Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,465)

Search Parameters:
Keywords = high-voltage design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3165 KB  
Article
A Sensor for Multi-Point Temperature Monitoring in Underground Power Cables
by Pedro Navarrete-Rajadel, Pedro Llovera-Segovia, Vicente Fuster-Roig and Alfredo Quijano-López
Sensors 2025, 25(17), 5490; https://doi.org/10.3390/s25175490 - 3 Sep 2025
Abstract
Underground electrical conductors, both medium-and high-voltage, play a crucial role in energy infrastructure. However, they present a maintenance challenge due to their difficult access. Unlike overhead installations, these cables remain hidden, making it harder to obtain key parameters, such as their temperature or [...] Read more.
Underground electrical conductors, both medium-and high-voltage, play a crucial role in energy infrastructure. However, they present a maintenance challenge due to their difficult access. Unlike overhead installations, these cables remain hidden, making it harder to obtain key parameters, such as their temperature or structural condition, in a simple manner. Current temperature measurement methods, including fiber-optic-based systems (DTS and LTS), involve high costs that limit their feasibility in medium-voltage networks, where more economically accessible alternatives are required. This study introduces an alternative system for monitoring the temperature of underground cables using NTC thermistors. Its design allows for reducing the number of connection conductors for sensors to just four regardless of the number of measurement points. The implemented measurement technique is based on the sequential activation of sensors and the integration of the recorded current to achieve an accurate thermal assessment. The tests conducted validate that this proposal represents an efficient, cost-effective, and highly scalable solution for implementation in electrical distribution networks. Full article
Show Figures

Figure 1

20 pages, 2354 KB  
Article
MineVisual: A Battery-Free Visual Perception Scheme in Coal Mine
by Ming Li, Zhongxu Bao, Shuting Li, Xu Yang, Qiang Niu, Muyu Yang and Shaolong Chen
Sensors 2025, 25(17), 5486; https://doi.org/10.3390/s25175486 - 3 Sep 2025
Abstract
The demand for robust safety monitoring in underground coal mines is increasing, yet traditional methods face limitations in long-term stability due to inadequate energy supply and high maintenance requirements. To address the critical challenges of high computational demand and energy constraints in this [...] Read more.
The demand for robust safety monitoring in underground coal mines is increasing, yet traditional methods face limitations in long-term stability due to inadequate energy supply and high maintenance requirements. To address the critical challenges of high computational demand and energy constraints in this resource-limited environment, this paper proposes MineVisual, a battery-free visual sensing scheme specifically designed for underground coal mines. The core of MineVisual is an optimized lightweight deep neural network employing depthwise separable convolution modules to enhance computational efficiency and reduce energy consumption. Crucially, we introduce an energy-aware dynamic pruning network (EADP-Net) ensuring a sustained inference accuracy and energy efficiency across fluctuating power conditions. The system integrates supercapacitor buffering and voltage regulation for stable operation under wind intermittency. Experimental validation demonstrates that MineVisual achieves high accuracy (e.g., 91.5% Top-1 on mine-specific tasks under high power) while significantly enhancing the energy efficiency (reducing inference energy to 6.89 mJ under low power) and robustness under varying wind speeds. This work provides an effective technical pathway for intelligent safety monitoring in complex underground environments and conclusively proves the feasibility of battery-free deep learning inference in extreme settings like coal mines. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 6251 KB  
Article
A Modulated Marx Generator Capable of Outputting Quasi-Square Waves
by Rupei Li, Zilong Pan, Xiang Zhou, Rong Chen and Xinbing Cheng
Electronics 2025, 14(17), 3517; https://doi.org/10.3390/electronics14173517 - 2 Sep 2025
Abstract
A pulse generator capable of outputting quasi-square-wave pulses at the hundred-nanosecond scale is designed. With the development of high-power microwaves, the pulse flat-top is required to be more and more stable. However, at the hundred-nanosecond scale, an equal-value pulse-forming network is prone to [...] Read more.
A pulse generator capable of outputting quasi-square-wave pulses at the hundred-nanosecond scale is designed. With the development of high-power microwaves, the pulse flat-top is required to be more and more stable. However, at the hundred-nanosecond scale, an equal-value pulse-forming network is prone to being affected by stray parameters in the output waveform. To meet this requirement, a Marx generator and an anti-resonant network is used as the pulse boosting component and the pulse modulation component, respectively. Taking advantage of the anti-resonant network’s fewer sections and good modulation effect, the output waveform of the Marx generator is improved. The modulation ability of two-section and three-section modulation networks on waveforms, the output characteristics of two-section modulation networks, and the effect of stray parameters on the modulation network are explored. The experimental results show that both networks were able to achieve a quasi-square waveform of 100 kV on a 50 Ω load. Compared to the two-section network (165 ns pulse width, 41 ns rise time, 54.54% waveform flatness), the proposed three-section network achieves a pulse width of 185 ns with faster rise time (25 ns) and better waveform flatness (63.78%). Both topologies generate 100 kV quasi-square pulses on 50 Ω loads, with the three-section design demonstrating superior waveform control. In the repetition experiment, the pulse power source achieved stable operation at a repetition frequency of 20 Hz, and a quasi-square waveform with an output voltage of 100 kV was obtained. Finally, compared with previous studies, the modulated Marx generator based on an anti-resonant network has better waveform modulation effect and fewer network sections when generating a Square wave pulse of 100–200 ns. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

24 pages, 6760 KB  
Article
Research on the Coordinated Differential Protection Mechanism of a Hybrid DC Multi-Infeed System
by Panrun Jin, Wenqin Song, Huilei Zhao and Yankui Zhang
Eng 2025, 6(9), 217; https://doi.org/10.3390/eng6090217 - 2 Sep 2025
Abstract
In order to meet the needs of grid integration of various renewable energy sources and promote long-distance power transmission, a hybrid multi-infeed DC system architecture consisting of a line-commutated converter (LCC) and a modular multilevel converter (MMC) is constructed. Focusing on the issue [...] Read more.
In order to meet the needs of grid integration of various renewable energy sources and promote long-distance power transmission, a hybrid multi-infeed DC system architecture consisting of a line-commutated converter (LCC) and a modular multilevel converter (MMC) is constructed. Focusing on the issue of traditional differential protection refusing to operate under high-resistance grounding faults and failing under symmetrical faults, a dual-criteria protection mechanism is proposed in this paper. By integrating current differential and voltage criterion, the accurate identification of various types of AC line faults can be realized. A hybrid DC system simulation model was built on MATLAB, the sampled data was decoupled, and the differential quantity was calculated to test the dual-criteria protection mechanism. The simulation results show that the proposed protection mechanism can effectively identify various faults within the hybrid DC multi-feed system area and faults outside the area and has robustness to complex working conditions such as high-resistance grounding and three-phase short circuits, which improves the sensitivity, selectivity, and adaptability of the protection. This method is designed for AC line protection under the disturbance of multi-infeed DC systems. It is not directly applicable to pure DC microgrids. The concept can be extended to AC/DC hybrid microgrids by adding DC-side protection criteria and re-calibrating thresholds. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

30 pages, 7066 KB  
Article
Development and Analysis of a Fast-Charge EV-Charging Station Model for Power Quality Assessment in Distribution Systems
by Pathomthat Chiradeja, Suntiti Yoomak, Panu Srisuksai, Jittiphong Klomjit, Atthapol Ngaopitakkul and Santipont Ananwattanaporn
Appl. Sci. 2025, 15(17), 9645; https://doi.org/10.3390/app15179645 - 2 Sep 2025
Abstract
With the rapid rise in electric vehicle (EV) adoption, the deployment of EV charging infrastructure—particularly fast-charging stations—has expanded significantly to meet growing energy demands. While fast charging offers the advantage of reduced charging time and improved user convenience, it imposes considerable stress on [...] Read more.
With the rapid rise in electric vehicle (EV) adoption, the deployment of EV charging infrastructure—particularly fast-charging stations—has expanded significantly to meet growing energy demands. While fast charging offers the advantage of reduced charging time and improved user convenience, it imposes considerable stress on existing power distribution systems due to its high power and current requirements. This study investigated the impact of EV fast charging on power quality within Thailand’s distribution network, emphasizing compliance with accepted standards such as IEEE Std 519-2014. We developed a control-oriented EV-charging station model in power systems computer-aided design and electromagnetic transients, including DC (PSCAD/EMTDC), which integrates grid-side vector control with DC fast-charging (CC/CV) behavior. Active/reactive power setpoints were mapped onto dq current references via Park’s transformation and regulated by proportional integral (PI) controllers with sinusoidal pulse-width modulation (SPWM) to command the voltage source converter (VSC) switches. The model enabled dynamic studies across battery state-of-charge and staggered charging schedules while monitoring voltage, current, and total harmonic distortion (THD) at both transformer sides, charger AC terminals, and DC adapters. Across all scenarios, the developed control achieved grid-current THDi of <5% and voltage THD of <1.5%, thereby meeting IEEE 519-2014 limits. These quantitative results show that the proposed, implementation-ready approach maintains acceptable power quality under diverse fast-charging patterns and provides actionable guidance for planning and scaling EV fast-charging infrastructure in Thailand’s urban networks. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

18 pages, 2422 KB  
Article
Self-Sensing with Hollow Cylindrical Transducers for Histotripsy-Enhanced Aspiration Mechanical Thrombectomy Applications
by Li Gong, Alex R. Wright, Kullervo Hynynen and David E. Goertz
Sensors 2025, 25(17), 5417; https://doi.org/10.3390/s25175417 - 2 Sep 2025
Abstract
Intravascular aspiration thrombectomy catheters are widely used to treat stroke, pulmonary embolism, and deep venous thrombosis. However, their performance is frequently compromised by clot material becoming lodged within the catheter tip. To address this, we develop a novel ultrasound-enhanced aspiration catheter approach that [...] Read more.
Intravascular aspiration thrombectomy catheters are widely used to treat stroke, pulmonary embolism, and deep venous thrombosis. However, their performance is frequently compromised by clot material becoming lodged within the catheter tip. To address this, we develop a novel ultrasound-enhanced aspiration catheter approach that generates cavitation within the tip to mechanically degrade clots, with a view to facilitate extraction. The design employs hollow cylindrical transducers that produce inwardly propagating cylindrical waves to generate sufficiently high pressures to perform histotripsy. This study investigates the feasibility of self-sensing cavitation detection by analyzing voltage signals across the transducer during treatment. Experiments were conducted for two transmit pulse lengths at varying driving voltages with water or clot in the lumen. Cavitation clouds within the lumen were assessed using 40 MHz ultrasound imaging. Changes in the signal envelope during the pulse body and ringdown phases occurred above the cavitation threshold, the latter being associated with more rapid wave damping in the presence of bubble clouds within the lumen. In the frequency domain, voltage-dependent cavitation signals—subharmonics, ultra-harmonics, and broadband—emerged alongside transmit pulses. This work demonstrates a highly sensitive, sensor-free method for detecting cavitation within the lumen, enabling feedback control to further improve histotripsy-assisted aspiration. Full article
(This article belongs to the Special Issue Multi-sensor Fusion in Medical Imaging, Diagnosis and Therapy)
Show Figures

Figure 1

24 pages, 3878 KB  
Article
All-Grounded Passive Component Mixed-Mode Multifunction Biquadratic Filter and Dual-Mode Quadrature Oscillator Employing a Single Active Element
by Natchanai Roongmuanpha, Jetwara Tangjit, Mohammad Faseehuddin, Worapong Tangsrirat and Tattaya Pukkalanun
Technologies 2025, 13(9), 393; https://doi.org/10.3390/technologies13090393 - 1 Sep 2025
Abstract
This paper introduces a compact analog configuration that concurrently realizes a mixed-mode biquadratic filter and a dual-mode quadrature oscillator (QO) by employing a single differential differencing gain amplifier (DDGA) and all-grounded passive components. The proposed design supports four fundamental operation modes—voltage-mode (VM), current-mode [...] Read more.
This paper introduces a compact analog configuration that concurrently realizes a mixed-mode biquadratic filter and a dual-mode quadrature oscillator (QO) by employing a single differential differencing gain amplifier (DDGA) and all-grounded passive components. The proposed design supports four fundamental operation modes—voltage-mode (VM), current-mode (CM), trans-impedance-mode (TIM), and trans-admittance-mode (TAM)—utilizing the same circuit topology without structural modifications. In filter operation, it offers low-pass, high-pass, band-pass, band-stop, and all-pass responses with orthogonal and electronic pole frequency and quality factor. In oscillator operation, it delivers simultaneous voltage and current quadrature outputs with independent tuning of oscillator frequency and condition. The grounded-component configuration simplifies layout and enhances its suitability for monolithic integration. Numerical simulations in a 0.18-μm CMOS process with ±0.9 V supply confirm theoretical predictions, demonstrating precise gain-phase characteristics, low total harmonic distortion (<7%), modest sensitivity to 5% component variations, and stable operation from −40 °C to 120 °C. These results, combined with the circuit’s low component count and integration suitability, suggest strong potential for future development in low-power IoT devices, adaptive communication front-ends, and integrated biomedical systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

27 pages, 6990 KB  
Review
Multiscale Insights into Inorganic Filler Regulation, Ion Transport Mechanisms, and Characterization Advances in Composite Solid-State Electrolytes
by Xinhao Xu, Dingyuan Lu, Sipeng Huang, Fuming Wang, Yulin Min and Qunjie Xu
Processes 2025, 13(9), 2795; https://doi.org/10.3390/pr13092795 - 1 Sep 2025
Viewed by 30
Abstract
All-solid-state lithium batteries (ASSLBs) are emerging as a promising alternative to conventional lithium-ion batteries, offering solutions to challenges related to energy density and safety. Their core advancement relies on breakthroughs in solid-state electrolytes (SEs). SEs can be broadly grouped into two main types: [...] Read more.
All-solid-state lithium batteries (ASSLBs) are emerging as a promising alternative to conventional lithium-ion batteries, offering solutions to challenges related to energy density and safety. Their core advancement relies on breakthroughs in solid-state electrolytes (SEs). SEs can be broadly grouped into two main types: inorganic solid electrolytes (ISEs) and organic solid electrolytes (OSEs). ISEs offer high ionic conductivity (0.1~1 mS cm−1), a lithium-ion transference number close to 1, and excellent thermal stability, but their intrinsic brittleness leads to poor interfacial wettability and processing difficulties, limiting practical applications. In contrast, OSEs exhibit good flexibility and interfacial compatibility but suffer from poor ionic conductivity (10−4~10−2 mS cm−1) due to high crystallinity at room temperature, in addition to poor thermal stability and weak mechanical integrity, making it difficult to match high-voltage cathodes and suppress lithium dendrite growth. Against this backdrop, the stability of the organic–inorganic interface plays a crucial role. However, challenges such as low overall conductivity and unstable interfaces still limit their performance. This review provides a microscopic perspective on lithium-ion transport pathways across the polymer phase, the inorganic filler phase, and their interfacial regions. It categorizes inert fillers and active fillers, analyzing their structure–performance relationships and emphasizing the synergistic effects of filler dimensionality, surface chemistry, and interfacial interactions. In addition, cutting-edge analytical methods such as time-of-flight secondary ion mass spectrometry (TOF-SIMS) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) have also been employed and are summarized into their roles for revealing the microstructures and dynamic interfacial behaviors of OICSEs. Finally, future directions are proposed, such as hierarchical pore structure design, surface functionalization, and simulation-guided optimization, aiming to provide theoretical insights and technological strategies for the development of high-performance composite electrolytes for ASSLBs. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 2756 KB  
Article
Development, Design, and Electrical Performance Simulation of Novel Through-Type 3D Semi Spherical Electrode Detector Based on SOI Substrate
by Zhiyu Liu, Tao Long, Zheng Li, Xuran Zhu, Jun Zhao, Xinqing Li, Manwen Liu and Meishan Wang
Micromachines 2025, 16(9), 1006; https://doi.org/10.3390/mi16091006 - 31 Aug 2025
Viewed by 161
Abstract
This article proposes a novel three-dimensional trench electrode detector, named the through-type three-dimensional quasi-hemispherical electrode detector. The detector adopts a trench structure to package each independent unit and achieves complete penetration of trench electrodes with the help of an SOI substrate. The horizontal [...] Read more.
This article proposes a novel three-dimensional trench electrode detector, named the through-type three-dimensional quasi-hemispherical electrode detector. The detector adopts a trench structure to package each independent unit and achieves complete penetration of trench electrodes with the help of an SOI substrate. The horizontal distances from the center anode of the detector to the trench cathode and the detector thickness are equal. It has a near-spherical structure and exhibits spherical-like electrical performance. In this study, we modeled the device physics of the new structure and conducted a systematic three-dimensional simulation of its electrical characteristics, including the electric field, electric potential, electron concentration distribution of the detector, the inducted current caused by incident ions, and the crosstalk between detector units. Computational and technology computer-aided design (TCAD) simulation results show that the detector has an ultra-small capacitance (2.7 fF), low depletion voltage (1.4 V), and uniform electric field distribution. The trench electrodes electrically isolate the pixel units from each other so that the coherence effect between the units is small and can be applied in high-resolution X-ray photon counting detectors to enhance the contrast-to-noise ratio of low-dose imaging and the detection rate of tiny structures, among other things. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

20 pages, 2666 KB  
Review
Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices
by Hao Lu, Xiaorun Hao, Yichi Zhang, Ling Yang, Bin Hou, Meng Zhang, Mei Wu, Xiaohua Ma and Yue Hao
Micromachines 2025, 16(9), 999; https://doi.org/10.3390/mi16090999 (registering DOI) - 29 Aug 2025
Viewed by 192
Abstract
Gallium nitride (GaN) offers exceptional material properties, making it indispensable in communications, defense, and power electronics. With high electron mobility and robust thermal conductivity, GaN-based devices excel in high-frequency, high-power applications. They are vital in wireless communication systems, radar, electronic warfare, and power [...] Read more.
Gallium nitride (GaN) offers exceptional material properties, making it indispensable in communications, defense, and power electronics. With high electron mobility and robust thermal conductivity, GaN-based devices excel in high-frequency, high-power applications. They are vital in wireless communication systems, radar, electronic warfare, and power electronics systems, offering superior performance, efficiency, and reliability. Further research is crucial for optimizing GaN-based devices performance and expanding their applications, driving innovation across industries. The application of ion implantation technology in GaN-based devices is a key process that can be used to improve device performance and characteristics, which enables process aspects such as electrical isolation, ion implantation for ohmic contacts, threshold voltage regulation, and terminal design. In this paper, we will focus on reviewing the principles and issues of the ion implantation process in GaN-based device preparation. This work aims to serve as a guide for ion implantation in future GaN-based devices. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

31 pages, 3563 KB  
Article
Research on Flexible Operation Control Strategy of Motor Operating Mechanism of High Voltage Vacuum Circuit Breaker
by Dongpeng Han, Weidong Chen and Zhaoxuan Cui
Energies 2025, 18(17), 4593; https://doi.org/10.3390/en18174593 - 29 Aug 2025
Viewed by 149
Abstract
In order to solve the problem that it is difficult to take into account the performance constraints between the core functions of insulation, current flow and arc extinguishing of high-voltage vacuum circuit breakers at the same time, this paper proposes a flexible control [...] Read more.
In order to solve the problem that it is difficult to take into account the performance constraints between the core functions of insulation, current flow and arc extinguishing of high-voltage vacuum circuit breakers at the same time, this paper proposes a flexible control strategy for the motor operating mechanism of high-voltage vacuum circuit breakers. The relationship between the rotation angle of the motor and the linear displacement of the moving contact of the circuit breaker is analyzed, and the ideal dynamic curve is planned. The motor drive control device is designed, and the phase-shifted full-bridge circuit is used as the boost converter. The voltage and current double closed-loop sliding mode control strategy is used to simulate and verify the realization of multi-stage and stable boost. The experimental platform is built and the experiment is carried out. The results show that under the voltage conditions of 180 V and 150 V, the control range of closing speed and opening speed is increased by 31.7% and 25.9% respectively, and the speed tracking error is reduced by 51.2%. It is verified that the flexible control strategy can meet the ideal action curve of the operating mechanism, realize the precise control of the opening and closing process and expand the control range. The research provides a theoretical basis for the flexible control strategy of the high-voltage vacuum circuit breaker operating mechanism, and provides new ideas for the intelligent operation technology of power transmission and transformation projects. Full article
Show Figures

Figure 1

18 pages, 6246 KB  
Article
Development and Test of a Novel High-Precision Inchworm Piezoelectric Motor
by Nan Huang, Jiahao Yin, Fuyuan Feng, Lanyu Zhang, Yuheng Luo and Jian Gao
Micromachines 2025, 16(9), 992; https://doi.org/10.3390/mi16090992 (registering DOI) - 29 Aug 2025
Viewed by 124
Abstract
The inchworm piezoelectric motor, with the advantages of long stroke and high resolution, is ideally suited for precise positioning in wafer-level electron beam inspection systems. However, the large number of piezoelectric actuators and the complex excitation signal sequences significantly increase the complexity of [...] Read more.
The inchworm piezoelectric motor, with the advantages of long stroke and high resolution, is ideally suited for precise positioning in wafer-level electron beam inspection systems. However, the large number of piezoelectric actuators and the complex excitation signal sequences significantly increase the complexity of system assembly and temporal control. A flexure-based actuation stator structure, along with simplified excitation signal sequences of a high-precision inchworm piezoelectric motor, is proposed. The alternating actuation of upper/lower clamping mechanisms and the driving mechanism fundamentally mitigates backstep effects while generating stepping linear displacement. The inchworm piezoelectric motor achieves precision linear motion operation using only two piezoelectric actuators. The actuation stator is analyzed via the compliance matrix method to derive its output compliance, input stiffness, and displacement amplification ratio. Furthermore, a kinematic model and natural frequency expression incorporating the pseudo-rigid-body method and Lagrange’s equations are established. The actuation stator and inchworm piezoelectric motor are analyzed through both simulations and experiments. The results show that the maximum step displacement of the motor is 16.3 μm, and the maximum speed is 9.78 mm/s, at a 600 Hz operation frequency with a combined alternating piezoelectric voltage of 135 V and 65 V. These findings validate the designed piezoelectric motor’s superior motion resolution, operational stability, and acceptable load capacity. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 2443 KB  
Article
Design of CoMoCe-Oxide Nanostructured Composites as Robust Bifunctional Electrocatalyst for Water Electrolysis Overall Efficiency
by Akbar I. Inamdar, Amol S. Salunke, Jyoti V. Patil, Sawanta S. Mali, Chang Kook Hong, Basit Ali, Supriya A. Patil, Nabeen K. Shrestha, Sejoon Lee and Sangeun Cho
Materials 2025, 18(17), 4052; https://doi.org/10.3390/ma18174052 - 29 Aug 2025
Viewed by 286
Abstract
The development of ternary metal oxide electrocatalysts with optimized electronic structures and surface morphologies has emerged as one of the effective strategies to improve the performance of electrochemical water splitting. In this work, ternary CoMoCe (CMC)-oxide electrocatalysts were successfully synthesized on nickel foam [...] Read more.
The development of ternary metal oxide electrocatalysts with optimized electronic structures and surface morphologies has emerged as one of the effective strategies to improve the performance of electrochemical water splitting. In this work, ternary CoMoCe (CMC)-oxide electrocatalysts were successfully synthesized on nickel foam substrates via a hydrothermal technique and employed for their catalytic activity in an alkaline electrolyte. For comparison, binary counterparts (CoMo, CoCe, and MoCe) were also fabricated under similar conditions. The synthesized catalysts’ electrodes exhibited diverse surface architectures, including microporous-flake hybrids, ultrathin flakes, nanoneedle-assembled microspheres, and randomly oriented hexagonal structures. Among them, the ternary CoMoCe-oxide electrode exhibited outstanding bifunctional electrocatalytic activity, delivering low overpotentials of 124 mV for the hydrogen evolution reaction (HER) at −10 mA cm−2, and 340 mV for the oxygen evolution reaction (OER) at 100 mA cm−2, along with excellent durability. Furthermore, in full water-splitting configuration, the CMC||CMC and RuO2||CMC electrolyzers required cell voltages of 1.69 V and 1.57 V, respectively, to reach a current density of 10 mA cm−2. Remarkably, the CMC-based electrolyzer reached an industrially relevant current density of 1000 mA cm−2 at a cell voltage of 2.18 V, maintaining excellent stability over 100 h of continuous operation. These findings underscore the impact of an optimized electronic structure and surface architecture on design strategies for high-performance ternary metal oxide electrocatalysts. Herein, a robust and straightforward approach is comprehensively presented for fabricating highly efficient ternary metal-oxide catalyst electrodes, offering significant potential for scalable water splitting. Full article
Show Figures

Figure 1

20 pages, 3380 KB  
Article
The Real-Time Estimation of Respiratory Flow and Mask Leakage in a PAPR Using a Single Differential-Pressure Sensor and Microcontroller-Based Smartphone Interface in the Development of a Public-Oriented Powered Air-Purifying Respirator as an Alternative to Lockdown Measures
by Yusaku Fujii
Sensors 2025, 25(17), 5340; https://doi.org/10.3390/s25175340 - 28 Aug 2025
Viewed by 320
Abstract
In this study, a prototype system was developed as a potential alternative to lockdown measures against the spread of airborne infectious diseases such as COVID-19. The system integrates real-time estimation functions for respiratory flow and mask leakage into a low-cost powered air-purifying respirator [...] Read more.
In this study, a prototype system was developed as a potential alternative to lockdown measures against the spread of airborne infectious diseases such as COVID-19. The system integrates real-time estimation functions for respiratory flow and mask leakage into a low-cost powered air-purifying respirator (PAPR) designed for the general public. Using only a single differential-pressure sensor (SDP810) and a controller (Arduino UNO R4 WiFi), the respiratory flow (Q3e) is estimated from the differential pressure (ΔP) and battery voltage (Vb), and both the wearing status and leak status are transmitted to and displayed on a smartphone application. For evaluation, a testbench called the Respiratory Airflow Testbench was constructed by connecting a cylinder–piston drive to a mannequin head to simulate realistic wearing conditions. The estimated respiratory flow Q3e, calculated solely from ΔP and Vb, showed high agreement with the measured flow Q3m obtained from a reference flow sensor, confirming the effectiveness of the estimation algorithm. Furthermore, an automatic leak detection method based on the time-integrated value of Q3e was implemented, enabling the detection of improper wearing. This system thus achieves respiratory flow estimation and leakage detection based only on ΔP and Vb. In the future, it is expected to be extended to applications such as pressure control synchronized with breathing activity and health monitoring based on respiratory and coughing analysis. This platform also has the potential to serve as the foundation of a PAPR Wearing Status Network Management System, which will contribute to societal-level infection control through the networked sharing of wearing status information. Full article
Show Figures

Figure 1

17 pages, 2721 KB  
Article
Physics-Informed Neural Network Modeling of Inflating Dielectric Elastomer Tubes for Energy Harvesting Applications
by Mahdi Askari-Sedeh, Mohammadamin Faraji, Mohammadamin Baniardalan, Eunsoo Choi, Alireza Ostadrahimi and Mostafa Baghani
Polymers 2025, 17(17), 2329; https://doi.org/10.3390/polym17172329 - 28 Aug 2025
Viewed by 324
Abstract
A physics-informed neural network (PINN) framework is developed to model the large deformation and coupled electromechanical response of dielectric elastomer tubes for energy harvesting. The system integrates incompressible neo-Hookean elasticity with radial electric loading and compressible gas inflation, leading to nonlinear equilibrium equations [...] Read more.
A physics-informed neural network (PINN) framework is developed to model the large deformation and coupled electromechanical response of dielectric elastomer tubes for energy harvesting. The system integrates incompressible neo-Hookean elasticity with radial electric loading and compressible gas inflation, leading to nonlinear equilibrium equations with deformation-dependent boundary conditions. By embedding the governing equations and boundary conditions directly into its loss function, the PINN enables accurate, mesh-free solutions without requiring labeled data. It captures realistic pressure–volume interactions that are difficult to address analytically or through conventional numerical methods. The results show that internal volume increases by over 290% during inflation at higher reference pressures, with residual stretch after deflation reaching 9.6 times the undeformed volume. The axial force, initially tensile, becomes compressive at high voltages and pressures due to electromechanical loading and geometric constraints. Harvested energy increases strongly with pressure, while voltage contributes meaningfully only beyond a critical threshold. To ensure stable training across coupled stages, the network is optimized using the Optuna algorithm. Overall, the proposed framework offers a robust and flexible tool for predictive modeling and design of soft energy harvesters. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop