venous catheter, an endotracheal tube, and a Penrose drain. Bacterial isolation followed by antimicrobial susceptibility testing identified carbapenem-resistant A. baumannii and K. pneumoniae. The isolates were subsequently subjected to additional antimicrobial resistance tests and whole-genome sequencing (WGS). Results: WGS confirmed the presence of the OXA-23 carbapenemase gene in both A. baumannii isolates and the KPC-2 carbapenemase gene was detected in the K. pneumoniae strain. All three strains exhibited resistance to multiple antimicrobial classes, including β-lactams (amoxicillin-clavulanic acid, ampicillin, cephalotin, piperacillin-tazobactam, cefoxitin, ceftiofur, cefotaxime, ertapenem, imipenem and meropenem), aminoglycosides (gentamicin, neomycin), tetracyclines (doxycycline, tetracycline and oxytetracycline), fluoroquinolones (ciprofloxacin, enrofloxacin), and folate pathway antagonists (trimethoprim-sulfamethoxazole). Multilocus sequence typing identified two high-risk clones: K. pneumoniae ST340 (CC258) and A. baumannii ST15 (CC15). Single nucleotide polymorphism analysis confirmed a high degree of genetic similarity between these isolates and strains previously associated with human infections in Brazil. Conclusions: These findings provide the first evidence of fatal, healthcare-associated infections caused by these multidrug-resistant pathogens in dogs and underscore the need to strengthen surveillance and infection control practices in veterinary hospitals. Furthermore, the results raise concerns about the potential of companion animals to act as reservoirs for multidrug-resistant organisms of public health relevance. Full article
Show Figures

Figure 1

13 pages, 263 KB  
Article
Report of High-Risk Carbapenem-Resistant K. pneumoniae ST307 Clone Producing KPC-2, SHV-106, CTX-M-15, and VEB-1 in Greece
by Maria Chatzidimitriou, Pandora Tsolakidou, Maria Anna Kyriazidi, Sotiris Varlamis, Ilias S. Frydas, Maria Mavridou and Stella Mitka
Antibiotics 2025, 14(6), 567; https://doi.org/10.3390/antibiotics14060567 - 31 May 2025
Cited by 3 | Viewed by 1199
Abstract
Background/Objectives: Klebsiella pneumoniae ST307 is emerging as a significant global high-risk antimicrobial-resistant (AMR) clone with a notable capacity to acquire and disseminate resistance genes. However, there is limited research on the pathogenicity, virulence, and adaptation of ST307 strains and on the clinical characteristics [...] Read more.
Background/Objectives: Klebsiella pneumoniae ST307 is emerging as a significant global high-risk antimicrobial-resistant (AMR) clone with a notable capacity to acquire and disseminate resistance genes. However, there is limited research on the pathogenicity, virulence, and adaptation of ST307 strains and on the clinical characteristics of infected patients. Methods: In this study, a carbapenem-resistant K. pneumoniae (CRKP) ST307 strain named U989 was isolated from a urine culture of a hospitalized patient in Volos, Greece, in July 2024. Whole-genome sequencing was performed to identify resistance genes to β-lactams blaKPC-2, blaCTX-M-15, blaTEM-1B, blaOXA-1, blaOXA-10, blaSHV-106, and blaVEB-1 and resistance genes to other antibiotics. Results: A genomic analysis also revealed the presence of virulence factors such as iutA, clpK1, fyuA, fimH, mrkA, Irp2, and TraT and an IncFiB(pQil)/IncFII(K) replicon, which harbors the blaKPC-2 gene. Additionally, the transposable element Tn4401 was identified as a key vehicle for the mobilization of the blaKPC-2 resistance gene. Finally, this is the report of a high-risk CRKP ST307 clone expressing KPC-2, SHV-106, CTX-M-15, and VEB-1 bla genes in Greece. Conclusions: The coexistence of these resistance genes in addition to aminoglycoside, quinolone, and other resistance genes results in difficult-to-treat infections caused by respective carrier strains, often requiring the use of last-resort antibiotics and contributing to the global challenge of antimicrobial resistance. Full article
25 pages, 1360 KB  
Article
Phenotypic and Genotypic Characterization of ESBL-, AmpC-, and Carbapenemase-Producing Klebsiella pneumoniae and High-Risk Escherichia coli CC131, with the First Report of ST1193 as a Causative Agent of Urinary Tract Infections in Human Patients in Algeria
by Hajer Ziadi, Fadela Chougrani, Abderrahim Cheriguene, Leticia Carballeira, Vanesa García and Azucena Mora
Antibiotics 2025, 14(5), 485; https://doi.org/10.3390/antibiotics14050485 - 9 May 2025
Viewed by 1777
Abstract
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal [...] Read more.
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal diversity, and antibiotic resistance profiles of extended-spectrum cephalosporin (ESC)-E. coli and K. pneumoniae causing UTIs in humans in the Tebessa region of Algeria. Methods: Forty E. coli and 17 K. pneumoniae isolates exhibiting ESC-resistance were recovered (July 2022–January 2024) from urine samples of patients at three healthcare facilities to be phenotypically and genotypically characterized. Whole genome sequencing (WGS) was performed on the ST1193 clone. Results: Among K. pneumoniae isolates, all except one harbored CTX-M-15, with a single isolate carrying blaCTX-M-194. Additionally, two K. pneumoniae isolates co-harboring blaCTX-M-15 and blaNDM exhibited phenotypic and genotypic hypervirulence traits. Fluoroquinolone resistance (FQR) was detected in 94.1% of K. pneumoniae isolates. The E. coli isolates carried diverse ESC-resistance genes, including CTX-M-15 (87.5%), CTX-M-27 (5%), CTX-M-1, CMY-59, and CMY-166 (2.5% each). Co-carriage of blaESC and blaOXA-48 was identified in three E. coli isolates, while 62.5% exhibited FQR. Phylogenetic analysis revealed that 52.5% of E. coli belonged to phylogroup B2, including the high-risk clonal complex (CC)131 CH40-30 (17 isolates) and ST1193 (one isolate). In silico analysis of the ST1193 genome determined O75:H5-B2 (CH14-64), and the carriage of IncI1-I(Alpha) and IncF [F-:A1:B10] plasmids. Notably, core genome single-nucleotide polymorphism (SNP) analysis demonstrated high similarity between the Algerian ST1193 isolate and a previously annotated genome from a hospital in Northwest Spain. Conclusions: This study highlights the spread and genetic diversity of E. coli CC131 CH40-30 and hypervirulent K. pneumoniae clones in Algeria. It represents the first report of a CTX-M-15-carrying E. coli ST1193 in the region. The findings emphasize the urgent need for antibiotic optimization programs and enhanced surveillance to curb the dissemination of high-risk clones that pose an increasing public health threat in Algeria. A simplified method based on virulence traits for E. coli and K. pneumoniae is proposed here for antimicrobial resistance (AMR) monitoring. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

16 pages, 3095 KB  
Article
High Prevalence of Cefiderocol Resistance Among New Delhi Metallo-β-Lactamase Producing Klebsiella pneumoniae High-Risk Clones in Hungary
by Lilla Buzgó, Zsanett Kiss, Dániel Göbhardter, Virág Lesinszki, Erika Ungvári, Zoltán Rádai, Levente Laczkó, Ivelina Damjanova, Gábor Kardos and Ákos Tóth
Antibiotics 2025, 14(5), 475; https://doi.org/10.3390/antibiotics14050475 - 8 May 2025
Cited by 1 | Viewed by 1127
Abstract
Background/Objectives: The global spread of carbapenemase-producing K. pneumoniae (CPKP) strains represent a severe public health threat due to very limited choice of antibacterial therapy. Cefiderocol, a novel siderophore-cephalosporin, may represent a new therapeutic option but resistance is increasingly being described. Our aim was [...] Read more.
Background/Objectives: The global spread of carbapenemase-producing K. pneumoniae (CPKP) strains represent a severe public health threat due to very limited choice of antibacterial therapy. Cefiderocol, a novel siderophore-cephalosporin, may represent a new therapeutic option but resistance is increasingly being described. Our aim was to investigate in vitro cefiderocol susceptibility among CPKP strains in Hungary and assess correlations between resistance, carbapenemase types, and clonal lineages. Methods: The study was performed on 420 CPKP strains from 34 Hungarian healthcare institutes (HCIs) submitted to the National Reference Laboratory of Antimicrobial Resistance (March 2021 to April 2023). The disk diffusion method (Liofilchem, Via Scozia, Italy) was used for in vitro cefiderocol susceptibility testing (according to EUCAST guidelines). For molecular epidemiologic investigation, we used whole genome sequencing (Illumina MiSeq, 150 bp paired-end) and pulsed-field gel electrophoresis (PFGE). Carbapenemase gene type was determined by multiplex PCR. Statistical analysis was performed in R (v.4.2.0). Results: Dominant high-risk clones (ST147, ST395, ST258) exhibited regional distribution, with ST147/NDM-1 strains showing the highest cefiderocol resistance (75%). Overall resistance was 65%. Carbapenemase gene types occurred as follows: 35 blaVIM, 53 blaKPC, 57 blaOXA-48-like, 153 blaNDM, and 122 blaOXA-48-like+blaNDM. Cefiderocol resistance rates by carbapenemase type were 20%, 44%, 70%, and 75% in the case of blaVIM, blaOXA-48-like, blaKPC, blaNDM, and blaOXA-48-like+blaNDM. Conclusions: The results show a high prevalence of cefiderocol resistance in CPKP in Hungary, with different rates of resistance in different carbapenemase gene-carrying high-risk clones, highlighting the growing challenge in treating these infections. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

25 pages, 1368 KB  
Article
Mutational Analysis of Colistin-Resistant Pseudomonas aeruginosa Isolates: From Genomic Background to Antibiotic Resistance
by Telma De Sousa, Hsin-Yao Wang, Ting-Wei Lin, Manuela Caniça, Miguel J. N. Ramos, Daniela Santos, Catarina Silva, Sónia Saraiva, Racha Beyrouthy, Richard Bonnet, Michel Hébraud, Gilberto Igrejas and Patrícia Poeta
Pathogens 2025, 14(4), 387; https://doi.org/10.3390/pathogens14040387 - 15 Apr 2025
Viewed by 1322
Abstract
This study analyzed eleven isolates of colistin-resistant Pseudomonas aeruginosa, originating from Portugal and Taiwan, which are associated with various pathologies. The results revealed significant genetic diversity among the isolates, with each exhibiting a distinct genetic profile. A prevalence of sequence type ST235 [...] Read more.
This study analyzed eleven isolates of colistin-resistant Pseudomonas aeruginosa, originating from Portugal and Taiwan, which are associated with various pathologies. The results revealed significant genetic diversity among the isolates, with each exhibiting a distinct genetic profile. A prevalence of sequence type ST235 was observed, characterizing it as a high-risk clone, and serotyping indicated a predominance of type O11, associated with chronic respiratory infections in cystic fibrosis (CF) patients. The phylogenetic analysis demonstrated genetic diversity among the isolates, with distinct clades and complex evolutionary relationships. Additionally, transposable elements such as Tn3 and IS6 were identified in all isolates, highlighting their importance in the mobility of antibiotic resistance genes. An analysis of antimicrobial resistance profiles revealed pan-drug resistance in all isolates, with a high prevalence of genes conferring resistance to β-lactams and aminoglycosides. Furthermore, additional analyses revealed mutations in regulatory networks and specific loci previously implicated in colistin resistance, such as pmrA, cprS, phoO, and others, suggesting a possible contribution to the observed resistant phenotype. This study has a strong impact because it not only reveals the genetic diversity and resistance mechanisms in P. aeruginosa but also identifies mutations in regulatory genes associated with colistin resistance. Full article
(This article belongs to the Special Issue Bacterial Resistance and Novel Therapeutic Approaches)
Show Figures

Figure 1

17 pages, 2275 KB  
Article
Identification of a Potential High-Risk Clone and Novel Sequence Type of Carbapenem-Resistant Pseudomonas aeruginosa in Metro Manila, Philippines
by Sherill D. Tesalona, Miguel Francisco B. Abulencia, Maria Ruth B. Pineda-Cortel, Sylvia A. Sapula, Henrietta Venter and Evelina N. Lagamayo
Antibiotics 2025, 14(4), 362; https://doi.org/10.3390/antibiotics14040362 - 1 Apr 2025
Viewed by 1500
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a significant opportunistic human pathogen, posing a considerable threat to public health due to its antimicrobial resistance and limited treatment options. The incidence of CRPA is high in the Philippines; however, genomic analysis of CRPA in this setting [...] Read more.
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a significant opportunistic human pathogen, posing a considerable threat to public health due to its antimicrobial resistance and limited treatment options. The incidence of CRPA is high in the Philippines; however, genomic analysis of CRPA in this setting is limited. Here, we provide the phenotypic and molecular characterization of 35 non-duplicate CRPA obtained from three tertiary hospitals in Metro Manila, Philippines, from August 2022 to January 2023. Six sequence types (STs), including international high-risk clones ST111 and ST357, were identified. This article highlights the first report in the Philippines on the identification of P. aeruginosa harboring Klebsiella pneumoniae Carbapenemase-2 (KPC-2), coproduced with Verona Integron-encoded Metallo-beta-lactamase-2 (VIM-2) and Oxacillinase-74 (OXA-74). Notably, this is also the first report of KPC in the Philippines identified in P. aeruginosa. New Delhi Metallo-beta-lactamase-7 (NDM-7), coproduced with Cefotaxime-Munich-15 (CTX-M-15) and Temoneira-2 (TEM-2), was also identified from a novel ST4b1c. The relentless identification of NDM in the Philippines’ healthcare setting poses a significant global public health risk. The initial detection of the P. aeruginosa strain harboring KPC exacerbated the situation, indicating the inception of potential dissemination of these resistance determinants within P. aeruginosa in the Philippines. Full article
Show Figures

Figure 1

17 pages, 825 KB  
Article
Genomic Characterization of Extremely Antibiotic-Resistant Strains of Pseudomonas aeruginosa Isolated from Patients of a Clinic in Sincelejo, Colombia
by Nerlis Pajaro-Castro, Erick Diaz-Morales and Kenia Hoyos
BioTech 2025, 14(1), 21; https://doi.org/10.3390/biotech14010021 - 16 Mar 2025
Viewed by 1325
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen classified as a priority and a great public health concern; therefore, this research focuses on the genomic characterization of extremely resistant strains of P. aeruginosa isolated from patients in a clinic in Sincelejo, Colombia. Seven strains were [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen classified as a priority and a great public health concern; therefore, this research focuses on the genomic characterization of extremely resistant strains of P. aeruginosa isolated from patients in a clinic in Sincelejo, Colombia. Seven strains were analyzed by whole genome sequencing using the Illumina NovaSeq platform, with a focus on the identification of resistance genes and virulence factors through the CARD and VFDB databases. An ANI (Average Nucleotide Identity) analysis was carried out to determine the genetic relationship between the strains, complemented by a phylogenomic analysis to place the strains in different evolutionary clades. The results revealed that six of the strains are of Colombian origin, while one strain (547256) belongs to the high-risk clone ST773, previously unidentified in Colombia. Genome size ranged from 6 to 7.4 Mbp, indicating differences in genetic content among strains. Phylogenomic analysis confirmed that five strains belong to a multidrug-resistant (MDR) group, while one strain (572897) showed high alignment with a laboratory strain, and strain 547256 was not associated with any specific clade. Clinically, 100% of strains showed carbapenem resistance, resistance genes, and virulence factors that make them difficult to treat. This study provides key insights into the genetic diversity and resistance patterns of P. aeruginosa in this region, underscoring the need to monitor high-risk clones and optimize therapeutic strategies. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

Back to TopTop