Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = horizontal-to-vertical spectral ratio (HVSR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 20277 KB  
Article
A Multidisciplinary Approach to Mapping Morphostructural Features and Their Relation to Seismic Processes
by Simona Bongiovanni, Raffaele Martorana, Alessandro Canzoneri, Maurizio Gasparo Morticelli and Attilio Sulli
Geosciences 2025, 15(9), 337; https://doi.org/10.3390/geosciences15090337 - 1 Sep 2025
Viewed by 1250
Abstract
A multidisciplinary investigation was conducted in southwestern Sicily, near the seismically active Belice Valley, based on the analysis of morphostructural features. These were observed as open fractures between 2014 and 2017; they were subsequently filled anthropogenically and then reactivated during a seismic swarm [...] Read more.
A multidisciplinary investigation was conducted in southwestern Sicily, near the seismically active Belice Valley, based on the analysis of morphostructural features. These were observed as open fractures between 2014 and 2017; they were subsequently filled anthropogenically and then reactivated during a seismic swarm in 2019. We generated a seismic event distribution map to analyze the location, magnitude, and depth of earthquakes. This analysis, combined with multitemporal satellite imagery, allowed us to investigate the spatial and temporal relationship between seismic activity and fracture evolution. To investigate the spatial variation in thickness of the superficial cover and to assess the depth to the underlying bedrock or stiffer substratum, 45 Horizontal-to-Vertical Spectral Ratio (HVSR) ambient noise measurements were conducted. This method, which analyzes the resonance frequency of the ground, produced maps of the amplitude, frequency, and vulnerability index of the ground (Kg). By inverting the HVSR curves, constrained by Multichannel Analysis of Surface Waves (MASW) results, a subsurface model was created aimed at supporting the structural interpretation by highlighting variations in sediment thickness potentially associated with fault-controlled subsidence or deformation zones. The surface investigation revealed depressed elliptical deformation zones, where mainly sands outcrop. Grain-size and morphoscopic analyses of sediment samples helped understand the processes generating these shapes and predict future surface deformation. These elliptical shapes recall the liquefaction process. To investigate the potential presence of subsurface fluids that could have contributed to this process, Electrical Resistivity Tomography (ERT) was performed. The combination of the maps revealed a correlation between seismic activity and surface deformation, and the fractures observed were interpreted as inherited tectonic and/or geomorphological structures. Full article
Show Figures

Figure 1

27 pages, 4150 KB  
Article
Improved Liquefaction Hazard Assessment via Deep Feature Extraction and Stacked Ensemble Learning on Microtremor Data
by Oussama Arab, Soufiana Mekouar, Mohamed Mastere, Roberto Cabieces and David Rodríguez Collantes
Appl. Sci. 2025, 15(12), 6614; https://doi.org/10.3390/app15126614 - 12 Jun 2025
Viewed by 634
Abstract
The reduction in disaster risk in urban regions due to natural hazards (e.g., earthquakes, landslides, floods, and tropical cyclones) is primarily a development matter that must be treated within the scope of a broader urban development framework. Natural hazard assessment is one of [...] Read more.
The reduction in disaster risk in urban regions due to natural hazards (e.g., earthquakes, landslides, floods, and tropical cyclones) is primarily a development matter that must be treated within the scope of a broader urban development framework. Natural hazard assessment is one of the turning points in mitigating disaster risk, which typically contributes to stronger urban resilience and more sustainable urban development. Regarding this challenge, our research proposes a new approach in the signal processing chain and feature extraction from microtremor data that focuses mainly on the Horizontal-to-Vertical Spectral Ratio (HVSR) so as to assess liquefaction potential as a natural hazard using AI. The key raw seismic features of site amplification and resonance are extracted from the data via bandpass filtering, Fourier Transformation (FT), the calculation of the HVSR, and smoothing through the use of moving averages. The main novelty is the integration of machine learning, particularly stacked ensemble learning, for liquefaction potential classification from imbalanced seismic datasets. For this approach, several models are used to consider class imbalance, enhancing classification performance and offering better insight into liquefaction risk based on microtremor data. Then, the paper proposes a liquefaction detection method based on deep learning with an autoencoder and stacked classifiers. The autoencoder compresses data into the latent space, underlining the liquefaction features classified by the multi-layer perceptron (MLP) classifier and eXtreme Gradient Boosting (XGB) classifier, and the meta-model combines these outputs to put special emphasis on rare liquefaction events. This proposed methodology improved the detection of an imbalanced dataset, although challenges remain in both interpretability and computational complexity. We created a synthetic dataset of 1000 samples using realistic feature ranges that mimic the Rif data region to test model performance and conduct sensitivity analysis. Key seismic and geotechnical variables were included, confirming the amplification factor (Af) and seismic vulnerability index (Kg) as dominant predictors and supporting model generalizability in data-scarce regions. Our proposed method for liquefaction potential classification achieves 100% classification accuracy, 100% precision, and 100% recall, providing a new baseline. Compared to existing models such as XGB and MLP, the proposed model performs better in all metrics. This new approach could become a critical component in assessing liquefaction hazard, contributing to disaster mitigation and urban planning. Full article
Show Figures

Figure 1

23 pages, 13284 KB  
Article
Reconstruction of a 3D Bedrock Model in an Urban Area Using Well Stratigraphy and Geophysical Data: A Case Study of the City of Palermo
by Alessandro Canzoneri, Raffaele Martorana, Mauro Agate, Maurizio Gasparo Morticelli, Patrizia Capizzi, Alessandra Carollo and Attilio Sulli
Geosciences 2025, 15(5), 174; https://doi.org/10.3390/geosciences15050174 - 14 May 2025
Cited by 2 | Viewed by 1386
Abstract
A multidisciplinary approach was employed to construct a three-dimensional model of the bedrock top surface within the Palermo Plain, Sicily, Italy. This urban area is characterized by a dense and extensive built environment that largely obscures its geological features, thereby emphasizing the value [...] Read more.
A multidisciplinary approach was employed to construct a three-dimensional model of the bedrock top surface within the Palermo Plain, Sicily, Italy. This urban area is characterized by a dense and extensive built environment that largely obscures its geological features, thereby emphasizing the value of geophysical methods for enhancing subsurface understanding. In this sector, Numidian Flysch deposits constitute the geological bedrock of the plain. The morphology of the top surface of this unit was reconstructed by integrating borehole stratigraphic data with both passive and active seismic surveys. Ambient noise recordings were analyzed using the Horizontal-to-Vertical Spectral Ratio (HVSR) method to obtain spectral curves. These were then inverted into seismostratigraphic models using shear wave velocity profiles derived by Multichannel Analysis of Surface Waves (MASW) and lithostratigraphic information from borehole logs. Finally, the depth of the top of the Numidian Flysch, determined from both the borehole data and the inverted seismic models, was interpolated to generate a comprehensive 3D model of the bedrock top surface. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

18 pages, 8367 KB  
Article
Passive Seismic Surveys for a Simplified Experimental Dynamic Characterization of the Messina Bell Tower (Sicily, Italy)
by Sabrina Grassi, Sebastiano Imposa and Gabriele Morreale
Appl. Sci. 2025, 15(9), 4973; https://doi.org/10.3390/app15094973 - 30 Apr 2025
Cited by 1 | Viewed by 620
Abstract
This study proposes a simplified approach for the experimental dynamic characterization of the historic Messina Bell Tower (northeastern Sicily) using passive seismic single-station surveys. The Horizontal-to-Vertical Spectral Ratio (HVSR) analysis identified a site resonance frequency of approximately 1.06 Hz, while the Multichannel Analysis [...] Read more.
This study proposes a simplified approach for the experimental dynamic characterization of the historic Messina Bell Tower (northeastern Sicily) using passive seismic single-station surveys. The Horizontal-to-Vertical Spectral Ratio (HVSR) analysis identified a site resonance frequency of approximately 1.06 Hz, while the Multichannel Analysis of Surface Waves (MASW) survey contributed to the characterization of the shear wave velocity profile, providing a coherent geophysical framework useful for structural dynamic analysis. Spectral ratios analysis revealed four distinct vibration modes, including a fundamental rocking mode (~1.4 Hz), a torsional mode (3.5 Hz), and two higher-frequencies flexural modes. The structure’s dynamic behavior, notably its sensitivity to torsion and rocking, is attributed to the deformable subsoil. Damping ratios estimated via the Random Decrement Method (RDM) were below 1%, consistent with the expected linear elastic response under ambient vibrations. The results show strong agreement with previous long-term monitoring, validating the effectiveness of passive seismic techniques for rapid, non-invasive assessment. This study demonstrates that streamlined, time-efficient methodologies are capable of delivering modal parameters consistent with those obtained from more extensive and resource-intensive monitoring campaigns, thereby providing a reliable and practical approach for the seismic vulnerability assessment of heritage structures. Full article
(This article belongs to the Special Issue Simplified Seismic Analysis of Complex Civil Structures)
Show Figures

Figure 1

23 pages, 14094 KB  
Article
Characterization of the Sedimentary Cover in the City of Aïn Témouchent, Northwest Algeria, Using Ambient Noise Measurements
by Ahmed Saadi, Fethi Semmane, Juan José Galiana-Merino, Abdelkrim Yelles-Chaouche, Abdelouahab Issaadi and Billel Melouk
Appl. Sci. 2025, 15(6), 2967; https://doi.org/10.3390/app15062967 - 10 Mar 2025
Viewed by 1406
Abstract
The city of Aïn Témouchent, located in northwest Algeria at the westernmost part of the Lower Cheliff Basin, has experienced several moderate earthquakes, the most significant of which occurred on 22 December 1999 (Mw 5.7, 25 fatalities, severe damage). In this study, ambient [...] Read more.
The city of Aïn Témouchent, located in northwest Algeria at the westernmost part of the Lower Cheliff Basin, has experienced several moderate earthquakes, the most significant of which occurred on 22 December 1999 (Mw 5.7, 25 fatalities, severe damage). In this study, ambient noise measurements from 62 sites were analyzed using the horizontal-to-vertical spectral ratio (HVSR) method to estimate fundamental frequency (f0) and amplitude (A0). The inversion of HVSR curves provided sedimentary layer thickness and shear wave velocity (Vs) estimates. Additionally, four spatial autocorrelation (SPAC) array measurements refined the Rayleigh wave dispersion curves, improving Vs profiles (150–1350 m/s) and sediment thickness estimates (up to 390 m in the industrial zone). Vs30 and vulnerability index maps were developed to classify soil types and assess liquefaction potential within the city. Full article
(This article belongs to the Special Issue Earthquake Engineering: Geological Impacts and Disaster Assessment)
Show Figures

Figure 1

17 pages, 4492 KB  
Article
Rapid Estimation of Vs30 Through Elitist Genetic Algorithm HVSR Inversion and Refraction Microtremor Data Analysis in the Greater Metro Manila Area and Leyte Province, Philippines
by Rhommel N. Grutas, Andrew T. Serrano, Jamie Mary Loise C. Tan and Rio Angela F. Castro
Appl. Sci. 2025, 15(5), 2447; https://doi.org/10.3390/app15052447 - 25 Feb 2025
Viewed by 2019
Abstract
Vs30, the average shear wave velocity in the uppermost 30 m, is a critical parameter in seismic hazard analysis. In the Philippines, the Refraction Microtremor (ReMi) survey is the standard method for Vs30 Estimation. This study evaluates the efficiency of using an elitist [...] Read more.
Vs30, the average shear wave velocity in the uppermost 30 m, is a critical parameter in seismic hazard analysis. In the Philippines, the Refraction Microtremor (ReMi) survey is the standard method for Vs30 Estimation. This study evaluates the efficiency of using an elitist Genetic Algorithm (GA) to invert Horizontal-to-Vertical Spectral Ratio (HVSR) data as an alternative approach. Unlike ReMi surveys, which require geophone arrays, HVSR surveys use a single-unit three-component microtremor seismograph, enabling faster and broader data collection. Analysis of 174 HVSR and 52 ReMi datasets from the Greater Metro Manila Area (GMMA) and Leyte Province revealed strong correlations between estimated and measured Vs30 values. The overall match rates for soil profile classification under the National Structural Code of the Philippines (NSCP 2015) were 76% in GMMA and 81% in Leyte, with R-squared values of 0.885 and 0.806, respectively. Additionally, the relationship between the fundamental site period and estimated Vs30 values was explored. The R-squared values of 0.772 for GMMA and 0.707 for Leyte indicate a strong correlation and demonstrate the expected inverse relationship between the two variables. Given the Philippines’ high seismic activity, this method provides an efficient means to enhance seismic hazard mapping, improving earthquake preparedness and mitigation. Full article
(This article belongs to the Special Issue Applied Geophysical Imaging and Data Processing)
Show Figures

Figure 1

26 pages, 6886 KB  
Article
Numerical and Experimental Seismic Characterization of Byblos Site in Lebanon
by Rita Abou Jaoude, Nisrine Makhoul, Alexandrine Gesret and Jean-Alain Fleurisson
Geosciences 2025, 15(3), 82; https://doi.org/10.3390/geosciences15030082 - 23 Feb 2025
Cited by 1 | Viewed by 966
Abstract
Geological and topographic site effects lead to variations in the spatial distribution of ground motion during large earthquakes. Despite the impact of such phenomena, they remain poorly understood. There is a lack of joint studies of numerical predictions and experimental observations on the [...] Read more.
Geological and topographic site effects lead to variations in the spatial distribution of ground motion during large earthquakes. Despite the impact of such phenomena, they remain poorly understood. There is a lack of joint studies of numerical predictions and experimental observations on the geomorphological site effects. Therefore, a comparison between well-constrained models and experimental field observations is needed. Byblos is a seismic region in Lebanon surrounded by faults that historically generated destructive earthquakes. Its geological and geomorphological settings are interestingly characterized by fractured rocks and anthropic deposits altering seismic ground motions. Field surveys in Byblos gathered ambient vibration recordings and surface waves. It identified multiple resonant frequency peaks, suggesting impedance contrasts and lateral variations in subsurface stiffness, using Horizontal-to-Vertical Spectral Ratio (HVSR) and directivity. It also revealed soft, shallow layers with low velocities, indicating potential resonance during earthquakes, using Multichannel Analysis of Surface Waves (MASW) and 2D seismic arrays. Thus, our study on Byblos is a first step for seismic microzoning of the area that evaluated its heterogeneous subsoil, soft surface layers, and anthropic deposits. Finally, combining geophysical data and field measurements with a numerical model allowed a better understanding of Byblos seismic hazards and enhanced its resilience and sustainability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

17 pages, 3714 KB  
Article
Estimating VS30 at South Korean Seismic Observatory Stations Through Horizontal and Vertical Ground Motions
by Eric Yee and Chang-kyu Lee
Appl. Sci. 2025, 15(1), 214; https://doi.org/10.3390/app15010214 - 30 Dec 2024
Viewed by 1202
Abstract
This investigation attempts to estimate time-averaged shear wave velocity in the upper 30 m of surficial material, VS30, from the horizontal-to-vertical spectral ratios, HVSRs, of seismic observatory stations in the South Korean region. From 2016 to 2023, a collection of 783 [...] Read more.
This investigation attempts to estimate time-averaged shear wave velocity in the upper 30 m of surficial material, VS30, from the horizontal-to-vertical spectral ratios, HVSRs, of seismic observatory stations in the South Korean region. From 2016 to 2023, a collection of 783 three-component ground motions were obtained from 19 stations operated by the Korea Institute of Geoscience and Mineral Resources. HVSRs were extracted from 5% damped acceleration and velocity RotD50 response spectra at each site. Peak HVSR frequencies and amplitudes were extracted and regressed to field-measured VS30s at available sites. An evaluation of different frequency and amplitude conditions was made to ascertain any effects on the regression. Findings included confirmation on minimum frequency and having amplitude conditions were unnecessary. Additionally, another peak frequency to VS30 relationship derived from Central and Eastern North America captured most of the behavior found in the Korean dataset. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 6676 KB  
Article
Characterization of HVSR and VRSR in the Loess Plateau of China Based on Strong-Motion Data
by Qi Li, Jingshan Bo and Da Peng
Appl. Sci. 2025, 15(1), 67; https://doi.org/10.3390/app15010067 - 25 Dec 2024
Viewed by 852
Abstract
In recent decades, China has collected extensive strong-motion data from the Loess Plateau, which is valuable for understanding the dynamic characteristics of loess sites and the effects of site conditions on seismic motions. The horizontal-to-vertical Fourier spectrum ratio (HVSR) and the horizontal-to-vertical velocity [...] Read more.
In recent decades, China has collected extensive strong-motion data from the Loess Plateau, which is valuable for understanding the dynamic characteristics of loess sites and the effects of site conditions on seismic motions. The horizontal-to-vertical Fourier spectrum ratio (HVSR) and the horizontal-to-vertical velocity response spectrum ratio (VRSR) are widely used to study site dynamics. This study analyzes strong-motion data from the Loess Plateau to identify key features of the HVSR and VRSR curves. The results show that these spectral ratio curves effectively capture the dynamic behaviors of loess sites, minimizing the influences of earthquake magnitude and propagation path. While the spectral ratio peaks are less affected by magnitude, epicentral distance, and focal depth, they are significantly influenced by site conditions. Conversely, the dominant periods estimated from these curves are strongly influenced by magnitude, epicentral distance, and focal depth. For sites located on the Loess Plateau, the average amplification factor is approximately 3, with a mean predominant period of 0.4 s. These results provide valuable insights into the dynamic characteristics of loess sites and have practical implications for seismic design in the region. Full article
Show Figures

Figure 1

22 pages, 4068 KB  
Article
Analysis of the Liquefaction Potential at the Base of the San Marcos Dam (Cayambe, Ecuador)—A Validation in the Use of the Horizontal-to-Vertical Spectral Ratio
by Olegario Alonso-Pandavenes, Francisco Javier Torrijo and Gabriela Torres
Geosciences 2024, 14(11), 306; https://doi.org/10.3390/geosciences14110306 - 13 Nov 2024
Cited by 2 | Viewed by 1825
Abstract
Ground liquefaction potential analysis is a fundamental characterization in areas with continuous seismic activity, such as Ecuador. Geotechnical liquefaction studies are usually approached from dynamic penetration tests, which pose problems both in their correct execution and in their evaluation. Our research involves analyzing [...] Read more.
Ground liquefaction potential analysis is a fundamental characterization in areas with continuous seismic activity, such as Ecuador. Geotechnical liquefaction studies are usually approached from dynamic penetration tests, which pose problems both in their correct execution and in their evaluation. Our research involves analyzing dynamic penetration tests and microtremor geophysical surveys (horizontal-to-vertical spectral ratio technique, HVSR) for analyzing the liquefaction potential at the base of the San Marcos dam, a reservoir located in Cayambe canton (Ecuador). Based on the investigations performed at the time of construction of the dam (drilling and geophysical refraction profiles) and the application of 20 microtremor observation stations via the HVSR technique, an analysis of the safety factor of liquefaction (SFliq) was conducted using the 2001 Youd and Idriss formulation and the values of the standard penetration test (SPT) applied in granular materials (sands). In addition, the vulnerability index (Kg) proposed by Nakamura in 1989 was analyzed through the HVSR records related to the ground shear strain (GSS). The results obtained in the HVSR analysis indicate the presence of a zone of about 100 m length in the central part of the foot of the dam, whose GSS values identified a condition of susceptibility to liquefaction. In the same area, the SPT essays analysis in the P-8A drill hole also shows a potential susceptibility to liquefaction in earthquake conditions greater than a moment magnitude (Mw) of 4.5. That seismic event could occur in the area, for example, with a new activity condition of the nearby Cayambe volcano or even from an earthquake from the vicinity of the fractured zone. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering and Geohazard Prevention)
Show Figures

Figure 1

15 pages, 3029 KB  
Article
A Seismic Monitoring Tool for Tidal-Forced Aquifer Level Changes in the Río de la Plata Coastal Plain, Argentina
by Luciano Galone, Francesco Panzera, Emanuele Colica, Enrique Fucks, Eleonora Carol, Francisco Cellone, Lluís Rivero, Matthew R. Agius and Sebastiano D’Amico
Sustainability 2024, 16(4), 1432; https://doi.org/10.3390/su16041432 - 8 Feb 2024
Cited by 7 | Viewed by 2425
Abstract
Ambient seismic noise has gained extensive applications in seismology and plays a pivotal role in environmental seismic studies. This study focuses on the Río de la Plata Coastal Plain, employing the horizontal-to-vertical spectral ratio (HVSR) method on ambient seismic noise records to analyze [...] Read more.
Ambient seismic noise has gained extensive applications in seismology and plays a pivotal role in environmental seismic studies. This study focuses on the Río de la Plata Coastal Plain, employing the horizontal-to-vertical spectral ratio (HVSR) method on ambient seismic noise records to analyze subsurface dynamics. The region’s hydrogeology is complex, featuring partially interconnected coastal aquifers. The HVSR analysis reveals two peaks, with P0 associated with the sediment-basement interface and P1 linked to a shallower stratigraphic discontinuity. Temporal analysis of P1 highlights cyclical patterns correlated with estuarine levels, suggesting a relationship between variations in seismic velocities and tidal dynamics. Comparisons with aquifer data support the hypothesis that tidal variations influence subsurface mechanical properties, impacting the HVSR function. The study hints at the potential of ambient seismic noise analysis as a non-invasive and cost-effective method for studying coastal aquifers and understanding groundwater dynamics. Ongoing research aims to further explore these relationships for enhanced groundwater resource management. Full article
(This article belongs to the Special Issue Advances in Sustainability Research at the University of Malta)
Show Figures

Figure 1

29 pages, 3749 KB  
Article
Shear-Wave Velocity Model from Site Amplification Using Microtremors on Jeju Island
by Junkyoung Kim, Dongkeuk Park, Gitae Nam and Haiyoung Jung
Appl. Sci. 2024, 14(2), 795; https://doi.org/10.3390/app14020795 - 17 Jan 2024
Cited by 3 | Viewed by 1927
Abstract
This study examines shear-wave velocity structures in the Jeju region utilizing horizontal-to-vertical spectral ratios (HVSRs) of environmental noise, focusing on identifying significant low-velocity layers (LVLs). Although conventional methodologies predominantly involve borehole and active seismic exploration, recent advancements in the diffuse-field theory of seismic [...] Read more.
This study examines shear-wave velocity structures in the Jeju region utilizing horizontal-to-vertical spectral ratios (HVSRs) of environmental noise, focusing on identifying significant low-velocity layers (LVLs). Although conventional methodologies predominantly involve borehole and active seismic exploration, recent advancements in the diffuse-field theory of seismic waves have offered a theoretical foundation for this approach. In the volcanic region of Jeju Island characterized by unique geological features, a pervasive LVL composed of quaternary marine sediments and the Seoguipo sedimentary layer has been observed. These components are crucial for site amplification and attenuation in seismic microzonation. The present study introduces a novel discovery of a distinct LVL, specifically at the UDO site, suggesting that its origin may be attributable to a local magmatic intrusion event. Advanced algorithms and HVSR curve analysis have enabled reliable inversion processes, enhancing the comprehension of the subsurface geology of Jeju. These insights are essential for seismic microzonation practices and contribute significantly to the development of seismic design standards in the Jeju region. Full article
(This article belongs to the Special Issue New Challenges in Seismic Hazard Assessment)
Show Figures

Figure 1

18 pages, 19566 KB  
Article
Assessing Shallow Soft Deposits through Near-Surface Geophysics and UAV-SfM: Application in Pocket Beaches Environments
by Luciano Galone, Sebastiano D’Amico, Emanuele Colica, Peter Iregbeyen, Pauline Galea, Lluís Rivero and Fabio Villani
Remote Sens. 2024, 16(1), 40; https://doi.org/10.3390/rs16010040 - 21 Dec 2023
Cited by 3 | Viewed by 1860
Abstract
This study employs a multimethod approach to investigate the sediment distribution in two pocket beaches, Ramla Beach and Mellieha S Beach, in Malta. Both study sites were digitally reconstructed using unmanned aerial vehicle (UAV) photogrammetry. For each case, an ERT and a dense [...] Read more.
This study employs a multimethod approach to investigate the sediment distribution in two pocket beaches, Ramla Beach and Mellieha S Beach, in Malta. Both study sites were digitally reconstructed using unmanned aerial vehicle (UAV) photogrammetry. For each case, an ERT and a dense network of ambient seismic noise measurements processed through a horizontal-to-vertical spectral ratio (HVSR) technique were acquired. Electrical resistivity tomography (ERT) analysis enables the estimation of sediment thickness in each beach. HVSR analysis revealed peaks related to beach sediments overlying limestone rocks in both sites and also indicated a deeper stratigraphic contact in Mellieha S Beach. Based on ERT measurements, sediment thickness is calculated for each HVSR measurement. Interpolation of results allows for bedrock surface modelling in each case study, and when combined with digital terrain models (DTMs) derived from photogrammetric models, sediment volumes are estimated for each site. The geometry of this surface is analyzed from a geological perspective, showing structural control of sediment distribution due to a normal fault in Mellieha S Beach and stratigraphic control facilitated by a highly erodible surface in Ramla Beach. The results emphasize the importance of adopting a three-dimensional perspective in coastal studies for precise sediment volume characterization and a deeper understanding of pocket beach dynamics. This practical multimethod approach presented here offers valuable tools for future coastal research and effective coastal management, facilitating informed decision making amidst the growing vulnerability of coastal zones to climate change impacts. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Coastal Geomorphology Ⅱ)
Show Figures

Figure 1

13 pages, 6000 KB  
Case Report
Estimation of Low-Velocity Landfill Thickness with Multi-Method Seismic Surveys
by Yaniv Darvasi and Amotz Agnon
Geotechnics 2023, 3(3), 731-743; https://doi.org/10.3390/geotechnics3030040 - 2 Aug 2023
Cited by 1 | Viewed by 1861
Abstract
Conventional geophysical methods are suitable for estimating the thicknesses of subsoil layers. By combining several geophysical methods, the uncertainties can be assessed. Hence, the reliability of the results increases with a more accurate engineering solution. To estimate the base of an abandoned landfill, [...] Read more.
Conventional geophysical methods are suitable for estimating the thicknesses of subsoil layers. By combining several geophysical methods, the uncertainties can be assessed. Hence, the reliability of the results increases with a more accurate engineering solution. To estimate the base of an abandoned landfill, we collected data using classical approaches: high-resolution seismic reflection and refraction, with more modern methods including passive surface wave analysis and horizontal-to-vertical spectral ratio (HVSR) measurements. To evaluate the thickness of the landfill, three different datasets were acquired along each of the two seismic lines, and five different processing methods were applied for each of the two arrays. The results of all the classical methods indicate very consistent correlations and mostly converge to clear outcomes. However, since the shear wave velocity of the landfill is relatively low (<150 (m/s)), the uncertainty of the HVSR results is significant. All these methods are engineering-oriented, environmentally friendly, and relatively low-cost. They may be jointly interpreted to better assess uncertainties and therefore enable an efficient solution for environmental or engineering purposes. Full article
Show Figures

Figure 1

11 pages, 8438 KB  
Article
The Relationship between Bedrock Depth and Site Fundamental Frequency in the Nakdonggang Delta Region, South Korea
by Jaehwi Kim, Giseok Heo, Dongyoup Kwak and Seokho Jeong
Geotechnics 2023, 3(3), 550-560; https://doi.org/10.3390/geotechnics3030030 - 21 Jun 2023
Cited by 3 | Viewed by 2781
Abstract
This paper describes the relationship between bedrock depth (D) and site fundamental frequency (f0) in the Nakdonggang delta region in the southeastern part of the Korean peninsula. We collected borehole logs to confirm the thickness of the sediments and estimated the [...] Read more.
This paper describes the relationship between bedrock depth (D) and site fundamental frequency (f0) in the Nakdonggang delta region in the southeastern part of the Korean peninsula. We collected borehole logs to confirm the thickness of the sediments and estimated the f0 at over 200 locations across the delta using the horizontal-to-vertical spectral ratio (HVSR) method. We developed an f0 map of the study area by spatially interpolating the f0 values using the Ordinary Kriging method. The bedrock depth in the main delta showed a power-law dependence on the f0. The derived f0–D model predicted much shallower bedrock depths compared with similar studies from other parts of the world. This was attributed to the fact that the Nakdonggang delta region is composed of relatively low Vs Holocene sediments. With an f0 map, the derived model could enable a quick estimation of the bedrock depth, which could help to determine the site class in the Nakdonggang delta region according to the Korean Seismic Design Standard (KDS 17 10 00). Full article
Show Figures

Figure 1

Back to TopTop