Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = horizontal misalignment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8957 KB  
Article
Autonomous Navigation of Unmanned Ground Vehicles Based on Micro-Shell Resonator Gyroscope Rotary INS Aided by LDV
by Hangbin Cao, Yuxuan Wu, Longkang Chang, Yunlong Kong, Hongfu Sun, Wenqi Wu, Jiangkun Sun, Yongmeng Zhang, Xiang Xi and Tongqiao Miao
Drones 2025, 9(10), 706; https://doi.org/10.3390/drones9100706 (registering DOI) - 13 Oct 2025
Abstract
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its [...] Read more.
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its bias varies as an even-harmonic function of the pattern angle, which leads to difficulty in estimating and compensating the bias based on the MSRG in the process of attitude measurement. In this paper, an attitude measurement method based on virtual rotation self-calibration and rotary modulation is proposed for the MSRG–RINS to address this problem. The method utilizes the characteristics of the two operating modes of the MSRG, the force-rebalanced mode and whole-angle mode, to perform virtual rotation self-calibration, thereby eliminating the characteristic bias of the MSRG. In addition, the reciprocating rotary modulation method is used to suppress the residual bias of the MSRG. Furthermore, the magnetometer-aided initial alignment of the MSRG–RINS is carried out and the state-transformation extended Kalman filter is adopted to solve the large misalignment-angle problem under magnetometer assistance so as to enhance the rapidity and accuracy of initial attitude acquisition. Results from real-world experiments substantiated that the proposed method can effectively suppress the influence of MSRG’s bias on attitude measurement, thereby achieving high-precision autonomous navigation in GNSS-denied environments. In the 1 h, 3.7 km, long-range in-vehicle autonomous navigation experiments, the MSRG–RINS, integrated with a Laser Doppler Velocimetry (LDV), attained a heading accuracy of 0.35° (RMS), a horizontal positioning error of 4.9 m (RMS), and a distance-traveled accuracy of 0.24% D. Full article
Show Figures

Figure 1

19 pages, 632 KB  
Hypothesis
Engagement by Design: Belongingness, Cultural Value Orientations, and Pathways into Emerging Technologies
by Daisuke Akiba, Michael Perrone, Caterina Almendral and Rebecca Garte
Behav. Sci. 2025, 15(10), 1358; https://doi.org/10.3390/bs15101358 - 5 Oct 2025
Viewed by 226
Abstract
This theoretical article examines how belongingness, defined as the sense that one’s participation is legitimate and valued, interacts with cultural value orientations to help explain persistent disparities in U.S. technology engagement, including emerging technologies, across racial and ethnic groups. While structural barriers (e.g., [...] Read more.
This theoretical article examines how belongingness, defined as the sense that one’s participation is legitimate and valued, interacts with cultural value orientations to help explain persistent disparities in U.S. technology engagement, including emerging technologies, across racial and ethnic groups. While structural barriers (e.g., racism, poverty, linguistic bias, etc.) remain essential to understanding such inequity, we argue that engagement patterns in technology also reflect how different cultural communities may define and experience belongingness in relation to digital domains. Drawing on Triandis and Gelfand’s framework, and focusing specifically on educational contexts, we propose the Belongingness through Cultural Value Alignment (BCVA) model, whereby belongingness serves as a catalyst between cultural value orientations and technology engagement, with vertical collectivism deriving belongingness primarily through structured skill development and validation while horizontal collectivism focusing instead on belonging based on community integration. When technological environments value practices that are consistent with vertical collectivist norms, individuals from horizontal collectivist cultures may experience cultural misalignment not from disinterest in technology or exclusionary efforts but, instead, because dominant engagement modes conflict with their familiar frameworks for fostering a sense of belonging. By examining how cultural value orientations mediate the sense of belonging in contexts involving modern technologies, the proposed perspective offers a novel framework for understanding why access alone may have proven insufficient to address technological participation gaps, and suggests directions for creating technology spaces where individuals from a wider range of communities can experience the authentic sense of belonging. Full article
Show Figures

Figure 1

29 pages, 20494 KB  
Article
Research on INS/GNSS Integrated Navigation Algorithm for Autonomous Vehicles Based on Pseudo-Range Single Point Positioning
by Zhongchao Liang, Kunfeng He, Zijian Wang, Haobin Yang and Junqiang Zheng
Electronics 2025, 14(15), 3048; https://doi.org/10.3390/electronics14153048 - 30 Jul 2025
Viewed by 728
Abstract
This study proposes an enhanced integration framework for the global navigation satellite system (GNSS) and inertial navigation system (INS). The framework combines real-time differential GNSS corrections with an adaptive extended Kalman filter (EKF) to address positional accuracy and system robustness challenges in practical [...] Read more.
This study proposes an enhanced integration framework for the global navigation satellite system (GNSS) and inertial navigation system (INS). The framework combines real-time differential GNSS corrections with an adaptive extended Kalman filter (EKF) to address positional accuracy and system robustness challenges in practical navigation scenarios. The proposed method dynamically compensates for positioning inaccuracies and sensor drift by integrating differential GNSS corrections to reduce errors and employing an adaptive EKF to address temporal synchronization discrepancies and misalignment angle deviations. Simulation and experimental results demonstrate that the framework keeps horizontal positioning error within 2 m and achieves a maximum accuracy improvement of 4.2 m compared to conventional single-point positioning. This low-cost solution ensures robust performance for practical autonomous navigation scenarios. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

26 pages, 15575 KB  
Article
A Scalable and Consistent Method for Multi-Component Gravity-Gradient Data Processing
by Larissa Silva Piauilino, Vanderlei Coelho Oliveira Junior and Valeria Cristina Ferreira Barbosa
Appl. Sci. 2025, 15(15), 8396; https://doi.org/10.3390/app15158396 - 29 Jul 2025
Cited by 1 | Viewed by 408
Abstract
We demonstrate the potential of using the convolutional equivalent layer to jointly process large gravity-gradient datasets. Based on the equivalent-layer principle, we assume a single fictitious physical property distribution on a planar layer can approximate all components of the gravity-gradient tensor. Estimating this [...] Read more.
We demonstrate the potential of using the convolutional equivalent layer to jointly process large gravity-gradient datasets. Based on the equivalent-layer principle, we assume a single fictitious physical property distribution on a planar layer can approximate all components of the gravity-gradient tensor. Estimating this distribution using the classical technique ensures physical consistency among components. However, the classical approach becomes computationally prohibitive for large datasets due to the need to solve a large-scale inversion with a massive sensitivity matrix. To overcome this limitation, we exploit the block-Toeplitz Toeplitz-block structure of the sensitivity matrix for data on a regular horizontal grid. This structure significantly reduces computational cost—by orders of magnitude—compared to the classical method. Applications to synthetic and real datasets show that our method offers a computationally efficient alternative for processing large gravity-gradient data from various acquisition systems (AGG and FTG), even when data are irregularly spaced or flight lines are misaligned. On a standard laptop configuration, our method processed over 290,000 AGG data points in a few tens of seconds. It also handled between 726,000 FTG and 1,250,000 AGG data points within seconds to a couple of minutes, demonstrating practical computational efficiency for large-scale datasets. Full article
(This article belongs to the Special Issue Advances in Geophysical Exploration)
Show Figures

Graphical abstract

26 pages, 8831 KB  
Article
Coupling Performance of Cored and Coreless Circular Coils for WPTS: Experimental Validation Under Misalignment Scenarios
by Ahmed M. Ibrahim and Osama A. Mohammed
Batteries 2025, 11(7), 257; https://doi.org/10.3390/batteries11070257 - 10 Jul 2025
Viewed by 580
Abstract
Wireless power transfer systems (WPTSs) are critical for efficient and reliable electric vehicle (EV) charging, but challenges such as misalignment and coupling variations limit their performance. This paper addresses a proposed design approach for WPTSs by optimizing the following two widely used coil [...] Read more.
Wireless power transfer systems (WPTSs) are critical for efficient and reliable electric vehicle (EV) charging, but challenges such as misalignment and coupling variations limit their performance. This paper addresses a proposed design approach for WPTSs by optimizing the following two widely used coil types: ring and spiral circular coils. An analytical estimation of inductive characteristics is conducted to establish a foundation for system optimization. The study framework focuses on coil geometrical parameters and relative placements, accounting for horizontal, vertical, and angular misalignments to ensure a consistent performance under varying coupling conditions. COMSOL simulations accurately determine inductive parameters, validating the theoretical analysis for a 200 W charging coil prototype. Experimental investigations of coupling coefficients for coreless and cored charging pads highlight the superior performance of the Square I-Core-based spiral winding configuration in enhancing the coupling coefficient while ensuring that it remains below the critical value required for stable system operation. The agreement between the analytical results, simulation data, and experimental findings underscores the reliability of the proposed design approach. Full article
Show Figures

Figure 1

22 pages, 11308 KB  
Article
TIAR-SAR: An Oriented SAR Ship Detector Combining a Task Interaction Head Architecture with Composite Angle Regression
by Yu Gu, Minding Fang and Dongliang Peng
Remote Sens. 2025, 17(12), 2049; https://doi.org/10.3390/rs17122049 - 13 Jun 2025
Cited by 2 | Viewed by 732
Abstract
Oriented ship detection in Synthetic Aperture Radar (SAR) images has broad applications in maritime surveillance and other fields. While deep learning advancements have significantly improved ship detection performance, persistent challenges remain for existing methods. These include the inherent misalignment between regression and classification [...] Read more.
Oriented ship detection in Synthetic Aperture Radar (SAR) images has broad applications in maritime surveillance and other fields. While deep learning advancements have significantly improved ship detection performance, persistent challenges remain for existing methods. These include the inherent misalignment between regression and classification tasks and the boundary discontinuity problem in oriented object detection. These issues hinder efficient and accurate ship detection in complex scenarios. To address these challenges, we propose TIAR-SAR, a novel oriented SAR ship detector featuring a task interaction head and composite angle regression. First, we propose a task interaction detection head (Tihead) capable of predicting both oriented bounding boxes (OBBs) and horizontal bounding boxes (HBBs) simultaneously. Within the Tihead, a “decompose-then-interact” structure is designed. This structure not only mitigates feature misalignment but also promotes feature interaction between regression and classification tasks, thereby enhancing prediction consistency. Second, we propose a joint angle refinement mechanism (JARM). The JARM addresses the non-differentiability problem of the traditional rotated Intersection over Union (IoU) loss through the design of a composite angle regression loss (CARL) function, which strategically combines direct and indirect angle regression methods. A boundary angle correction mechanism (BACM) is then designed to enhance angle estimation accuracy. During inference, BACM dynamically replaces an object’s OBB prediction with its corresponding HBB if the OBB exhibits excessive angle deviation when the angle of the object is near the predefined boundary. Finally, the performance and applicability of the proposed methods are evaluated through extensive experiments on multiple public datasets, including SRSDD, HRSID, and DOTAv1. Experimental results derived from the use of the SRSDD dataset demonstrate that the mAP50 of the proposed method reaches 63.91%, an improvement of 4.17% compared with baseline methods. The detector achieves 17.42 FPS on 1024 × 1024 images using an RTX 2080 Ti GPU, with a model size of only 21.92 MB. Comparative experiments with other state-of-the-art methods on the HRSID dataset demonstrate the proposed method’s superior detection performance in complex nearshore scenarios. Furthermore, when further tested on the DOTAv1 dataset, the mAP50 can reach 79.1%. Full article
Show Figures

Figure 1

13 pages, 2099 KB  
Article
Image-Based Laser-Beam Diagnostics Using Statistical Analysis and Machine Learning Regression
by Tayyab Imran and Muddasir Naeem
Photonics 2025, 12(5), 504; https://doi.org/10.3390/photonics12050504 - 18 May 2025
Cited by 1 | Viewed by 876
Abstract
This study is a comprehensive experimental and computational investigation into high-resolution laser beam diagnostics, combining classical statistical techniques, numerical image processing, and machine learning-based predictive modeling. A dataset of 50 sequential beam profile images was collected from a femtosecond fiber laser operating at [...] Read more.
This study is a comprehensive experimental and computational investigation into high-resolution laser beam diagnostics, combining classical statistical techniques, numerical image processing, and machine learning-based predictive modeling. A dataset of 50 sequential beam profile images was collected from a femtosecond fiber laser operating at a central wavelength of 780 nm with a pulse duration of approximately 125 fs. These images were analyzed to extract spatial and temporal beam characteristics, including centroid displacement, Full Width at Half Maximum (FWHM), ellipticity ratio, and an asymmetry index. All parameters were derived using intensity-weighted algorithms and directional cross-sectional analysis to ensure accurate and consistent quantification of the beam’s dynamic behavior. Linear regression models were applied to horizontal and vertical intensity distributions to assess long-term beam stability. The resulting predictive trends revealed a systematic drift in beam centroid position, most notably along the vertical axis, and a gradual broadening of the horizontal FWHM. The modeling further showed that vertical intensity increased over time while horizontal intensity displayed a slight decline, reinforcing the presence of axis-specific fluctuations. These effects are attributed to minor optical misalignments or thermally induced variations in the beam path. By integrating deterministic analysis with data-driven forecasting, this methodology offers a robust framework for real-time beam quality evaluation. It enhances sensitivity to subtle distortions and supports the future development of automated, self-correcting laser systems. The results underscore the critical role of continuous, high-resolution monitoring in maintaining beam stability and alignment precision in femtosecond laser applications. Full article
(This article belongs to the Special Issue Optical Technologies for Measurement and Metrology)
Show Figures

Figure 1

13 pages, 5603 KB  
Article
Design and Simulation of Inductive Power Transfer Pad for Electric Vehicle Charging
by Md Aurongjeb, Yumin Liu and Muhammad Ishfaq
Energies 2025, 18(2), 244; https://doi.org/10.3390/en18020244 - 8 Jan 2025
Cited by 1 | Viewed by 2365
Abstract
Electric vehicles (EVs) wireless charging is enabled by inductive power transfer (IPT) technology, which eliminates the need for physical connections between the vehicle and the charging station, allowing power to be transmitted without the use of cables. However, in the present wireless charging [...] Read more.
Electric vehicles (EVs) wireless charging is enabled by inductive power transfer (IPT) technology, which eliminates the need for physical connections between the vehicle and the charging station, allowing power to be transmitted without the use of cables. However, in the present wireless charging equipment, the power transfer still needs to be improved. In this work, we present a power transfer structure using a unique “DD circular (DDC) power pad”, which mitigates the two major obstacles of wireless EV charging, due to the mitigating power of electromagnetic field (EMF) leakage emissions and the increase in misalignment tolerance. We present a DDC power pad structure, which integrates features from both double D(DD) and circular power pads. We first build a three-dimensional electromagnetic model based on the DDC structure. A detailed analysis is performed of the electromagnetic characteristics, and the device parameters regarding the power transfer efficiency, coupling coefficient, and mutual inductance are also presented to evaluate the overall performance. Then, we examine the performance of the DDC power pad under various horizontal and vertical misalignment circumstances. The coupling coefficients and mutual inductance, as two essential factors for effective power transmission under dynamic circumstances, are investigated. The findings of misalignment effects on coupling efficiency indicate that the misalignment does not compromise the DDC pad’s robust performance. Therefore, our DDC power pad structure has a better electromagnetic characteristic and a higher misalignment tolerance than conventional circular and DD pads. In general, the DDC structure we present makes it a promising solution for wireless EV charging systems and has good application prospects. Full article
Show Figures

Figure 1

15 pages, 5369 KB  
Article
S-SP Inductive Power Transfer System with High Misalignment Tolerance Based on a Switch-Controlled Capacitor
by Mengqi Xie, Heng Zhang, Yajing Yang, Hao Wang, Ningchao Zhang and Zhaowei Gong
Electronics 2025, 14(1), 188; https://doi.org/10.3390/electronics14010188 - 5 Jan 2025
Viewed by 1098
Abstract
In order to reduce the sensitivity of an inductive power transfer (IPT) system to the misalignment coupling coil, an S-SP-compensated IPT system with high misalignment tolerance based on a switch-controlled capacitor (SCC) is proposed. Firstly, the mathematical model of the S-SP compensation topology [...] Read more.
In order to reduce the sensitivity of an inductive power transfer (IPT) system to the misalignment coupling coil, an S-SP-compensated IPT system with high misalignment tolerance based on a switch-controlled capacitor (SCC) is proposed. Firstly, the mathematical model of the S-SP compensation topology is established, the output characteristics and impedance characteristics of the system are analyzed, and a sensitivity analysis of the compensation element parameters is carried out using the compensation topology. An improved switching capacitor structure is proposed to dynamically compensate the S-SP IPT system. Finally, an experimental prototype was set up to validate the correctness of the theoretical analysis. The experimental results show that the proposed method can ensure that the system can operate in the resonant state with high efficiency when the coupling pad’s horizontal misalignment is within 30% (with the coupling coefficient varying from 0.22 to 0.14). Full article
Show Figures

Figure 1

12 pages, 1673 KB  
Article
Effects on Posture of a Two-Diopter Horizontal Prism Base Out on the Non-Dominant Eye
by Davide Marini, Giovanni Rubegni, Lorenzo Sarti, Alessandra Rufa, Marco Mandalà, Fabio Ferretti, Gian Marco Tosi and Mario Fruschelli
J. Clin. Med. 2024, 13(24), 7847; https://doi.org/10.3390/jcm13247847 - 23 Dec 2024
Viewed by 1736
Abstract
Background/Objectives: Ocular proprioception is implicated in balance control and heterophoria is associated with abnormal posture, though previous research focused mainly on the role of vertical phoria and the use of vertical prisms. This study aims to evaluate whether ocular misalignment and prismatic [...] Read more.
Background/Objectives: Ocular proprioception is implicated in balance control and heterophoria is associated with abnormal posture, though previous research focused mainly on the role of vertical phoria and the use of vertical prisms. This study aims to evaluate whether ocular misalignment and prismatic correction of horizontal phoria affect posture. Methods: Sixty-nine (N = 69) young healthy subjects were included and equally divided by horizontal distance phoria: orthophoria (n = 23), esophoria (n = 23) and exophoria (n = 23). A prism of low power (two-diopter) was placed base out on the non-dominant eye, reducing misalignment in esophorics and increasing it in exophorics more than in orthophorics. Dynamic computerized posturography was performed with the sensory organization test protocol (SOT) of the EquiTest® NeuroCom® version 8 platform both without and with prism, always maintaining subjects unaware of prism use. A mixed model for repeated measures analysis of variance was run to evaluate the main effect of prism and the interaction effect of prism with baseline phoria. Results: Composite movement strategy score without prism was 88.1 ± 2.8% (ankle-dominant strategy) and slightly increased to 89.0 ± 3.1% with prism insertion (p = 0.004), further shifting toward ankle strategy. Composite equilibrium score without prism was 80.3 ± 6.5% and remained stable with prism insertion (81.3 ± 8.2%, p = 0.117), medio-lateral and antero-posterior projection of center of gravity did not displace significantly under prism insertion (p = 0.652 and p = 0.270, respectively). At baseline, posturographic parameters were statistically independent of individual phoria, and no significant interaction between prism insertion and individual phoria was documented for any parameters (p > 0.05 for all). Secondary analysis and pairwise comparisons confirmed that the effect of prism was strongly selective on condition SOT 5 (eyes-closed, platform sway-referenced) with improvement of equilibrium (70.4 ± 9.7% with prism vs. 65.7 ± 11.6% without) and more use of ankle strategy (81.6 ± 5.3% with prism vs. 78.2 ± 6.0% without), without any interaction of phoria and ocular dominance, while the other conditions were comparable with and without prism. Conclusions: A two-diopter prism base out on the non-dominant eye induces the body to use the ankle joint more independently of individual phoria, suggesting a small improvement in postural control, while maintaining oscillations of the center of gravity unaltered. Prism seems to enhance the function of vestibular system selectively. Phoria adjustments with prismatic correction enable intervention in postural behavior. Extraocular muscles could act as proprioceptors influencing postural stability. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

23 pages, 5162 KB  
Article
Stage-by-Stage Adaptive Alignment Mechanism for Object Detection in Aerial Images
by Jiangang Zhu, Donglin Jing and Dapeng Gao
Electronics 2024, 13(18), 3640; https://doi.org/10.3390/electronics13183640 - 12 Sep 2024
Cited by 2 | Viewed by 1569
Abstract
Object detection in aerial images has had a broader range of applications in the past few years. Unlike the targets in the images of horizontal shooting, targets in aerial photos generally have arbitrary orientation, multi-scale, and a high aspect ratio. Existing methods often [...] Read more.
Object detection in aerial images has had a broader range of applications in the past few years. Unlike the targets in the images of horizontal shooting, targets in aerial photos generally have arbitrary orientation, multi-scale, and a high aspect ratio. Existing methods often employ a classification backbone network to extract translation-equivariant features (TEFs) and utilize many predefined anchors to handle objects with diverse appearance variations. However, they encounter misalignment at three levels, spatial, feature, and task, during different detection stages. In this study, we propose a model called the Staged Adaptive Alignment Detector (SAADet) to solve these challenges. This method utilizes a Spatial Selection Adaptive Network (SSANet) to achieve spatial alignment of the convolution receptive field to the scale of the object by using a convolution sequence with an increasing dilation rate to capture the spatial context information of different ranges and evaluating this information through model dynamic weighting. After correcting the preset horizontal anchor to an oriented anchor, feature alignment is achieved through the alignment convolution guided by oriented anchor to align the backbone features with the object’s orientation. The decoupling of features using the Active Rotating Filter is performed to mitigate inconsistencies due to the sharing of backbone features in regression and classification tasks to accomplish task alignment. The experimental results show that SAADet achieves equilibrium in speed and accuracy on two aerial image datasets, HRSC2016 and UCAS-AOD. Full article
(This article belongs to the Collection Computer Vision and Pattern Recognition Techniques)
Show Figures

Figure 1

14 pages, 2905 KB  
Article
An Adjustment Strategy for Tilted Moiré Fringes via Deep Q-Network
by Chuan Jin, Dajie Yu, Haifeng Sun, Junbo Liu, Ji Zhou and Jian Wang
Photonics 2024, 11(7), 666; https://doi.org/10.3390/photonics11070666 - 17 Jul 2024
Cited by 3 | Viewed by 1569
Abstract
Overlay accuracy, one of the three fundamental indicators of lithography, is directly influenced by alignment precision. During the alignment process based on the Moiré fringe method, a slight angular misalignment between the mask and wafer will cause the Moiré fringes to tilt, thereby [...] Read more.
Overlay accuracy, one of the three fundamental indicators of lithography, is directly influenced by alignment precision. During the alignment process based on the Moiré fringe method, a slight angular misalignment between the mask and wafer will cause the Moiré fringes to tilt, thereby affecting the alignment accuracy. This paper proposes a leveling strategy based on the DQN (Deep Q-Network) algorithm. This strategy involves using four consecutive frames of wafer tilt images as the input values for a convolutional neural network (CNN), which serves as the environment model. The environment model is divided into two groups: the horizontal plane tilt environment model and the vertical plane tilt environment model. After convolution through the CNN and training with the pooling operation, the Q-value consisting of n discrete actions is output. In the DQN algorithm, the main contributions of this paper lie in three points: the adaptive application of environmental model input, parameter optimization of the loss function, and the possibility of application in the actual environment to provide some ideas. The environment model input interface can be applied to different tilt models and more complex scenes. The optimization of the loss function can match the leveling of different tilt models. Considering the application of this strategy in actual scenarios, motion calibration and detection between the mask and the wafer provide some ideas. To verify the reliability of the algorithm, simulations were conducted to generate tilted Moiré fringes resulting from tilt angles of the wafer plate, and the phase of the tilted Moiré fringes was subsequently calculated. The angle of the wafer was automatically adjusted using the DQN algorithm, and then various angles were measured. Repeated measurements were also conducted at the same angle. The angle deviation accuracy of the horizontal plane tilt environment model reached 0.0011 degrees, and the accuracy of repeated measurements reached 0.00025 degrees. The angle deviation accuracy of the vertical plane tilt environment model reached 0.0043 degrees, and repeated measurements achieved a precision of 0.00027 degrees. Moreover, in practical applications, it also provides corresponding ideas to ensure the determination of the relative position between the mask and wafer and the detection of movement, offering the potential for its application in the industry. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

25 pages, 17160 KB  
Article
Task-Sensitive Efficient Feature Extraction Network for Oriented Object Detection in Remote Sensing Images
by Zhe Liu, Guiqing He, Liheng Dong, Donglin Jing and Haixi Zhang
Remote Sens. 2024, 16(13), 2271; https://doi.org/10.3390/rs16132271 - 21 Jun 2024
Cited by 4 | Viewed by 2052
Abstract
The widespread application of convolutional neural networks (CNNs) has led to significant advancements in object detection. However, challenges remain in achieving efficient and precise extraction of critical features when applying typical CNN-based methods to remote sensing detection tasks: (1) The convolutional kernels sliding [...] Read more.
The widespread application of convolutional neural networks (CNNs) has led to significant advancements in object detection. However, challenges remain in achieving efficient and precise extraction of critical features when applying typical CNN-based methods to remote sensing detection tasks: (1) The convolutional kernels sliding horizontally in the backbone are misaligned with the features of arbitrarily oriented objects. Additionally, the detector shares the features extracted from the backbone, but the classification task requires orientation-invariant features while the regression task requires orientation-sensitive features. The inconsistency in feature requirements makes it difficult for the detector to extract the critical features required for each task. (2) The use of deeper convolutional structures can improve the detection accuracy, but it also results in substantial convolutional computations and feature redundancy, leading to inefficient feature extraction. To address this issue, we propose a Task-Sensitive Efficient Feature Extraction Network (TFE-Net). Specifically, we propose a special mixed fast convolution module for constructing an efficient network architecture that employs cheap transform operations to replace some of the convolution operations, generating more features with fewer parameters and computation resources. Next, we introduce the task-sensitive detection module, which first aligns the convolutional features with the targets using adaptive dynamic convolution based on the orientation of the targets. The task-sensitive feature decoupling mechanism is further designed to extract orientation-sensitive features and orientation-invariant features from the aligned features and feed them into the regression and classification branches, respectively, which provide the critical features needed for different tasks, thus improving the detection performance comprehensively. In addition, in order to make the training process more stable, we propose a balanced loss function to balance the gradients generated by different samples. Extensive experiments demonstrate that our proposed TFE-Net can achieve superior performance and obtain an effective balance between detection speed and accuracy on DOTA, UCAS-AOD, and HRSC2016. Full article
Show Figures

Figure 1

20 pages, 9967 KB  
Article
Investigation of Viscoelastic Guided Wave Properties in Anisotropic Laminated Composites Using a Legendre Orthogonal Polynomials Expansion–Assisted Viscoelastodynamic Model
by Hongye Liu, Ziqi Huang, Zhuang Yin, Maoxun Sun, Luyu Bo, Teng Li and Zhenhua Tian
Polymers 2024, 16(12), 1638; https://doi.org/10.3390/polym16121638 - 10 Jun 2024
Cited by 4 | Viewed by 1484
Abstract
This study investigates viscoelastic guided wave properties (e.g., complex–wavenumber–, phase–velocity–, and attenuation–frequency relations) for multiple modes, including different orders of antisymmetric, symmetric, and shear horizontal modes in viscoelastic anisotropic laminated composites. To obtain those frequency–dependent relations, a guided wave characteristic equation is formulated [...] Read more.
This study investigates viscoelastic guided wave properties (e.g., complex–wavenumber–, phase–velocity–, and attenuation–frequency relations) for multiple modes, including different orders of antisymmetric, symmetric, and shear horizontal modes in viscoelastic anisotropic laminated composites. To obtain those frequency–dependent relations, a guided wave characteristic equation is formulated based on a Legendre orthogonal polynomials expansion (LOPE)–assisted viscoelastodynamic model, which fuses the hysteretic viscoelastic model–based wave dynamics and the LOPE–based mode shape approximation. Then, the complex–wavenumber–frequency solutions are obtained by solving the characteristic equation using an improved root–finding algorithm, which leverages coefficient matrix determinant ratios and our proposed local tracking windows. To trace the solutions on the dispersion curves of different wave modes and avoid curve–tracing misalignment in regions with phase–velocity curve crossing, we presented a curve–tracing strategy considering wave attenuation. With the LOPE–assisted viscoelastodynamic model, the effects of material viscosity and fiber orientation on different guided wave modes are investigated for unidirectional carbon–fiber–reinforced composites. The results show that the viscosity in the hysteresis model mainly affects the frequency–dependent attenuation of viscoelastic guided waves, while the fiber orientation influences both the phase–velocity and attenuation curves. We expect the theoretical work in this study to facilitate the development of guided wave–based techniques for the NDT and SHM of viscoelastic anisotropic laminated composites. Full article
Show Figures

Figure 1

17 pages, 7777 KB  
Article
Effects of Unbalanced Incentives on Threshing Drum Stability during Rice Threshing
by Kexin Que, Zhong Tang, Ting Wang, Zhan Su and Zhao Ding
Agriculture 2024, 14(5), 777; https://doi.org/10.3390/agriculture14050777 - 17 May 2024
Cited by 9 | Viewed by 1919
Abstract
As a result of the uneven growth of rice, unbalanced vibration of threshing drum caused by stalk entanglement in combine harvester is more and more severe. In order to reveal the influence of unbalanced excitation on the roller axis locus during rice threshing, [...] Read more.
As a result of the uneven growth of rice, unbalanced vibration of threshing drum caused by stalk entanglement in combine harvester is more and more severe. In order to reveal the influence of unbalanced excitation on the roller axis locus during rice threshing, the stability of threshing drum was studied. The dynamic signal test and analysis system are used to test the axial trajectory of threshing drum. At the same time, the influence of the unbalanced excitation caused by the axis winding on the axis trajectory is analyzed by the experimental results. Axis locus rules under no-load and threshing conditions are obtained. In order to simulate the axial and radial distribution of unbalanced excitation along the threshing drum, the counterweight was distributed on the threshing drum instead of the entangled stalk. Then, the definite effect of unbalanced excitation on the rotating stability of threshing drum is analyzed. Results show that the amplitude of stem winding along the grain drum is larger in the vertical direction and smaller in the horizontal direction when compared with the unloaded state under 200 g weight. It was found that the amplitude in both horizontal and vertical directions decreased after 400 g and 600 g counterweights were added, respectively, to simulate the radial distribution of stalk winding along the grain barrel. Finally, it can be seen that with the increase in the weight of the counterweight, the characteristics of the trajectory misalignment of the threshing cylinder axis become more and more obvious. This study can provide reference for reducing the unbalanced excitation signal of threshing drum and improving driving comfort. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop