Detection of the ST111 Global High-Risk Pseudomonas aeruginosa Clone in a Subway Underpass
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of P. aeruginosa Strain NL201
2.2. In Vitro Antibiotic Susceptibility Testing of Strain NL201
2.3. Whole-Genome Sequencing of P. aeruginosa Strain NL201
2.4. Detection of Acquired Antibiotic Resistance and Virulence Genes
2.5. Searching for Mutations Causing a Quinolone-Resistant Phenotype in P. aeruginosa
2.6. Construction of Phylogenetic Trees from WGS Data
3. Results
3.1. Isolation of P. aeruginosa Strain NL201 from an Urban Water Drain
3.2. Antibiotic Susceptibility Testing
3.3. Assessment of ARGs and Known Genetic Mutations Leading to Quinolone Resistance in ST111 P. aeruginosa Strains and WGS Sequenced Isolates from Hungary
3.4. Identification of Virulence Determinants of ST111 and Other P. aeruginosa Isolates
3.5. Phylogenetic Analysis Based on Whole-Genome Sequencing Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodford, N.; Turton, J.F.; Livermore, D.M. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 2011, 35, 736–755. [Google Scholar]
- Matsumara, Y.; Peirano, G.; Kock, M.; Pitout, J.D.D. Genomic Epidemiology of Pseudomonas aeruginosa Sequence Type 111. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 375–381. [Google Scholar]
- Curran, B.; Jonas, D.; Grundmann, H.; Pitt, T.; Dowson, C.G. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J. Clin. Microbiol. 2004, 42, 5644–5649. [Google Scholar] [PubMed]
- Giske, C.G.; Libisch, B.; Colinon, C.; Scoulica, E.; Pagani, L.; Fuzi, M.; Kronvall, G.; Rossolini, G.M. Establishing clonal relationships by multilocus sequence typing between VIM-1-like metallo-β-lactamase-producing Pseudomonas aeruginosa from four European countries. J. Clin. Microbiol. 2006, 44, 4309–4315. [Google Scholar] [PubMed]
- Libisch, B.; Watine, J.; Balogh, B.; Gacs, M.; Muzslay, M.; Szabó, G.; Füzi, M. Molecular typing indicates an important role for two international clonal complexes in dissemination of VIM-producing Pseudomonas aeruginosa clinical isolates in Hungary. Res. Microbiol. 2008, 159, 162–168. [Google Scholar] [PubMed]
- Libisch, B.; Poirel, L.; Lepsanovic, Z.; Mirovic, V.; Balogh, B.; Pászti, J.; Hunyadi, Z.; Dobák, A.; Füzi, M.; Nordmann, P. Identification of PER-1 extended-spectrum β-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonal complex CC11 from Hungary and Serbia. FEMS Immunol. Med. Microbiol. 2008, 54, 330–338. [Google Scholar]
- Libisch, B.; Balogh, B.; Füzi, M. Identification of two multidrug-resistant Pseudomonas aeruginosa clonal lineages with a countrywide distribution in Hungary. Curr. Microbiol. 2009, 58, 111–116. [Google Scholar]
- Libisch, B. Molecular Typing Methods for the Genus Pseudomonas. In Molecular Typing in Bacterial Infections. Infectious Disease; De Filippis, I., McKee, M., Eds.; Humana Press: Totowa, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Cabot, G.; Ocampo-Sosa, A.A.; Domínguez, M.A.; Gago, J.F.; Juan, C.; Tubau, F.; Rodríguez, C.; Moyà, B.; Peña, C.; Martínez-Martínez, L.; et al. Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. AAC 2012, 56, 6349–6357. [Google Scholar]
- Mulet, X.; Cabot, G.; Ocampo-Sosa, A.A.; Domínguez, M.A.; Zamorano, L.; Juan, C.; Tubau, F.; Rodríguez, C.; Moyà, B.; Peña, C.; et al. Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. AAC 2013, 57, 5527–5535. [Google Scholar]
- del Barrio-Tofiño, E.; López-Causapé, C.; Oliver, A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents 2020, 56, 106196. [Google Scholar]
- Thrane, S.W.; Taylor, V.L.; Freschi, L.; Kukavica-Ibrulj, I.; Boyle, B.; Laroche, J.; Pirnay, J.P.; Lévesque, R.C.; Lam, J.S.; Jelsbak, L. The widespread multidrug-resistant serotype O12 Pseudomonas aeruginosa clone emerged through concomitant horizontal transfer of serotype antigen and antibiotic resistance gene clusters. mBio 2015, 6, 10–1128. [Google Scholar]
- Ahmed, M.N.; Porse, A.; Sommer, M.O.A.; Høiby, N.; Ciofu, O. Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. AAC 2018, 62, 10–1128. [Google Scholar]
- Vatcheva-Dobrevska, R.; Mulet, X.; Ivanov, I.; Zamorano, L.; Dobreva, E.; Velinov, T.; Kantardjiev, T.; Oliver, A. Molecular epidemiology and multidrug resistance mechanisms of Pseudomonas aeruginosa isolates from Bulgarian hospitals. Microb. Drug Resist. 2013, 19, 355–361. [Google Scholar] [PubMed]
- Kocsis, B.; Gulyás, D.; Szabó, D. Diversity and distribution of resistance markers in Pseudomonas aeruginosa international high-risk clones. Microorganisms 2021, 9, 359. [Google Scholar] [CrossRef]
- Fuzi, M. The fitness connection of antibiotic resistance. Front Microbiol. 2025, 16, 1556656. [Google Scholar]
- Valik, J.K.; Giske, C.G.; Hasan, B.; Gozalo-Margüello, M.; Martínez-Martínez, L.; Premru, M.M.; Martinčič, Ž.; Beović, B.; Maraki, S.; Zacharioudaki, M.; et al. Genomic virulence markers are associated with severe outcomes in patients with Pseudomonas aeruginosa bloodstream infection. Commun. Med. 2024, 4, 264. [Google Scholar]
- Secker, B.; Shaw, S.; Hobley, L.; Atterbury, R.J. Genomic and phenotypic characterisation of Pseudomonas aeruginosa isolates from canine otitis externa reveals high-risk sequence types identical to those found in human nosocomial infections. Front. Microbiol. 2025, 16, 1526843. [Google Scholar]
- Palomino-Kobayashi, L.A.; Zavalaga, C.; Irigoin-Lovera, C.; Gonzales-DelCarpio, D.; Egoávil-Espejo, R.; Borges-Barbosa, F.; Pons, M.J.; Ruiz, J. Carbapenem-Resistant Pseudomonas aeruginosa from Guanay Cormorants on Is. Pescadores, Peru. EcoHealth, 2025; online ahead of print. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Mejri, S.; Okwume, C.C.; Lawal, N.A.; Olusegun, O.A.; Sallem, R.B.; Slama, K.B. Global epidemiology of high priority and pandemic Pseudomonas aeruginosa in pets, livestock, wild, and aquatic animals: A systematic review and meta-analysis. LAM 2025, 78, ovaf028. [Google Scholar]
- Lombardi, A.; Cornacchia, A.; Borriello, T.; Maccauro, M.L.; Nardo, A.; Bosica, S.; Serena, F.; Mattia, T.; Eugenio, T.; Ida, P.; et al. Pseudomonas aeruginosa Investigation in Water Samples of Campania Region, Southern Italy. SSRN, 2025; preprint. [Google Scholar] [CrossRef]
- Libisch, B.; Gacs, M.; Csiszár, K.; Muzslay, M.; Rókusz, L.; Füzi, M. Isolation of an integron-borne blaVIM-4 type metallo-β-lactamase gene from a carbapenem-resistant Pseudomonas aeruginosa clinical isolate in Hungary. AAC 2004, 48, 3576–3578. [Google Scholar]
- Libisch, B.; Muzslay, M.; Gacs, M.; Minárovits, J.; Knausz, M.; Watine, J.; Ternák, G.; Kenéz, E.; Kustos, I.; Rókusz, L.; et al. Molecular epidemiology of VIM-4 metallo-β-lactamase-producing Pseudomonas sp. isolates in Hungary. AAC 2006, 50, 4220–4223. [Google Scholar]
- Cornaglia, G.; Akova, M.; Amicosante, G.; Cantón, R.; Cauda, R.; Docquier, J.D.; Edelstein, M.; Frère, J.M.; Fuzi, M.; Galleni, M.; et al. ESCMID Study Group for Antimicrobial Resistance Surveillance (ESGARS). Metallo-β-lactamases as emerging resistance determinants in Gram-negative pathogens: Open issues. Int. J. Antimicrob. Agents 2007, 29, 380–388. [Google Scholar] [PubMed]
- Keresztény, T.; Libisch, B.; Orbe, S.C.; Nagy, T.; Kerényi, Z.; Kocsis, R.; Posta, K.; Papp, P.P.; Olasz, F. Isolation and characterization of lactic acid bacteria with probiotic attributes from different parts of the gastrointestinal tract of free-living wild boars in Hungary. Probiotics Antimicrob. Proteins 2023, 16, 1221–1239. [Google Scholar]
- EUCAST. European Committee on Antimicrobial Susceptibility Testing, Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 15.0, Valid from 1 January 2025. 2025. Available online: https://www.eucast.org/ (accessed on 6 February 2025).
- Chan, C.F.B.; Sule, J.; Gouliouris, T. P19 Impact of the introduction of the EUCAST 2020 susceptibility interpretation rules for Pseudomonas aeruginosa on selection of antibiotic therapy. JAC Antimicrob Resist. 2024, 6 (Suppl. S2), dlae136.023. [Google Scholar]
- Giske, C.G.; Turnidge, J.; Cantón, R.; Kahlmeter, G. Update from the European committee on antimicrobial susceptibility testing (EUCAST). J. Clin. Med. 2022, 60, e00276-21. [Google Scholar]
- Thrane, S.W.; Taylor, V.L.; Lund, O.; Lam, J.S.; Jelsbak, L. Application of Whole-Genome Sequencing Data for O-Specific Antigen Analysis and In Silico Serotyping of Pseudomonas aeruginosa Isolates. J. Clin. Micobiol. 2016, 54, 1782–1788. [Google Scholar]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar]
- Seemann, T. ABRicate: Mass Screening of Contigs for Antibiotic Resistance Genes. 2016. Available online: https://github.com/tseemann/abricate (accessed on 1 September 2024).
- Libisch, B.; Abdulkadir, S.; Keresztény, T.; Papp, P.P.; Olasz, F.; Fébel, H.; Sándor, Z.J.; Rasschaert, G.; Lambrecht, E.; Heyndrickx, M.; et al. Detection of acquired antibiotic resistance genes in domestic pig (Sus scrofa) and common carp (Cyprinus carpio) intestinal samples by metagenomics analyses in Hungary. Antibiotics 2022, 11, 1441. [Google Scholar] [CrossRef]
- Johansson, M.H.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 2021, 76, 101–109. [Google Scholar] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Statement on how to interpret the QPS qualification on ‘acquired antimicrobial resistance genes’. EFSA J. 2023, 21, e08323. [Google Scholar] [PubMed]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33 (Suppl. S1), D325–D328. [Google Scholar] [PubMed]
- Holloway, B.W. Genetic recombination in Pseudomonas aeruginosa. Microbiology 1955, 13, 572–581. [Google Scholar]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar]
- Chandler, C.E.; Horspool, A.M.; Hill, P.J.; Wozniak, D.J.; Schertzer, J.W.; Rasko, D.A.; Ernst, R.K. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J. Bacteriol. 2019, 201, 10–1128. [Google Scholar]
- Baykal, P.I.; Łabaj, P.P.; Markowetz, F.; Schriml, L.M.; Stekhoven, D.J.; Mangul, S.; Beerenwinkel, N. Genomic reproducibility in the bioinformatics era. Genome Biol. 2024, 25, 213. [Google Scholar]
- Ozoaduche, C.L.; Libisch, B.; Itoro, D.; Idemudia, I.B.; Posta, K.; Olasz, F. Antibiotic Resistance and Virulence Determinants of Pseudomonas aeruginosa Isolates Cultured from Hydrocarbon-Contaminated Environmental Samples. Microorganisms 2025, 13, 688. [Google Scholar] [CrossRef]
- Bertels, F.; Silander, O.K.; Pachkov, M.; Rainey, P.B.; Van Nimwegen, E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 2014, 31, 1077–1088. [Google Scholar]
- Petruńko, L.; Musiał, K.; Gmiter, D. The characterization of genome sequences diversity of Pseudomonas aeruginosa strains from international reference panel using wide range of in silico techniques. Acta Univ. Lodz. Folia Biol. Oecol. 2024, 18, 72–84. [Google Scholar]
- van Belkum, A.; Soriaga, L.B.; LaFave, M.C.; Akella, S.; Veyrieras, J.-B.; Barbu, E.M.; Shortridge, D.; Blanc, B.; Hannum, G.; Zambardi, G.; et al. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa. mBio 2015, 6, e01796-15. [Google Scholar]
- Pirnay, J.P.; De Vos, D.; Cochez, C.; Bilocq, F.; Vanderkelen, A.; Zizi, M.; Ghysels, B.; Cornelis, P. Pseudomonas aeruginosa displays an epidemic population structure. Environ. Microbiol. 2002, 4, 898–911. [Google Scholar] [PubMed]
- Diaz Caballero, J.; Wheatley, R.M.; Kapel, N.; López-Causapé, C.; Van der Schalk, T.; Quinn, A.; Shaw, L.P.; Ogunlana, L.; Recanatini, C.; Xavier, B.B.; et al. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat. Commun. 2023, 14, 4083. [Google Scholar] [PubMed]
- Rehman, A.; Jeukens, J.; Levesque, R.C.; Lamont, I.L. Gene-gene interactions dictate ciprofloxacin resistance in Pseudomonas aeruginosa and facilitate prediction of resistance phenotype from genome sequence data. Antimicrob. Agents Chemother. 2021, 65, 10–1128. [Google Scholar]
- Koderi Valappil, S.; Shetty, P.; Deim, Z.; Terhes, G.; Urbán, E.; Váczi, S.; Patai, R.; Polgár, T.; Pertics, B.Z.; Schneider, G.; et al. Survival comes at a cost: A coevolution of phage and its host leads to phage resistance and antibiotic sensitivity of Pseudomonas aeruginosa multidrug resistant strains. Front. Microbiol. 2021, 12, 783722. [Google Scholar]
- Kenna, D.T.; Payne, Z.; Lee, D.A.; Keane, A.M.; Turton, J.; Zamarreño, D.V.; Schaefer, U.; Hopkins, K.L.; Meunier, D.; Dhillon, R.; et al. Investigating Pseudomonas aeruginosa population structure and frequency of cross-infection in UK cystic fibrosis clinics-a reference laboratory perspective. J. Cyst. Fibros. 2023, 22, 894–900. [Google Scholar]
- Le Terrier, C.; Bouvier, M.; Kerbol, A.; Dell’Acqua, C.; Nara Network Members; Nordmann, P.; Poirel, L. In-vitro activity of the novel β-lactam/β-lactamase inhibitor combinations and cefiderocol against carbapenem-resistant Pseudomonas spp. clinical isolates collected in Switzerland in 2022. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 571–585. [Google Scholar]
- Moretti, M.; Vanstokstraeten, R.; Crombé, F.; Barbé, K.; Wybo, I.; Allard, S.D.; Jonckheer, J.; De Geyter, D. Five-year VIM-producing Pseudomonas aeruginosa outbreak in four Belgian ICUs, an investigation report (2019–2023). Am. J. Infect. Control 2024, 52, 1425–1431. [Google Scholar]
- Gagaletsios, L.A.; Bitar, I.; Papagiannitsis, C.C. Letter to the Editor: Isolation of Carbapenemase-Producing Pseudomonas aeruginosa from a Waste-Water Sample Collected from a Greek University Hospital. Microb. Drug Resist. 2025, 31, 94–95. [Google Scholar] [CrossRef]
- Weiser, R.; Green, A.E.; Bull, M.J.; Cunningham-Oakes, E.; Jolley, K.A.; Maiden, M.C.J.; Hall, A.J.; Winstanley, C.; Weightman, A.J.; Donoghue, D.; et al. Not all Pseudomonas aeruginosa are equal: Strains from industrial sources possess uniquely large multireplicon genomes. Microb. Genom. 2019, 5, e000276. [Google Scholar]
- Gómez-Martínez, J.; Rocha-Gracia, R.D.C.; Bello-López, E.; Cevallos, M.A.; Castañeda-Lucio, M.; Sáenz, Y.; Jiménez-Flores, G.; Cortés-Cortés, G.; López-García, A.; Lozano-Zarain, P. Comparative Genomics of Pseudomonas aeruginosa Strains Isolated from Different Ecological Niches. Antibiotics 2023, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- Peirano, G.; Matsumara, Y.; Nobrega, D.; Church, D.; Pitout, J.D.D. Population-based genomic surveillance of Pseudomonas aeruginosa causing bloodstream infections in a large Canadian health region. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 501–510. [Google Scholar] [PubMed]
- Anbo, M.; Chichkova, M.A.T.; Gençay, Y.E.; Salazar, A.; Jeannot, K.; Jelsbak, L. Whole-Genome Sequencing of 11 High-Risk Clone ST111 Pseudomonas aeruginosa Isolates from French Hospitals. Microbiol. Resour. Announc. 2023, 12, e00091-23. [Google Scholar] [PubMed]
- an der Zee, A.; Kraak, W.B.; Burggraaf, A.; Goessens, W.H.F.; Pirovano, W.; Ossewaarde, J.M.; Tommassen, J. Spread of Carbapenem Resistance by Transposition and Conjugation Among Pseudomonas aeruginosa. Front Microbiol. 2018, 9, 2057. [Google Scholar]
- White, P.A.; Stokes, H.W.; Bunny, K.L.; Hall, R.M. Characterisation of a chloramphenicol acetyltransferase determinant found in the chromosome of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 1999, 175, 27–35. [Google Scholar]
- Rodríguez-Martínez, J.M.; Poirel, L.; Nordmann, P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009, 53, 1766–1771. [Google Scholar]
- Girlich, D.; Naas, T.; Nordmann, P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2004, 48, 2043–2048. [Google Scholar]
- Zubyk, H.L.; Wright, G.D. CrpP is not a fluoroquinolone-inactivating enzyme. Antimicrob. Agents Chemother. 2021, 65, 10–1128. [Google Scholar]
- Djordjevic, S.P.; Jarocki, V.M.; Seemann, T.; Cummins, M.L.; Watt, A.E.; Drigo, B.; Wyrsch, E.R.; Reid, C.J.; Donner, E.; Howden, B.P. Genomic surveillance for antimicrobial resistance—A One Health perspective. Nat. Rev. Genet. 2024, 25, 142–157. [Google Scholar]
- Libisch, B. N-Alkane Assimilation by Pseudomonas aeruginosa and Its Interactions with Virulence and Antibiotic Resistance. Antibiotics 2024, 13, 1028. [Google Scholar] [CrossRef]
- Guevarra, R.B.; Hwang, J.; Lee, H.; Kim, H.J.; Lee, Y.; Danko, D.; Ryon, K.A.; Young, B.G.; Mason, C.E.; Jang, S. Metagenomic characterization of bacterial community and antibiotic resistance genes found in the mass transit system in Seoul, South Korea. Ecotoxicol. Environ. Saf. 2022, 246, 114176. [Google Scholar] [PubMed]
- Danko, D.; Bezdan, D.; Afshin, E.E.; Ahsanuddin, S.; Bhattacharya, C.; Butler, D.J.; Chng, K.R.; Donnellan, D.; Hecht, J.; Jackson, K.; et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 2021, 184, 3376–3393. [Google Scholar] [PubMed]
- Wu, J.; Hu, Y.; Perlin, M.H.; Danko, D.; Lu, J.; Oliveira, M.; Werner, J.; Zambrano, M.M.; Sierra, M.A.; Osuolale, O.O.; et al. Landscape of global urban environmental resistome and its association with local socioeconomic and medical status. Science China. Life Sci. 2024, 67, 1292–1301. [Google Scholar]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, R.L.; Haagensen, J.A.J.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021, 19, 331–342. [Google Scholar]
- Szmolka, A.; Libisch, B.; Pászti, J.; Füzi, M.; Emődy, L.; Nagy, B. Virulence and antimicrobial resistance determinants of human pathogenic and commensal strains of Pseudomonas aeruginosa. Acta Microbiol. Immunol. Hung. 2009, 56, 399–402. [Google Scholar]
- Asthana, S.; Rusin, P.; Gerba, C.P. Influence of hydrocarbons on the virulence and antibiotic sensitivity associated with Pseudomonas aeruginosa. Int. J. Environ. Health Res. 1997, 7, 277–288. [Google Scholar]
- Alonso, A.; Rojo, F.; Martínez, J.L. Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ. Microbiol. 1999, 1, 421–430. [Google Scholar]
- Pitout, J.D.; Peirano, G.; DeVinney, R. The contributions of multidrug resistant clones to the success of pandemic extra-intestinal Pathogenic Escherichia coli. Expert Rev. Anti-Infect. Ther. 2023, 21, 343–353. [Google Scholar]
- Collis, C.M.; Recchia, G.D.; Kim, M.J.; Stokes, H.W.; Hall, R.M. Efficiency of recombination reactions catalyzed by class 1 integron integrase IntI1. J. Bacteriol. 2001, 183, 2535–2542. [Google Scholar]
- Dybwad, M.; Granum, P.E.; Bruheim, P.; Blatny, J.M. Characterization of airborne bacteria at an underground subway station. Appl. Environ. Microbiol. 2012, 78, 1917–1929. [Google Scholar]
- Leung, M.H.Y.; Tong, X.; Bøifot, K.O.; Bezdan, D.; Butler, D.J.; Danko, D.C.; Gohli, J.; Green, D.C.; Hernandez, M.T.; Kelly, F.J.; et al. Characterization of the public transit air microbiome and resistome reveals geographical specificity. Microbiome 2021, 9, 112. [Google Scholar]
- Zhou, F.; Wang, Y. Characteristics of antibiotic resistance of airborne Staphylococcus isolated from metro stations. Int. J. Environ. Res. Public Health 2013, 10, 2412–2426. [Google Scholar] [PubMed]
- Akter, T.; Stapleton, F.; Green, M.; Willcox, M. Association between disinfectant resistance genes in exoU and exoS Pseudomonas aeruginosa with sensitivity to multipurpose disinfecting solutions and antibiotics. Contact Lens Anterior Eye, 2025; online ahead of print. [Google Scholar] [CrossRef]
- Pandey, S.; Doo, H.; Keum, G.B.; Kim, E.S.; Kwak, J.; Ryu, S.; Choi, Y.; Kang, J.; Kim, S.; Lee, N.R.; et al. Antibiotic resistance in livestock, environment and humans: One Health perspective. J. Anim. Sci. Technol. 2024, 66, 266–278. [Google Scholar]
- Martak, D.; Henriot, C.P.; Didier Hocquet, D. Environment, animals, and food as reservoirs of antibiotic-resistant bacteria for humans: One health or more? Infect. Dis. Now. 2024, 54, 104895. [Google Scholar]
Nr. | Strain Code | Location | Sample Type | Year | NCBI Biosample | Ref. |
---|---|---|---|---|---|---|
1 | Bu007 | Hungary | human burn | 1997 | SAMN04128716 | [44] |
2 | LMG 14083 | Hungary | unknown | 1958 | SAMN04128726 | [45] |
3 | EP732 | Hungary | human respiratory | 2018 | SAMN35303074 | [46] |
4 | EP733 | Hungary | human respiratory | 2018 | SAMN35303075 | [46] |
5 | IHMA 1679579 | Hungary | human blood | 2018 | SAMN24255292 | [47] |
6 | PA5984 | Hungary | human nasal | 2017 | SAMN18653385 | [48] |
7 | PA2244 | Hungary | human lung | 2017 | SAMN18653382 | [48] |
8 | ST111 | UK | human sputum | 2018 | SAMN32301013 | [49] |
9 | PA89 | Switzerland | human clinical | 2022 | SAMN44059281 | [50] |
10 | PA40 | Switzerland | human clinical | 2022 | SAMN44059284 | [50] |
11 | PA03 | Switzerland | human clinical | 2022 | SAMN44059282 | [50] |
12 | PA136 | Switzerland | human clinical | 2022 | SAMN44059266 | [50] |
13 | PAUZB108 | Belgium | hospital sink-drain | 2023 | SAMN41108339 | [51] |
14 | PAUZB109 | Belgium | hospital sink-drain | 2023 | SAMN41108340 | [51] |
15 | PAUZB110 | Belgium | hospital sink-drain | 2023 | SAMN41108341 | [51] |
16 | LYM-E19 | Greece | hospital wastewater | 2023 | SAMN44671623 | [52] |
17 | RW109 | Europe | cosmetic | 2003 | SAMEA104432335 | [53] |
18 | F5677 | USA | human urine | 2012 | SAMN02887043 | [54] |
19 | PA-18-54 | Canada | human blood | 2018 | SAMN36031752 | [2] |
20 | F30658 | USA | human clinical | 2012 | SAMN02894357 | [2] |
21 | NL201 | Hungary | water drain | 2023 | SAMN46966551 | this work |
22 | FRD1 | USA | human sputum | 1981 | SAMN03342417 | [2] |
23 | PA-10-17 | Canada | human blood | 2010 | SAMN36031623 | [55] |
24 | 2875 | France | human rectum | n.a. | SAMN32874247 | [56] |
25 | Carb01 63 | Netherlands | hospital drain | 2012 | SAMN03389320 | [57] |
Antibiotics Tested | ||||||||
---|---|---|---|---|---|---|---|---|
CAZ | CZA | TZP | MEM | CIP | LEV | TOB | AK | |
Inhibitory zone (mm) | 25 | 25 | 12 | 14 | 33 | 28 | 12 | 26 |
Interpretation | I | S | R | I | I | I | R | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libisch, B.; Ozoaduche, C.L.; Keresztény, T.; Bus, A.; Van Limbergen, T.; Posta, K.; Olasz, F. Detection of the ST111 Global High-Risk Pseudomonas aeruginosa Clone in a Subway Underpass. Curr. Issues Mol. Biol. 2025, 47, 532. https://doi.org/10.3390/cimb47070532
Libisch B, Ozoaduche CL, Keresztény T, Bus A, Van Limbergen T, Posta K, Olasz F. Detection of the ST111 Global High-Risk Pseudomonas aeruginosa Clone in a Subway Underpass. Current Issues in Molecular Biology. 2025; 47(7):532. https://doi.org/10.3390/cimb47070532
Chicago/Turabian StyleLibisch, Balázs, Chioma Lilian Ozoaduche, Tibor Keresztény, Anniek Bus, Tommy Van Limbergen, Katalin Posta, and Ferenc Olasz. 2025. "Detection of the ST111 Global High-Risk Pseudomonas aeruginosa Clone in a Subway Underpass" Current Issues in Molecular Biology 47, no. 7: 532. https://doi.org/10.3390/cimb47070532
APA StyleLibisch, B., Ozoaduche, C. L., Keresztény, T., Bus, A., Van Limbergen, T., Posta, K., & Olasz, F. (2025). Detection of the ST111 Global High-Risk Pseudomonas aeruginosa Clone in a Subway Underpass. Current Issues in Molecular Biology, 47(7), 532. https://doi.org/10.3390/cimb47070532